OL de 3a7soa1 oovazey s ff 3875081 GE SOLID STATE ote 18284 pl Sal a ee = >ranaara rower MOSFETs File Number 1568 IRF230, IRF231, IRF232, IRF233 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode N-CHANNEL ENHANCEMENT MODE Power Field-Effect Transistors D 8.0A and 9.0A, 150V-200V - Tos(on) = 0.4N and O.6Q Features: &@ SOA is power-dissipation limited Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance Majority carrier device 3 . 9208-33741 TERMINAL DIAGRAM The IRF230, IRF231, IRF232 and IRF233 are TERMINAL DESIGNATION n-channel enhancement-mode silicon-gate power field- DRAIN effect transistors designed for applications such as switch- SOURCE (FLANGE) ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. GATE The IRF-types are supplied in the JEDEC TO-204AA steel S2es-3 780) package. - JEDEC TO-204AA Absolute Maximum Ratings Parameter (RF230 1RF231 IRF232 (RF233, Units Vos Drain - Source Voltage 200 150 200 160 v VoGrR Drain - Gate Voltage (Rg = 20KN) 200 150 200 150 v t ip @Tc = 25C Conti Drain Current 9.0 9.0 8.0 8.0 A ip @ Tc = 100C Conunuous Drain Current 6.0 6.0 50 50 A tom Putsed Drain Current @) 36 36 32 32 A Vos Gate - Source Voltage 220 vo Pp @Te = 25C Max. Power Dissipation 75 (See Fig. 14) Ww Linear Derating Factor 0.6 (Seo Fig. 14) wrec im Inductive Current, Clamped {See Fig. 15 and 16)L = 100uH A 36 I 36 l 32 I 32 T, Operatic i Tetg Sraran a vrerenve Range 8510 150 *c Lead Temperature 300 (0.063 in {1.6mm} from case for 10s) c 2273875081 G E SOLID 5 Standard Pewer Mosc STATE Uh DE 46?5041 001885 I> T-39-/) IRF230, IRF231, IRF232, IRF233 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Mm. | Typ. | Max. Units Test Conditions BVpgg Drain Source Breakdown Voltage IRF230 zo | ~ | Vv Vgg = 0V Inrsoa | 150 | - | - v Ip 250.4 VGsithy Gate Threshold Voltage ALL 2.0 - 4.0 Vv Vps 2 Ves. Ip = 250zA less _ Gate-Source Leakage Forward ALL - - 100 oA Ves = 20V tess _ Gate-Source Leakage Reverse ALL ~ |-100 nA Vgs -20 loss Zero Gate Voitage Drain Current ALL - = 250 BA Vos = Max. Rating, Vgg = OV = _| 1000 BA Vos = Max. Rating x 0.8, Veg = OV. Te = 125C Ipion) _ On-State Drain Current @ m2 tog {| A (RF231 " PDGZ Vos ?'oton) * Rpsion) max. Yas = 10V mrzag | &O | - | - A Roston) Static Drain-Source On-State IRF230 _ 0.28 | 0.4 o Resistance IRF231 REDD Vs = 10V, ip = 8.00 . wr2a3 | - | 4] o8 | @ Gis _ Forward Transconductance @ au_[ 30 [49] - | so Vos )'pion* Poston) max,: ip = 5-04 Sigs Input Capecitence ALL _| 600 | 800 | oF Ves = OV. Vpg = 28V, = 1.0 MHz Coss Output ALL - 250 | 450 pF See Fig. 10 Cis Reverse Transfer Capacitance ALL ~ 80 | 150 pF tgjony _Tum-Qn Delay Time ALL = =" [30 ns Vpp = 90V, Ip = 5.0A,Z, = 160 uy Risa Time ALL = - 50. ns See Fig. 17 talothy Turn-Off Delay Time ALL - - 50. ns (MOSFET switching times are essentially tt Fall Time ALL = _ 40 nS independent of operating temperature.) Qy Total Gate Charge _ Vag = 10V, Ip = 124, Vos @ 0.8 Max. Rating. (Gate-Source Plus Gata-Ozain) ALL 19 30 nc See Fig. 18 for test circuit. (Gate charge is essentially q . Gate-Source Charge ALL _ 10 _ ne independent of operating temperature.) Ong Gate-Drain {""Milles) Charge ALL - 2.0 - ac lp intemat Drain inductance ALL - 6.0 - oH Measured between Modified MOSFET the contact screw on symbol showing the header that is closerta internal device source and gate pina inductances. and center of die, o bs Internal Source Inductence ALL - 12.6 - nH Measured from the lo source pin, 6mm {0 25 in.) from header 6 and source bonding Ls ped. s Thermal Resistance RthicG Junction to-Case ALL = - | 1.67 [ecw Pines _ Case-to-Sink ALL = 0.4 = SCs surface flat, smooth, and greased. Rinja _Junction-te-Ambient ALL - - 30 Cs Frae Ait Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRF230 i _ 3.0 A Modifiad MOSFET symbol! (Body Diode} IRF231 * showing the integral IRF232 taverse P-N junction rectifier, o inr2a3 | ~ | ~ | 8 | A tgng Pulse Source Currant 1RF230 _ _ \ | ) (Body Diode! @ IAF231 36 FA s IRF232 Ss - treasa f| | | 92 | A Vgp __ Diode Forward Voltage @ \nF230 _ -~ | a0 v Te = 28C, Ig = 9.08, Veg = OV ese] - | - J] ued oy Te = 28C, fs = 8 OA, Vag = OV ty Reverse Recovery Tima ALL - aso] ns Ty = 150C. Ip = 9.04, dipidt = 100A/ps GpR _ Reverse Recovered Charge ALL = 30] - 2c Ty = 150C, tp = 9.0A, digidt = 1O0AIus ton Forward Turn-on Time ALL Intrinsic turn on time is Tum-on speed ts byig + Lp Ory = 25C 10 150C, @Pulse Test: Pulse width 300ps, Duty Cycie< 2%. @ Repetitive Rating: Pulse width Limuted J by max junction temperature. See Transient Thermal tmpedance Curve (Fig. 5}. 2283875081 G E sotip state OF DEM 3875081 oovaza, 9 2 7 29-// Siandard Power MOSFETs Zunuclt/Mypye, NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) IRF230, IRF231, IRF232, IRF233 Ws PULSE Vos > toten) * 8osion} max. g 8 z & Zn 2 E 5 = < e 3 Ss z z = = S & 6 4 0 n 100 D 1 2 3 4 5 ? Vs. ORAIN TO SOURCE VOLTAGE (VOLTS) Vos, SATE 70 SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics AREA IS LIMITED ey ip, DRAIN CURRENT {AMPERES} Tos Ty* 190C MAK. Rinuc =? SINGLE PULSE ip, DRAtN CURRENT (AMPERES) Q 1 2 3 4 5 102 s 10 200500 Yos. DRAIN TO-SOURCE VOLTAGE (VOLTS) Vpg- DRAIN-TO-SQUACE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig, 4 Maximum Safe Operating Area ~ 6 we bet -0 ft2 1 QUTY FACTOR, O= t 2 PER UNIT BASE = Anic* 167 0EG CW. 3 Ty -Te* Pom 2mactth eS 6 wh 2 5 we 2 5 2 2 5 wt 2 5 9 2 6 0 (y, SQUARE WAVE PULSE DURATION {SECONDS} Fig. 5 Maxi Effective Ti jent Thermal imped J ion-to-Case Vs, Pulse Duration 229: eee, ca ecw Gl DEI 3875041 00182887 9 a 3875081 GE Standard Power MGS STATE OiE 18287 D T-39-)) IRF230, IRF231, IRF232, IRF233 0 Str TRANSCONDUCTANCE (SIEMENS) Inq. REVERSE DRAIN CURRENT (AMPERES) a 2 4 & 10 0 1 2 3 Ip, DRAIN CURRENT (AMPERES) Vgp. SOURCE-TO DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 1B 22 a > a o 7 o 2 o Apsfon). ORAIN-TOSGUACE ON RESISTANCE (NORMALIZED) to23ha BYoss, DAAIN TO-SOUACE BREAKOOWN VOLTAGE (NORMALIZEO) ors 02 40 0 40 a0 120 166 40 4a a a 120 Ty, JUNCTION TEMPERATURE (OC) Ty, JUNCTION TEMPERATURE (C} Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Ternperature =0 i= | MHz { ] Vog = 40V 'e00 Cas Cpe + Cp, Cay SHORTED oS) wn a 5 Che * Cys = = to0v Pa S | Coes * Cyg + ne = }os= teov, 1RF230, y 0 wy + Cog 3 z > x 3 10 S s a = 3 Ss 0 S 2 w w 4 s 3 Oo > Ine RA FOR TEST CiAcUIT 0 10 a x 4 50 a a 6 a4 RR 40 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Og. TOTAL GATE CHARGE (nC} Fig. 10 Typical Capacitance Vs. Drain-ta-Source Voltage Fig. 11 Typicat Gate Charge Vs. Gate-to-Source Voltage 2303875081 GE SOLID STATE O1 DE 3875081 0018283 2 Poesy Apgton}. ORAIN-TO-SQURCE ON RESISTANCE (OHMS) OF 2 INITIAL Ty* 25C (HEATING 2.0 ps PULSE (S$ MINIMAL } e we 20 u 40 ip, ORAIH CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current a 70 Pp, POWER DISSIPATION (WATTS) & a 2 40 60 ip, DRAIN CURRENT (AMPERES) IRF230, IRF231, IRF232, IRF233 ao 26 59 15 190 V5 150 Tg, CASE TEMPERATURE (0C} Fig. 13 Maximum Drain Current Vs. Case Temperature o 100 120 140 Te. CASE TEMPERATURE (C} Fig. 14 Power Vs. Temperature Derating Curve VARY #, TO OBTAIN REQUIRED PEAK I oh Yos'20V -h ) =0.88V p55 Ve +0 758Vps5 es 1 PAF > iki | Yo tpt los TO SCOPE r----- | I 1 | p08 Fig. 17 Switching Time Test Circuit o os {ISOLATED SUPPLY) SAME TYPE _ CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit 231