MGA-16116
Dual LNA for Balanced Application 450 – 1450 MHz
Data Sheet
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 60 V
ESD Human Body Model = 300 V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Pin Use Pin Use
1 RFIN1 10 GND
2 GND 11 GND
3 GND 12 RFOUT1
4 RFIN2 13 Not used
5 Bias_out2 14 Bias_in1
6 Vsd2 15 Vsd1
7 Bias_in2 16 Bias_out1
8 Not used 17 GND
9 RFOUT2
AVAGO
16116
YYWW
XXXX
Description
Avago Technologies MGA-16116 is an ultra low-noise
high linearity amplier pair with built-in active bias and
shutdown features for balanced applications in the 900
MHz band. Shutdown functionality is achieved using a
single DC voltage input pin.High linearity is achieved
through the use of Avago Technologies’ proprietary GaAs
Enhancement-mode pHEMT process [1]. It is housed in a
miniature 4.0 x 4.0 x 0.85 mm 16-pin Quad Flat No-lead
(QFN). The compact footprint coupled with ultra low noise
and high linearity makes MGA-16116 an ideal choice for
basestation transmitters and receivers.
For applications > 1450 MHz, it is recommended to use
MGA-16216 1440-2350 MHz or MGA-16316 1950-4000
MHz. All 3 products share the same package and pin out
conguration.
Component Image
4.0 x 4.0 x 0.85 mm3 16-Lead QFN
Features
Ultra Low Noise Figure
Variable Bias and Shutdown functionality
High IIP3: +19 dBm typ.
GaAs E-pHEMT Technology [1]
Small package size: 4.0 x 4.0 x 0.85 mm3
RoHS and MSL1 compliant.
Typical Performances
900 MHz @ 4.8 V, 60.9 mA (typ per amplier)
Gain: 18.4 dB
NF: 0.27 dB [2]
IIP3: 19.1 dBm
P1dB: 21.2 dBm
Shutdown voltage Vsd range > 1.6 V
Total shutdown current (Vsd1, Vsd2 = 3 V): 1.84 mA
Applications
Basestation receivers and transmitters in balanced
conguration.
Ultra low-noise RF ampliers.
Notes:
1. Enhancement mode technology employs positive Vgs, thereby
eliminating the need of negative gate voltage associated with
conventional depletion mode devices.
2. Measured at RFin pin of packaged part, other losses deembedded.
3. Good RF practice requires all unused pins to be grounded.
Note:
Package marking provides orientation and
identication
“16116 “ = Device Code
“YYWW” = Date Code identies year and
work week of manufacturing
“XXXX” = Last 4 digit of assembly lot
number
Pin 1
Pin 4
Pin 3
Pin 2
Pin 12
Pin 9
Pin 10
Pin 11
Pin 17
Pin 5
Pin 8
Pin 7
Pin 6
Pin 16
Pin 13
Pin 14
Pin 15
VIEW FROM THE TOP
Pin Conguration
2
Absolute Maximum Rating [1] TA = 25° C
Symbol Parameter Units Absolute Maximum
Vdd Drain Voltage, RF output to ground V 5.5
Idd Drain Current mA 100
Vsd Shutdown Voltage V 5.5
Pin CW RF Input Power with LNA On dBm 27
Pin CW RF Input Power with LNA O dBm 27
PdPower Dissipation mW 550
TjJunction Temperature °C150
Tstg Storage Temperature °C-65 to 150
Thermal Resistance [3]
(Vd = 4.8 V, Idd = 53 mA, Tc =100° C)
qjc = 58.6°C/W
Notes:
1. Operation of this device is excess of any
of these limits may cause permanent
damage.
2. Source lead temperature is 25° C. Derate
17 mW/°C for Tc > 118° C.
3. Thermal resistance measured using 150° C
Infra-Red Microscopy Technique.
Electrical Specications
TA = 25° C, Vdd1 = Vdd2 = 4.8 V, Vsd1 = Vsd2 = 0 V at Rbias = 1.5 kohm, RF performance at 900 MHz, CW operation unless
otherwise stated.
Symbol Parameter and Test Condition Units Min. Typ. Max.
Vdd Supply Voltage V 4.8
Idd Total Supply Current per amplier (Idq+Ibias) mA 48 60.9 72
Gain Gain dB 17.2 18.4 19.4
NF [1] Noise Figure dB 0.27 0.45
OP1dB Output Power at 1dB Gain Compression dBm 21.2
IIP3 [2] Input Third Order Intercept Point dBm 17 19.1
S11 Input Return Loss, 50 source dB -10.9
S22 Output Return Loss, 50 load dB -17.5
S12 Reverse Isolation dB -22.4
S31 Isolation between RFin1 and RFin2 dB -36.8
Vsd1,2 [3] Maximum shutdown voltage required to turn ON LNA V 0.5
Vsd1,2 [3] Minimum shutdown voltage required to turn OFF LNA V 1.6
Idq [4] Current at Vdd with Vsd = 0 V mA 58.6
Current at Vdd with Vsd = 3 V mA 0.01
Isd [4] Current at Vsd with Vsd = 0 V mA 4
Current at Vsd with Vsd = 3 V mA 220
Ibias [4] Current at Vbias with Vsd = 0 V mA 2.3
Current at Vbias with Vsd = 3 V mA 1.61
Notes:
1. Noise gure at the DUT RF Input pin, board losses are deembedded.
2. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.
3. Vsd1 and Vsd2 are active LOW.
4. Refer to Figure 6 for more details.
3
Product Consistency Distribution Charts
USL
LSL LSL USL
LSL USL
45 50 55 60 65 70 75 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
16 17 18 19 20 21 22 23 24 16.9 17.2 17.5 17.8 18 18.2 18.5 18.8 19 19.2 19.5
Figure 1. Idd, LSL = 48 mA , nominal = 60.9 mA, USL = 72 mA Figure 2. NF, nominal = 0.27 dB, USL = 0.45 dB
Figure 3. IIP3, LSL = 17 dBm, nominal = 19.1 dBm Figure 4. Gain, LSL = 17.2 dB, nominal = 18.4 dB, USL = 19.4 dB
Notes:
1. Distribution data sample size is 6500 samples taken from 12 dierent wafer lots. Future wafers allocated to this product may have nominal values
anywhere between the upper and lower limits.
2. Circuit trace losses for NF have been de-embedded from measurements above.
4
Demo Board Layout Demo Board Schematic
Figure 5. Demo Board Layout Diagram
Figure 6. Demo Board Schematic Diagram
Notes:
1. Recommended PCB material is 10 mils Rogers RO4350.
2. Suggested component values may vary according to layout and PCB material.
3. Input board loss at 900 MHz is 0.056 dB
4. The schematic is shown with the assumption that similar PCB is used for all MGA-16116, MGA-16216 and MGA-16316.
5. Detail of the components needed for this product is shown in Table 1.
6. R1 and R6 are for low frequency stability.
7. Bias to each LNA is adjustable using R3 and R8 (see Figure 6). Increasing R3 and R8 will reduce bias current (Idd) and vice-versa.
8. R9/R10 are stability improvement resistors that may not be needed in actual application. They are included in the demoboard to provide isolation
from power supply noise.
9. Center Paddle is grounded.
Table 1. Component list for 900 MHz matching
PART Size Value Detail Part Number
C1, C12 0402 20 pF GJM1555C1H200GB01
C2, C13, C8, C22 0402 0.1 mF GRM155R71C104KA88D
C3, C9, C16, C19 0402 100 pF GRM1555C1H101JD01E
C6, C20, C23, C34 0805 4.7 mF GRM21BR60J475KA11L
C7, C21 0402 12 pF GJM1555C1H120GB01
C25, C26 0402 NOT USED
L1, L2 0402 68 nH LQW15AN68NG00
L3, L4 0402 120 nH LQW15ANR12J00
R1, R6 0402 51 ohm RK73B1ETTP510J
R3, R8 0402 1.5 kohm RK73B1ELTP152J
R4, R7 0402 0 ohm RK73B1ETTP0R0J
R9, R10 0402 10 ohm RK73B1ETTP100J
RO4350
DK 3.48
H 10mil
G 0.45mm
W 0.58mm
MGA-16X16
Demoboard
(4-Port)
Rev 1
C26
RFIN RFOUT
R9
C7
L4
C21
L3
C23
C16
C3
R6
C13
C12
L2
R8
C1
L1
C2
R1 R3
Vsd2
C20
Vdd1
Vsd1
C6 C25
R7
C22
C19
R4
C8
C9
APRIL 2011
Vdd2
R10
C24
5
Table 2. Below is the table showing the MGA-16116 Reection Coecient Parameters tuned for Maximum OIP3, Vdd = 4.8 V,
Idd = 35 mA per amplier. Input gamma is tuned for Fmin. The reection coecients are for single amplier.
Frequency (MHz)
Gamma Load Position
IIP3 (dBm) Gain (dB)Magnitude Angle
450 0.51 44.1 17.38 20.02
700 0.643 34.9 22.09 16.8
835 0.643 46.5 25.18 15.1
950 0.386 40.0 23.20 16.62
1450 0.514 86.4 25.77 14.39
Table 3. Below is the table showing the MGA-16116 Reection Coecient Parameters tuned for Maximum OIP3, Vdd = 4.8 V,
Idd = 60 mA per amplier. Input gamma is tuned for Fmin. The reection coecients are for single amplier.
Frequency (MHz)
Gamma Load Position
IIP3 (dBm) Gain (dB)Magnitude Angle
450 0.514 43.2 21.32 20.34
700 0.39 40.5 23.15 18.6
835 0.515 57.6 26.90 16.1
950 0.386 20.0 26.71 16.31
1450 0.643 92.9 29.83 13.98
Table 4. Below is the table showing the MGA-16116 Reection Coecient Parameters tuned for Maximum OIP3, Vdd = 4.8 V,
Idd = 75 mA per amplier. Input gamma is tuned for Fmin. The reection coecients are for single amplier.
Frequency (MHz)
Gamma Load Position
IIP3 (dBm) Gain (dB)Magnitude Angle
450 0.128 59.8 21.07 22.75
700 0.257 30.1 24.33 19.16
835 0.257 149.9 23.80 18.46
950 0.128 180 24.74 17.98
1450 0.257 29.9 28.73 15.03
Notes:
1. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.
2. Idd can be obtained by varying the Vg1/Vg2. Refer to gure 7.
Figure 7. RFinput and RFoutput Reference Plane
Notes:
1. Maximum OIP3 is measured on coplanar waveguide made on 0.010
inch thick ROGER 4350.
6
Typical 900 MHz RF Performance Plots
RF performance at TA = 25° C, Vdd = 4.8 V, Idd = 60 mA. Measurements made on single-ended amplier in LNA mode
tuned to 900 MHz, using Figure 5 demoboard and Figure 6 circuit. Signal = CW unless stated otherwise. IIP3 test condition:
FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.
Figure 8. NF vs Frequency vs Temperature [1]
Figure 9. Gain vs Frequency vs Temperature
Figure 10. IIP3 vs Frequency vs Temperature
Figure 11. OP1dB vs Frequency vs Temperature
Figure 12. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs
Frequency
Figure 13. Mu stability factors vs Frequency vs Temperature
100° C
25° C
-40° C
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
450 550 650 750 850 950 1050 1150 1250 1350 1450
Frequency (MHz)
NF (dB)
12
14
16
18
20
22
24
26
Gain (dBm)
450 550 650 750 850 950 1050 1150 1250 1350 1450
Frequency (MHz)
100° C
25° C
-40° C
8
10
12
14
16
18
20
22
24
450 550 650 750 850 950 1050 1150 1250 1350 1450
IIP3 (dBm)
Frequency (MHz)
-40° C
25° C
100° C
15
16
17
18
19
20
21
22
23
24
25
450 650 850 1050 1250 1450
Frequency (MHz)
OP1dB (dBm)
100° C
25° C
-40° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Mu
0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)
100° C
-40° C
25° C
S(2,1)
S(1,1)
S(2,2)
S(1,2)
-60
-50
-40
-30
-20
-10
0
10
20
30
S-Parameter (dB)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Frequency (GHz)
7
Figure 14. Mu’ stability factors vs Frequency vs Temperature
Figure 15. Input Ports Isolation (S31) vs Frequency
Figure 16. Idd vs Rbias [2]
Figure 17. Idd vs Vsd
Notes:
1. Circuit trace losses for NF have been de-embedded from measurements above.
2. Rbias is R3 and R8 from Figure 6.
100° C
25° C
-40° C
100° C
-40° C
25° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)
MuPrime
-60
-55
-50
-45
-40
-35
-30
-25
-20
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Frequency (GHz)
Isolation S31 (dB)
40
45
50
55
60
65
70
75
80
85
90
0 500 1000 1500 2000 2500 3000
Rbias (ohm)
Idd (mA)
0
10
20
30
40
50
60
70
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Vsd (V)
Idd (mA)
8
Table 5. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 35 mA
LNA SPAR (100 MHz – 20 GHz) The S-parameter are for single amplier.
Freq S11 S11 S21 S21 S12 S12 S22 S22
(GHz) (dB) (ang) (dB) (ang) (dB) (ang) (dB) (ang)
0.1 -1.022 -28.498 29.161 154.654 -37.965 79.027 -7.090 -19.544
0.5 -6.649 -94.870 22.772 104.259 -26.459 66.399 -13.896 -50.600
0.7 -8.297 -112.042 20.318 93.331 -24.049 64.475 -15.882 -53.370
0.9 -9.364 -125.539 18.444 84.974 -22.211 62.286 -17.478 -54.610
1.0 -9.758 -130.241 17.596 81.438 -21.400 61.255 -17.917 -53.566
1.5 -10.971 -151.257 14.416 66.113 -18.221 54.575 -20.357 -53.259
1.7 -11.091 -159.069 13.414 60.566 -17.239 51.394 -21.981 -58.813
1.9 -11.104 -166.151 12.539 55.320 -16.328 48.319 -23.407 -64.718
2.0 -11.117 -169.353 12.131 52.718 -15.905 46.647 -23.978 -68.957
2.5 -11.087 177.265 10.360 40.267 -14.104 38.400 -26.564 -97.344
3.0 -11.081 165.669 8.951 28.433 -12.604 29.781 -27.136 -132.391
3.5 -11.096 154.720 7.826 16.983 -11.325 21.025 -25.584 -162.526
4.0 -11.006 142.943 6.892 5.622 -10.213 12.016 -23.963 170.627
4.5 -10.720 129.982 6.100 -5.563 -9.244 2.746 -21.945 142.320
5.0 -10.073 118.799 5.351 -16.665 -8.445 -6.661 -19.977 114.528
5.5 -9.286 106.890 4.697 -27.610 -7.735 -16.237 -17.197 88.526
6.0 -8.439 94.245 4.087 -38.486 -7.175 -26.218 -14.231 70.377
7.0 -7.649 72.483 2.997 -58.517 -6.183 -44.375 -10.813 52.241
8.0 -9.206 56.581 2.362 -77.126 -5.224 -62.113 -10.533 46.694
9.0 -11.853 31.257 1.930 -96.806 -4.263 -81.118 -10.307 43.266
10.0 -11.268 -4.194 1.289 -117.528 -3.757 -101.712 -8.627 20.267
11.0 -10.277 -26.164 0.324 -136.898 -3.704 -120.862 -7.062 -2.650
12.0 -11.155 -52.090 -0.159 -153.598 -3.353 -139.372 -6.702 -18.056
13.0 -20.494 -61.926 -0.820 -168.479 -3.505 -153.688 -6.926 -14.524
14.0 -22.385 -159.458 -0.683 171.235 -2.651 -176.492 -6.999 -18.503
15.0 -14.569 127.065 -0.727 147.438 -2.279 158.611 -7.115 -26.831
16.0 -12.363 64.821 -1.734 115.001 -2.934 125.555 -5.770 -43.836
17.0 -7.890 -127.305 -6.052 131.616 -6.607 139.045 -2.049 -74.412
18.0 -12.876 -10.894 -5.846 90.393 -6.352 97.052 -2.285 -68.870
19.0 -7.087 108.141 -4.538 103.243 -4.669 108.441 -3.339 -89.195
20.0 -4.516 31.361 -4.779 55.113 -5.022 58.513 -4.579 -112.660
Table 6. Typical Noise Parameters, for single amplier, Vdd = 4.8 V, Idd = 35 mA
Freq Fmin Γopt Γopt
Rn/50
GHz dB Mag. Ang.
450 0.31 0.570 -15.8 0.039
700 0.23 0.442 4.9 0.035
835 0.21 0.426 25.7 0.034
950 0.23 0.392 34.6 0.035
1450 0.4 0.210 86.0 0.037
Notes:
1. The Fmin values are based on noise gure measurements at multiple input impedances using Focus source pull test system. From these
measurements a true Fmin is calculated.
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.
3. Idd can be obtained by varying the Vg1/Vg2. Refer to gure 7.
9
Table 7. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 60 mA
LNA SPAR (100 MHz – 20 GHz) The S-parameter are for single amplier.
Freq S11 S11 S21 S21 S12 S12 S22 S22
(GHz) (dB) (ang) (dB) (ang) (dB) (ang) (dB) (ang)
0.1 -1.074 -31.307 30.372 152.301 -38.598 79.819 -8.582 -20.776
0.5 -7.419 -99.051 23.126 101.761 -26.683 69.129 -15.871 -48.167
0.7 -9.041 -115.776 20.596 91.484 -24.165 66.973 -17.771 -49.366
0.9 -10.023 -128.775 18.669 83.583 -22.241 64.407 -19.273 -49.337
1.0 -10.399 -133.219 17.812 80.178 -21.408 63.192 -19.593 -47.750
1.5 -11.500 -153.458 14.600 65.392 -18.141 55.849 -21.764 -45.214
1.7 -11.572 -161.056 13.591 60.010 -17.142 52.498 -23.571 -49.907
1.9 -11.538 -167.985 12.711 54.875 -16.230 49.228 -25.238 -55.033
2.0 -11.537 -171.125 12.302 52.304 -15.809 47.475 -25.944 -59.265
2.5 -11.445 175.803 10.521 40.088 -13.992 38.931 -29.570 -90.923
3.0 -11.401 164.403 9.105 28.417 -12.490 30.048 -30.232 -135.945
3.5 -11.399 153.594 7.971 17.073 -11.217 21.106 -27.571 -170.069
4.0 -11.292 141.943 7.028 5.853 -10.123 11.945 -25.227 162.620
4.5 -10.974 129.027 6.226 -5.240 -9.162 2.551 -22.592 135.000
5.0 -10.296 117.928 5.475 -16.254 -8.374 -6.976 -20.256 108.170
5.5 -9.477 106.083 4.815 -27.119 -7.680 -16.555 -17.261 83.874
6.0 -8.603 93.478 4.202 -37.909 -7.123 -26.573 -14.249 67.156
7.0 -7.784 71.674 3.114 -57.850 -6.153 -44.852 -10.893 50.129
8.0 -9.391 55.504 2.483 -76.469 -5.211 -62.621 -10.730 45.175
9.0 -12.116 29.799 2.048 -96.207 -4.265 -81.667 -10.574 42.707
10 -11.471 -5.874 1.407 -116.940 -3.779 -102.196 -8.835 20.126
11 -10.440 -27.549 0.451 -136.443 -3.736 -121.324 -7.217 -2.639
12 -11.273 -53.811 -0.038 -153.270 -3.384 -139.868 -6.823 -17.959
13 -20.959 -65.754 -0.721 -168.292 -3.563 -154.175 -7.004 -13.899
14 -22.024 -163.703 -0.599 171.370 -2.714 -176.815 -7.040 -17.790
15 -14.309 126.539 -0.665 147.554 -2.345 158.380 -7.104 -26.156
16 -12.226 65.090 -1.681 115.096 -3.019 125.379 -5.734 -43.382
17 -7.911 -127.772 -6.012 131.726 -6.652 139.053 -2.042 -74.188
18 -12.992 -10.792 -5.844 90.462 -6.431 96.994 -2.257 -68.762
19 -7.042 108.026 -4.522 103.345 -4.710 108.465 -3.313 -89.050
20 -4.476 31.259 -4.758 55.261 -5.060 58.580 -4.528 -112.266
Table 8. Typical Noise Parameters, for single amplier, Vdd = 4.8 V, Idd = 60 mA
Freq Fmin Γopt Γopt
Rn/50
GHz dB Mag. Ang.
450 0.31 0.557 -17.0 0.035
700 0.23 0.438 0.5 0.033
835 0.21 0.460 21.6 0.032
950 0.23 0.423 33.1 0.032
1450 0.42 0.172 92.7 0.036
Notes:
1. The Fmin values are based on noise gure measurements at multiple input impedances using Focus source pull test system. From these
measurements a true Fmin is calculated.
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.
3. Idd can be obtained by varying the Vg1/Vg2. Refer to gure 7.
10
Table 9. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 75 mA
LNA SPAR (100 MHz – 20 GHz) The S-parameter are for single amplier.
Freq S11 S11 S21 S21 S12 S12 S22 S22
(GHz) (dB) (ang) (dB) (ang) (dB) (ang) (dB) (ang)
0.1 -1.313 -33.530 31.014 150.648 -38.589 82.014 -9.661 -21.676
0.5 -7.873 -101.259 23.314 100.420 -26.803 70.767 -17.048 -45.449
0.7 -9.472 -117.752 20.741 90.485 -24.212 68.268 -18.831 -45.680
0.9 -10.402 -130.466 18.790 82.841 -22.239 65.516 -20.230 -44.960
1.0 -10.777 -134.737 17.925 79.542 -21.407 64.225 -20.421 -43.253
1.5 -11.805 -154.527 14.699 65.015 -18.111 56.520 -22.336 -39.860
1.7 -11.852 -162.032 13.689 59.715 -17.106 53.063 -24.200 -43.748
1.9 -11.792 -168.879 12.807 54.640 -16.185 49.733 -25.976 -48.172
2.0 -11.784 -171.996 12.394 52.113 -15.760 47.932 -26.759 -52.109
2.5 -11.656 175.184 10.608 40.041 -13.941 39.243 -31.149 -84.360
3.0 -11.594 163.899 9.189 28.441 -12.442 30.253 -32.084 -136.841
3.5 -11.581 153.195 8.048 17.188 -11.174 21.216 -28.646 -173.768
4.0 -11.462 141.576 7.102 6.023 -10.080 11.962 -25.816 158.924
4.5 -11.124 128.688 6.296 -5.029 -9.126 2.544 -22.900 131.803
5.0 -10.429 117.634 5.542 -15.972 -8.341 -7.041 -20.389 105.521
5.5 -9.589 105.823 4.879 -26.805 -7.655 -16.664 -17.298 81.989
6.0 -8.686 93.240 4.265 -37.559 -7.099 -26.672 -14.261 65.816
7.0 -7.862 71.395 3.176 -57.450 -6.142 -44.949 -10.940 49.294
8.0 -9.495 55.210 2.549 -76.083 -5.204 -62.770 -10.846 44.633
9.0 -12.268 29.175 2.104 -95.838 -4.274 -81.847 -10.697 42.499
10.0 -11.584 -6.517 1.463 -116.574 -3.791 -102.332 -8.928 20.087
11.0 -10.522 -28.153 0.508 -136.137 -3.751 -121.438 -7.284 -2.588
12.0 -11.357 -54.514 0.015 -153.014 -3.401 -139.971 -6.889 -17.777
13.0 -21.178 -67.548 -0.677 -168.073 -3.589 -154.248 -7.059 -13.574
14.0 -21.655 -166.052 -0.566 171.616 -2.742 -176.860 -7.048 -17.396
15.0 -14.145 126.771 -0.631 147.729 -2.383 158.332 -7.099 -25.793
16.0 -12.117 65.327 -1.666 115.223 -3.062 125.393 -5.710 -43.125
17.0 -7.916 -127.952 -5.980 131.954 -6.667 139.243 -2.048 -74.067
18.0 -13.009 -9.966 -5.842 90.681 -6.475 97.145 -2.253 -68.631
19.0 -6.983 107.757 -4.520 103.388 -4.751 108.605 -3.313 -88.879
20.0 -4.463 31.666 -4.751 55.507 -5.083 58.833 -4.500 -112.076
Table 10. Typical Noise Parameters, for single amplier, Vdd = 4.8 V, Idd = 75 mA
Freq Fmin Γopt Γopt
Rn/50
GHz dB Mag. Ang.
450 0.32 0.521 -18.1 0.036
700 0.23 0.426 -6.4 0.033
835 0.23 0.387 17.8 0.033
950 0.25 0.388 25.5 0.033
1450 0.43 0.139 93.9 0.037
Notes:
1. The Fmin values are based on noise gure measurements at multiple input impedances using Focus source pull test system. From these
measurements a true Fmin is calculated.
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.
3. Idd can be obtained by varying the Vg1/Vg2. Refer to gure 7.
11
BALANCED MODE APPLICATION
Electrical Specications
TA = 25° C, Vdd1 = Vdd2 = 4.8 V, Idd1 = Idd2 = 60 mA at Rbias =1.5 kohm, RF performance at 900 MHz, CW operation
unless otherwise stated.
Symbol Parameter and Test Condition Units Typ.
Vdd Supply Voltage per amplier V 4.8
Idd Supply Current per amplier mA 60
Gain Gain dB 18.2
NF Noise Figure dB 0.37
OP1dB Output Power at 1dB Gain Compression dBm 23.9
IIP3 Input Third Order Intercept Point dBm 21.6
S11 Input Return Loss, 50 source dB -24.1
S22 Output Return Loss, 50 load dB -34.7
S12 Reverse Isolation dB -23.1
Balanced Amplier Demo Board Layout
Figure 18. Balanced Amplier Demo Board Layout Diagram
Notes:
1. Recommended PCB material is 10 mils Rogers RO4350.
2. Suggested component values may vary according to layout and PCB material.
3. Input board loss at 900 MHz is 0.133 dB.
L2
L1
RFIN
R2
X1
C15 C14
C16
C3
MGA-16X16 Demoboard
(2-Port)
Rev 1
C5 C4
C20
Vsd2
L3
C17
APRIL 2011
C22
R8 C26
C21
C13
R6
C12 C18
R7
L4
C19
C9
X2
G 0.45mm
W 0.58mm
H 10mil
DK 3.48
RO4350
R9 R10
C7
R1
C1
C2 R3
C6 C23 C25
C10
C8
R4
C11
C24
Vdd2
Vsd1
Vdd1
RFOUT
R5
12
Balanced Amplier Demo Board Schematic
Figure 19. Balanced Amplier Demo Board Schematic.
Table 11. Component list for 900 MHz matching
PART Size Value Detail Part Number
C1, C12 0402 20 pF GJM1555C1H200GB01
C2, C8, C13, C22 0402 0.1 mF GRM155R71C104KA88D
C3, C9, C16, C19 0402 100 pF GRM1555C1H101JD01E
C6, C20, C23, C34 0805 4.7 mF GRM21BR60J475KA11L
C7, C21 0402 12 pF GJM1555C1H120GB01
C4, C5, C10, C11, C14, C15, C17, C18, C25, C26 0402 NOT USED
L1, L2 0402 68 nH LQW15AN68NG00
L3, L4 0402 120 nH LQW15ANR12J00
R1, R6 0402 51 ohm RK73B1ETTP510J
R3, R8 0402 1.5 kohm RK73B1ELTP152J
R4, R7 0402 0 ohm RK73B1ETTP0R0J
R9, R10 0402 10 ohm RK73B1ETTP100J
R2, R5 0402 51 ohm RK73B1ETTP510J
X1 X3C09P1-03S
X2 C0810J5003AHF
13
Typical 900 MHz RF Performance Plots on Balanced Mode
RF performance at TA = 25° C, Vdd1 = Vdd2 = 4.8 V, Idd1 = Idd2 = 60 mA, LNA mode, measured on demo board in Figure
18. Signal is CW unless stated otherwise. Application Test Circuit is shown in Figure 19 and Table 11. IIP3 test condition:
FRF1-FRF2 = 1MHz with input power of -20 dBm per tone.
Figure 20. NF vs Frequency vs Temperature[1]
Figure 21. Gain vs Frequency vs Temperature
Figure 22. IIP3 vs Frequency vs Temperature
Figure 23. OP1dB vs Frequency vs Temperature
Figure 24. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs
Frequency
100° C
25° C
-40° C
100° C
25° C
-40° C
100° C
25° C
-40° C
100° C
25° C
-40° C
S(2,1)
S(1,1)
S(2,2)
S(1,2)
-60
-50
-40
-30
-20
-10
0
10
20
30
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Frequency (GHz)
S-Parameter (dB)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
450 550 650 750 850 950 1050 1150 1250
Frequency (MHz)
NF (dB)
12
14
16
18
20
22
24
26
450 550 650 750 850 950 1050 1150 1250
Frequency (MHz)
Gain (dB)
8
10
12
14
16
18
20
22
24
26
450 550 650 750 850 950 1050 1150 1250
Frequency (MHz)
IIP3 (dBm)
20
21
22
23
24
25
26
27
28
450 550 650 750 850 950 1050 1150 1250
Frequency (MHz)
P1dB (dBm)
14
Figure 25. Mu stability factors vs Frequency vs Temperature
Note:
1. Circuit trace losses for NF have been de-embedded from measurements above.
Package Dimensions
Part Number Ordering Information
Part Number No. of Devices Container
MGA-16116-BLKG 100 Antistatic Bag
MGA-16116-TR1G 1000 7” Reel
4.00 ±0.10
0.00 –0.05
0.20 Ref. 2.10
4.00 ±0.10
Pin 1 Dot
By marking
0.85 ±0.10
TOP VIEW SIDE VIEW BOTTOM VIEW
AVAGO
16116
YYWW
XXXX
0.30
2.10
0.55
Pin #1 Identication
Chamfer 0.30 X 45°
0.65
Bsc
Figure 26. Mu’ stability factors vs Frequency vs Temperature
100° C
-40° C
25° C
100° C
-40° C
25° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)
Mu
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)
MuPrime
15
Recommended PCB Land Pattern and Stencil Design
Device Orientation
USER FEED DIRECTION
TOP VIEW END VIEW
USER
FEED
DIRECTION COVER TAPE
CARRIER
TAPE
REEL
AVAGO
16116
YYWW
XXXX
AVAGO
16116
YYWW
XXXX
AVAGO
16116
YYWW
XXXX
Note :
1. ALL DIMENSIONS ARE IN MILIMETERS
2. 4mil stencil thickness is recommended
Land Pattern Stencil Opening
Combination of Land Pattern & Stencil Opening
1.980
1.980
0.270
0.650
0.485
0.492
2.10
PIN #1
0.55
2.10
0.300
0.650
0.400
PIN #1
4.000
4.000
3.935
3.935
4.000
4.000
2.100
0.650
0.550
16
Tape Dimensions
10° MAX 10° MAX
4.25 ±0.10 4.25 ±0.10
1.13 ±0.10
5.50 ±0.05
1.75 ±0.10
8.00 ±0.10 Ø 1.50 ±0.10
12.0 ±0.30
–0.10
Ø1.50 ±0.25
2.00 ±0.05
4.00 ±0.10
A. K. B.
0.279 ±0.02
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.
AV02-3721EN - October 31, 2012
Reel Dimensions – 7 inch
PS
6
PS
6
BACK VIEW
Ø 178.0 ±0.5
Ø 55.0 ±0.5
6.25 mm EMBOSSED LETTERS
LETTERING THICKNESS: 1.6 mm
SEE DETAIL "X"
SLOT HOLE "b"
SLOT HOLE (2x)
180° APART.
SLOT HOLE "a": 3.0 ±0.5 mm (1x)
SLOT HOLE "b": 2.5 ±0.5 mm (1x)
Ø 13.0
65°
45°
R10.65
45°
R5.2
EMBOSSED RIBS
RAISED: 0.25 mm, WIDTH: 1.25 mm 18.0*
MAX.
Ø 51.2 ±0.3
Ø 178.0 ±0.5
RECYCLE LOGO FRONT VIEW
120°
1.5 MIN.
Ø 20.2 MIN.
-0.2
+0.5
DETAIL "X"
-0.0
+1.5*
12.4
DETAIL "Y"
(Slot Hole)
3.5
1.0
SEE DETAIL "Y"
FRONT BACK
FRONT BACK
SLOT HOLE "a"
Ø 178.0 ±0.5