©2004 Fairchild Semic ond uct or Cor porati on
November 2004
FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
FDB3632 / FDP3632 / FDI3632 / FDH3632
FDB3632 / FDP3632 / FDI3632 / FDH3632
N-Channel PowerTrench® MOSFET
100V, 80A, 9m
Features
•r
DS(ON) = 7.5m (Typ.), VGS = 10V, ID = 80A
•Q
g(tot) = 84nC (Typ.), VGS = 10V
Low Miller Charge
•Low Q
RR Body Diode
UIS Capability (Single Pulse and Repetitive Pulse)
Qualified to AEC Q101
Applications
DC/DC converters and Off-Line UPS
Distributed Power Architectures and VRMs
Primary Switch for 24V and 48V Systems
High Voltage Synchronous Rectifier
Direct Injection / Diesel Injection Systems
42V Automotive Load Control
Electronic Valve Train Systems
MOSFET Maximum Ratings TC = 25°C unless otherwise noted
Thermal Characteristics
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems
certification.
Symbol Parameter Ratings Units
VDSS Drain to Source Voltage 100 V
VGS Gate to Source Voltage ±20 V
ID
Drain Current 80 A
Continuous (TC < 111oC, VGS = 10V)
Continuous (Tamb = 25oC, VGS = 10V, RθJA = 43oC/W) 12 A
Pulsed Figure 4 A
EAS Single Pulse Avalanche Energy (Note 1) 393 mJ
PDPower dissipation 310 W
Derate above 25oC2.07W/
oC
TJ, TSTG Operating and Storage Temperature -55 to 175 oC
RθJC Thermal Resistance Junction to Case TO-220, TO-263, TO-262,
TO-247 0.48 oC/W
RθJA Thermal Resistance Junction to Ambient TO-220, TO-262 (Note 2) 62 oC/W
RθJA Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area 43 oC/W
RθJA Thermal Resistance Junction to Ambient TO-247 (Note 2) 30 oC/W
S
G
D
TO-263AB
FDB SERIES
TO-220AB
FDP SERIES
DRAIN
DG
G
S
S
(FLANGE)
DRAIN
(FLANGE)
DRAIN
(FLANGE)
D
SG
TO-262AB
FDI SERIES
SDG
DRAIN
TO-247
FDH SERIES
FDB3632 / FDP3632 / FDI3632 / FDH3632
©2004 Fairchild Semic ond uct or Cor porati on FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
Package Marking and Ordering Information
Electrical Characteristics TC = 25°C unless otherwise noted
Off Characteristic s
On Characteristics
Dynamic Characteristics
Resistive Swi tchi n g Chara ct eri st ic s (VGS = 10V)
Drain-Source Diode Characteristics
Notes:
1: Starting TJ = 25°C, L = 0.12mH, IAS = 75A, VDD = 80V.
2: Pulse Width = 100s
Device Marking Device Package Reel Size Tape Width Quantity
FDB3632 FDB3632 TO-263AB 330mm 24mm 800 units
FDP3632 FDP3632 TO-220AB Tube N/A 50 units
FDI3632 FDI3632 TO-262AA Tube N/A 50 units
FDH3632 FDH3632 TO-247 Tube N/A 30 units
Symbol Parameter Test Conditions Min Typ Max Units
BVDSS Drain to Source Breakdown Voltage ID = 250µA, VGS = 0V 100 - - V
IDSS Zero Gate Voltage Drain Current VDS = 80V - - 1 µA
VGS = 0V TC= 150oC - - 250
IGSS Gate to Source Leakage Current VGS = ±20V - - ±100 nA
VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
rDS(ON) Drain to Source On Resist ance ID=80A, VGS=10V - 0.0075 0.009
ID =40A, VGS = 6V, - 0.009 0.015
ID=80A, VGS=10V, TC=175oC - 0.018 0.022
CISS Input Capacitance VDS = 25V, VGS = 0V,
f = 1MHz
- 6000 - pF
COSS Output Capacitance - 820 - pF
CRSS Reverse Transfer Capacitance - 200 - pF
Qg(TOT) Total Gate Ch arge at 10V VGS = 0V to 10V
VDD = 50V
ID = 80A
Ig = 1.0mA
- 84 110 nC
Qg(TH) Threshold Gate Charge VGS = 0V to 2V - 11 14 nC
Qgs Gate to Source Gate Charge - 30 - nC
Qgs2 Gate Charge Threshold to Plateau - 20 - nC
Qgd Gate to Drain “Miller” Charge - 20 - nC
tON Turn-On Time
VDD = 50V, ID = 80A
VGS = 10V, RGS = 3.6
- - 102 ns
td(ON) Turn-On Delay Time - 30 - ns
trRise Time - 39 - ns
td(OFF) Tur n-Off Delay Time - 96 - ns
tfFall Time - 46 - ns
tOFF Turn-Off Time - - 213 ns
VSD Source to Drain Diode Voltage ISD = 80A - - 1.25 V
ISD = 40A - - 1.0 V
trr Reverse Recovery Time ISD = 75A, dISD/dt= 100A/µs- - 64ns
QRR Reverse Recovered Charge ISD = 75A, dISD/dt= 100A/µs - - 120 nC
FDB3632 / FDP3632 / FDI3632 / FDH3632
©2004 Fairchild Semic ond uct or Cor porati on FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
Typical Characteristics TA = 25°C unless otherwise noted
Figure 1. Normalized Power Dissipation vs
Ambient Temperature Figure 2. Maximum Continuous Drai n Current vs
Case Temperature
Figure 3. Normalized Maximum Transient Thermal Impedance
Figure 4. Peak Current Capability
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00255075100 175
0.2
0.4
0.6
0.8
1.0
1.2
125 150 0
25
50
75
100
125
25 50 75 100 125 150 175
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
VGS = 10V
CURRENT LIMITED
BY PACKAGE
0.01
0.1
1
10-5 10-4 10-3 10-2 10-1 100101
2
t, RECTANGULAR PULSE DURATION (s)
ZθJC, NORMALIZ ED
THERMAL IMPEDANCE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
0.5
0.2
0.1
0.05
0.01
0.02
DUTY CYCLE - DESCENDING ORDER
SINGLE PULSE
100
1000
10-5 10-4 10-3 10-2 10-1 100101
50
2000
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
VGS = 10V
TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
FDB3632 / FDP3632 / FDI3632 / FDH3632
©2004 Fairchild Semic ond uct or Cor porati on FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
Figure 5. Forward Bias Safe Operating Area NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
Figure 9. Drain to Source On Resistance vs Drain
Current Figure 10. Normalized Drain to Source On
Resistance vs Junction Temper ature
Typical Characteristics TA = 25°C unless otherwise noted
0.1
1
10
100
110100
200
400
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
TJ = MAX RATED
TC = 25oC
SINGLE PULSE
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
10µs
10ms
1ms
DC
100µs
10
100
0.1 1 10
200
0.01
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
STARTING TJ = 25oC
STARTING TJ = 150oC
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
0
30
60
90
120
150
3.0 3.5 4.0 4.5 5.0 5.5 6.0
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
TJ = 175oC
TJ = 25oC
TJ = -55oC
0
30
60
90
120
150
01234
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 5.5V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 5V
TC = 25oC
VGS = 10V VGS = 6V
6
7
8
9
10
0 20406280
ID, DRAIN CURRENT (A)
VGS = 10V
DRAIN TO SOURCE ON RESISTANCE (m )
VGS = 6V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0.5
1.0
1.5
2.0
2.5
-80 -40 0 40 80 120 160 200
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
VGS = 10V, ID =80A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
FDB3632 / FDP3632 / FDI3632 / FDH3632
©2004 Fairchild Semic ond uct or Cor porati on FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature Figure 12. Normalized Drain to Source
Breakdow n V oltage vs Junction Tempe r ature
Figure 13. Capacitance vs Drain to Source
Voltage Figure 14. Gate Charge Waveforms for Constant
Gate Currents
Typical Characteristics TA = 25°C unless otherwise noted
0.2
0.4
0.6
0.8
1.0
1.2
1.4
-80 -40 0 40 80 120 160 200
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
THRESHOLD VOLTAGE
0.9
1.0
1.1
1.2
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
ID = 250µA
BREAKDO WN VOLTAGE
100
1000
10000
0.1 1 10 100
C, CAPACITANCE (pF)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
COSS CDS + CGD
CRSS = CGD
VDS, DRAIN TO SOURCE VOLTAGE (V)
0
2
4
6
8
10
0 20406080100
VGS, GATE TO SOURCE VOLTAGE (V)
Qg, GATE CHARGE (nC)
VDD = 50V
ID = 80A
ID = 40A
WAVEFORMS IN
DESCENDING ORDER:
FDB3632 / FDP3632 / FDI3632 / FDH3632
©2004 Fairchild Semic ond uct or Cor porati on FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
Test Circuits and Waveforms
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Ener gy Waveforms
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
VGS +
-
VDS
VDD
DUT
Ig(REF)
L
VDD
Qg(TH)
VGS = 2V
Qg(TOT)
VGS = 10V
VDS
VGS
Ig(REF)
0
0
Qgs Qgd
Qgs2
VGS
RL
RGS
DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
FDB3632 / FDP3632 / FDI3632 / FDH3632
©2004 Fairchild Semic ond uct or Cor porati on FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PDM, in an
application. Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
In using surface mount devices such as the TO-263
package, the environment in which it is applied will have a
significant influence on the part’s current and maximum
power dissipation ratings. Precise determination of PDM is
complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 21
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
positioned FR-4 board with 1oz cop per after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2 or 3. Equation 2 is used for copper area defined
in inches square and equation 3 is for area in centimeters
square. The area, in square inches or square centimeters is
the top copper area including the gate and source pads.
(EQ. 1
)
PDM
TJM TA
()
RθJA
-----------------------------=
Area in Inches Square
d
(EQ. 2
)
RθJA 26.51 19.84
0.262 Area+()
-------------------------------------+=
(EQ. 3
)
RθJA 26.51 128
1.69 Area+()
----------------------------------+=
Area in Centimeters Square
d
Figure 21. Thermal Resistance vs Mounting
Pad Area
20
40
60
80
110
0.1
RθJA = 26.51+ 19.84/(0.262+Area) EQ.2
RθJA (
o
C/W)
AREA, TOP COPPER AREA in2 (cm2)
(0.645) (6.45) (64.5
)
RθJA = 26.51+ 128/(1.69+Area) EQ.3
FDB3632 / FDP3632 / FDI3632 / FDH3632
©2004 Fairchild Semic ond uct or Cor porati on FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
PSPICE Electrical Model
.SUBCKT FDB3632 2 1 3 ; rev May 2002
CA 12 8 1.7e-9
Cb 15 14 2.5e-9
Cin 6 8 6.0e-9
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 102.5
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
It 8 17 1
Lgate 1 9 5.61e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 2.7e-9
RLgate 1 9 56.1
RLdrain 2 5 10
RLsource 3 7 27
Mmed 16 6 8 8 MmedMO D
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 3.8 e- 3
Rgate 9 20 1.1
RSLC1 5 51 RSLCMOD 1.0e-6
RSLC2 5 50 1.0e3
Rsource 8 7 RsourceMOD 2.5e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*350),3))}
.MODEL DbodyMOD D (IS=5.9E-11 N=1.07 RS=2.3e-3 TRS1=3.0e-3 TRS2=1.0e-6
+ CJO=4e-9 M=0.58 TT=4.8e-8 XTI=4.2)
.MODEL DbreakMOD D (RS = 0.17 TRS1=3.0e -3 TRS 2 =-8.9e-6)
.MODEL DplcapMOD D (CJO=15e-10 IS=1.0e-30 N=10 M=0.6)
.MODEL MstroMOD NMOS (VTO=4.1 KP=200 IS=1e-30 N=1 0 T O X=1 L=1u W=1 u)
.MODEL MmedMOD NMOS (VTO=3.4 KP=10.0 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.1)
.MODEL MweakMOD NMOS (VTO= 2.75 KP=0.05 IS =1e-30 N=10 TOX=1 L=1u W=1u RG=1.1e+ 1 RS =0 .1 )
.MODEL RbreakMOD RES (TC1=1.0e-3 TC2=-1.7e-6)
.MODEL RdrainMOD RES (TC1=8.5e-3 TC2=2.8e-5)
.MODEL RSLCMOD RES (TC1=2.0e-3 TC 2=2.0e- 6)
.MODEL RsourceMOD RES (TC1=4e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-4.0e-3 TC2=- 1.8e-5)
.MODEL RvtempMOD RES (T C1 =-4.4e-3 TC2=2.2e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-2)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.8 VOFF=0.4)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.4 VOFF=-0.8)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURC
E
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
FDB3632 / FDP3632 / FDI3632 / FDH3632
©2004 Fairchild Semic ond uct or Cor porati on FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
SABER Electrical Model
REV May 2002
template FDB3632 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=5.9e-11,n l=1.07,rs=2.3e-3,trs1=3.0e-3,trs2=1.0e-6,cjo=4e-9,m=0.58,tt=4.8e-8,xti=4.2)
dp..model dbreakmod = (rs=0. 17,trs1=3.0e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=1 5e- 10,isl=10.0e-30,nl=10,m=0.6)
m..model mstrongmod = (type=_n,vto=4.1,kp=200,is=1e-30, tox=1)
m..model mmedmod = (type=_ n,vto=3.4,kp=10.0,is=1e-30, tox=1)
m..model mweak mod = (type=_n,vto=2.75,kp=0.05,is=1e-30, tox=1,rs=0.1)
sw_vcsp..model s1a m od = (ron=1e-5,roff=0.1,von=-4,voff=-2)
sw_vcsp..model s1b m od = (ron=1e-5,roff=0.1,von=-2,voff=-4)
sw_vcsp..model s2a m od = (ron=1e-5,roff=0.1,von=-0.8,voff=0.4)
sw_vcsp..model s2b m od = (ron=1e-5,roff=0.1,von=0.4,voff=-0.8)
c.ca n12 n8 = 1.7e-9
c.cb n15 n14 = 2.5e-9
c.cin n6 n8 = 6.0e-9
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakm od
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 102.5
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1
l.lgate n1 n9 = 5.61e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 2.7e-9
res.rlgate n1 n9 = 56.1
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 27
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakm od , l=1 u, w=1u
res.rbreak n17 n18 = 1, tc1=1.0e-3,tc2=-1.7e-6
res.rdrain n50 n16 = 3.8e-3, tc1=8.5e-3,tc2=2.8e-5
res.rgate n9 n20 = 1. 1
res.rslc1 n5 n51 = 1.0e-6, tc1=2.0e-3,tc2=2.0e-6
res.rs lc2 n5 n50 = 1.0e3
res.rsource n8 n7 = 2.5e-3, tc1=4e- 3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-4.0e-3,tc2=-1.8e-5
res.rvtemp n18 n19 = 1, tc1=-4.4e -3,tc2=2.2e -6
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n 12 n13 n8 = model=s1bm od
sw_vcsp.s2a n6 n15 n14 n13 = model=s2am od
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9 +a bs(v(n5,n51))))*((abs(v(n5,n51)*1e6/350))** 3))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK
DBODY
RSOURCE
SOURC
E
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
FDB3632 / FDP3632 / FDI3632 / FDH3632
©2004 Fairchild Semic ond uct or Cor porati on FDB3632 / FDP3632 / FDI3632 / FDH3632 Rev. C1
SPICE Thermal Model
REV May 2002
FDB3632
CTHERM1 TH 6 7.5e-3
CTHERM2 6 5 8.0e-3
CTHERM3 5 4 9.0e-3
CTHERM4 4 3 2.4e-2
CTHERM5 3 2 3.4e-2
CTHERM6 2 TL 6.5e-2
RTHERM1 TH 6 3.1e-4
RTHERM2 6 5 2.5e-3
RTHERM3 5 4 2.2e-2
RTHERM4 4 3 8.1e-2
RTHERM5 3 2 1.35e-1
RTHERM6 2 TL 1.5e-1
SABER Thermal Model
SABER thermal model FDB3632
templ a te therm a l_mod e l th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 =7 .5e-3
ctherm.ctherm2 6 5 =8.0e-3
ctherm.ctherm3 5 4 =9.0e-3
ctherm.ctherm4 4 3 =2.4e-2
ctherm.ctherm5 3 2 =3.4e-2
ctherm.ctherm6 2 tl =6.5e-2
rtherm.rtherm1 th 6 =3.1e-4
rtherm. rtherm2 6 5 =2.5e- 3
rtherm. rtherm3 5 4 =2.2e- 2
rtherm. rtherm4 4 3 =8.1e- 2
rtherm. rtherm5 3 2 =1.35e-1
rtherm.rtherm6 2 tl =1.5e-1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICA TION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT
CONVEY ANY LICENSE UNDER ITS P ATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF F AIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
PRODUCT ST A TUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Obsolete
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Formative or
In Design
First Production
Full Production
Not In Production
ISOPLANAR™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC
OPTOPLANAR™
PACMAN™
POP™
FAST
FASTr™
FPS™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
I2C™
i-Lo
ImpliedDisconnect™
Rev. I14
ACEx™
ActiveArray™
Bottomless™
CoolFET™
CROSSVOLT
DOME™
EcoSPARK™
E2CMOS™
EnSigna™
FACT™
F ACT Quiet Series™
Power247™
PowerEdge™
PowerSaver™
PowerTrench
QFET
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
µSerDes™
SILENT SWITCHER
SMART ST ART™
SPM™
Stealth™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic
TINYOPTO™
TruTranslation™
UHC™
UltraFET
UniFET™
VCX™
Across the board. Around the world.™
The Power Franchise
Programmable Active Droop™