Features * Fast read access time - 90ns * Dual voltage range operation * * * * * * * * - Unregulated battery power supply range, 2.7V to 3.6V, or - Standard power supply range, 5V 10% Pin compatible with JEDEC standard Atmel(R) AT27C1024 Low-power CMOS operation - 20A max standby (less than 1A, typical) for VCC = 3.6V - 36mW max active at 5MHz for VCC = 3.6V JEDEC standard surface mount package - 44-lead PLCC High-reliability CMOS technology - 2,000V ESD protection - 200mA latchup immunity Rapid programming algorithm - 100s/word (typical) CMOS- and TTL-compatible inputs and outputs - JEDEC standard for LVTTL and LVBO Integrated product identification code Industrial temperature range 1. Description 1Mb (64K x 16) Unregulated Battery Voltage, High-speed, One-time Programmable, Read-only Memory Atmel AT27BV1024 The Atmel AT27BV1024 is a high-performance, low-power, low-voltage, 1,048,576-bit, one-time programmable, read-only memory (OTP EPROM) organized as 64K by 16 bits. It requires only one supply in the range of 2.7V to 3.6V in normal read mode operation. The x16 organization makes this part ideal for portable and handheld 16- and 32-bit microprocessor-based systems using either regulated or unregulated battery power. The Atmel innovative design techniques provide fast speeds that rival 5V parts, while keeping the low power consumption of a 3V supply. At VCC = 2.7V, any word can be accessed in less than 90ns. With a typical power dissipation of only 18mW at 5MHz and VCC = 3V, the AT27BV1024 consumes less than one-fifth the power of a standard, 5V EPROM. Standby mode supply current is typically less than 1A at 3V. The AT27BV1024 simplifies system design and stretches battery lifetime even further by eliminating the need for power supply regulation. The AT27BV1024 is available in an industry-standard, JEDEC-approved, one-time programmable (OTP) PLCC package. All devices feature two-line control (CE, OE) to give designers the flexibility to prevent bus contention. The AT27BV1024 operating with VCC at 3.0V produces TTL-level outputs that are compatible with standard TTL logic devices operating at VCC = 5.0V. At VCC = 2.7V, the part is compatible with JEDEC-approved, low-voltage battery operation (LVBO) interface specifications. The device is also capable of standard, 5V operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3V and 5V hosts. The AT27BV1024 has additional features to ensure high quality and efficient production use. The rapid programming algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 s/word. The integrated product identification code electronically identifies the device and 0631F-EPROM-4/11 manufacturer. This feature is used by industry-standard programming equipment to select the proper programming algorithms and voltages. The AT27BV1024 programs in exactly the same way as a standard, 5V Atmel AT27C1024, and uses the same programming equipment. Pin configurations Addresses O0 - O15 Outputs CE Chip enable OE Output enable PGM Program strobe NC No connect Note: Both GND pins must be connected. O13 O14 O15 CE VPP NC VCC PGM NC A15 A14 A0 - A15 44-lead PLCC Top view O12 O11 O10 O9 O8 GND NC O7 O6 O5 O4 6 5 4 3 2 1 44 43 42 41 40 Function 7 8 9 10 11 12 13 14 15 16 17 39 38 37 36 35 34 33 32 31 30 29 18 19 20 21 22 23 24 25 26 27 28 Pin Name A13 A12 A11 A10 A9 GND NC A8 A7 A6 A5 O3 O2 O1 O0 OE NC A0 A1 A2 A3 A4 2. Note: 3. PLCC Package Pins 1 and 23 are "don't connect." System considerations Switching between active and standby conditions via the chip enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed datasheet limits, resulting in device non-conformance. At a minimum, a 0.1F, high-frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the VCC and ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7F bulk electrolytic capacitor should be utilized, again connected between the VCC and ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array. Figure 3-1. 2 Block diagram Atmel AT27BV1024 0631F-EPROM-4/11 Atmel AT27BV1024 4. Absolute maximum ratings* *NOTICE: Temperature under bias . . . . . . . . . . . . . -55C to +125C Storage temperature . . . . . . . . . . . . . . . . -65C to +150C Voltage on any pin with respect to ground . . . . . . . . . . . . . . . . . . . -2.0V to +7.0V(1) Stresses beyond those listed under "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Voltage on A9 with respect to ground . . . . . . . . . . . . . . . . . -2.0V to +14.0V(1) VPP supply voltage with respect to ground . . . . . . . . . . . . . . . . . . -2.0V to +14.0V(1) Note: 5. 1. Minimum voltage is -0.6V DC ,which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is VCC + 0.75V DC, which may overshoot to +7.0V for pulses of less than 20ns. AC and DC characteristics Table 5-1. Operating modes Mode/Pin CE (2) Read (2) Output disable (2) Standby Rapid program(3) PGM Ai VPP VCC Outputs VIL VIL X (1) Ai X VCC DOUT X VIH X X X VCC High Z (5) VIH X X X X VCC High Z VIL VIH VIL Ai VPP VCC DIN (3) VIL VIL VIH Ai VPP VCC DOUT (3) VIH X X X VPP VCC High Z VCC VCC Identification code PGM verify PGM inhibit Product identification(3)(5) Notes: OE VH(4) VIL VIL X A9 = A0 = VIH or VIL A1 - A15 = VIL 1. X can be VIL or VIH. 2. Read, output disable, and standby modes require 2.7V VCC 3.6V or 4.5V VCC 5.5V. 3. Refer to programming characteristics. Programming modes require VCC = 6.5V. 4. VH = 12.0 0.5V. 5. Two identifier words may be selected. All Ai inputs are held low (VIL) except A9, which is set to VH, and A0, which is toggled low (VIL) to select the manufacturer's identification word and high (VIH) to select the device code word. Table 5-2. DC and AC operating conditions for read oepration Atmel AT27BV1024-90 Industrial operating temperature (case) -40C - 85C 2.7V to 3.6V VCC power supply 5V 10% 3 0631F-EPROM-4/11 Table 5-3. Symbol DC and operating characteristics for read operation Parameter Condition Min Max Units VCC = 2.7V to 3.6V ILI ILO IPP1 (2) Input load current VIN = 0V to VCC 1 A Output leakage current VOUT = 0V to VCC 5 A VPP(1) VPP = VCC 10 A ISB1 (CMOS), CE = VCC 0.3V 20 A ISB2 (TTL), CE = 2.0 to VCC + 0.5V 100 A 8 mA read/standby current ISB VCC(1) standby current ICC VCC active current VIL Input low voltage VIH Input high voltage VOL VOH Output low voltage Output high voltage f = 5MHz, IOUT = 0mA, CE = VIL, VCC = 3.6V VCC = 3.0 to 3.6V -0.6 0.8 V VCC = 2.7 to 3.6V -0.6 0.2 x VCC V VCC = 3.0 to 3.6V 2.0 VCC + 0.5 V VCC = 2.7 to 3.6V 0.7 x VCC VCC + 0.5 V IOL = 2.0mA 0.4 V IOL = 100A 0.2 V IOL = 20A 0.1 V IOH = -2.0mA 2.4 V IOH = -100A VCC - 0.2 V IOH = -20A VCC - 0.1 V VCC = 4.5V to 5.5V ILI ILO IPP1 (2) Input load current VIN = 0V to VCC 1 A Output leakage current VOUT = 0V to VCC 5 A VPP(1) VPP = VCC 10 A ISB1 (CMOS), CE = VCC 0.3V 100 A ISB2 (TTL), CE = 2.0 to VCC + 0.5V 1 mA f = 5MHz, IOUT = 0mA, CE = VIL 30 mA read/standby current ISB VCC(1) standby current ICC VCC active current VIL Input low voltage -0.6 0.8 V VIH Input high voltage 2.0 VCC + 0.5 V VOL Output low voltage IOL = 2.1mA 0.4 V VOH Output high voltage IOH = -400A Notes: 2.4 V 1. VCC must be applied simultaneously with or before VPP, and removed simultaneously with or after VPP. 2. VPP may be connected directly to VCC, except during programming. The supply current would then be the sum of ICC and IPP. 4 Atmel AT27BV1024 0631F-EPROM-4/11 Atmel AT27BV1024 Table 5-4. AC characteristics for read operation Atmel AT27BV1024-90 Symbol Parameter Condition tACC(3) Address to output delay tCE(2) tOE (2)(3) Max Unit CE = OE = VIL 90 ns CE to output delay OE = VIL 90 ns OE to output delay CE = VIL 30 ns 30 ns tDF(4)(5) OE or CE High to output float, whichever occurred first tOH Output hold from address, CE or OE, whichever occurred first Figure 5-1. Note: Min 0 ns AC waveforms for read operation(1) 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified. 2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE. 3. OE may be delayed up to tACC - tOE after the address is valid without impact on tACC. 4. This parameter is only sampled, and is not 100% tested. 5. Output float is defined as the point when data is no longer driven. 6. When reading an Atmel AT27BV1024, a 0.1F capacitor is required across VCC and ground to suppress spurious voltage transients. Figure 5-2. Input test waveforms and measurement levels tR, tF < 20ns (10% to 90%) 5 0631F-EPROM-4/11 Figure 5-3. Output test load Note: CL = 100pF including jig capacitance. Table 5-5. Pin capacitance f = 1MHz T = 25C (1) Symbol Typ Max Units Conditions CIN 4 10 pF VIN = 0V COUT 8 12 pF VOUT = 0V Note: 1. Typical values for nominal supply voltage. This parameter is only sampled, and is not 100% tested. Figure 5-4. Note: Programming waveforms(1) 1. The input timing reference is 0.8V for VIL and 2.0V for VIH. 2. tOE and tDFP are characteristics of the device, but must be accommodated by the programmer. 3. When programming the Atmel AT27BV1024 a 0.1F capacitor is required across VPP and ground to suppress spurious voltage transients. 6 Atmel AT27BV1024 0631F-EPROM-4/11 Atmel AT27BV1024 Table 5-6. DC programming characteristics TA = 25 5 C, VCC = 6.5 0.25V, VPP = 13.0 0.25V Limits Symbol Parameter Test conditions ILI Input load current VIN = VIL, VIH VIL Input low level VIH Input high level VOL Output low voltage IOL = 2.1mA VOH Output high voltage IOH = -400A ICC2 VCC supply current (program and verify) IPP2 VPP supply current VID A9 product identification voltage Table 5-7. Min Max Units 10 A -0.6 0.8 V 2.0 VCC + 0.1 V 0.4 V 2.4 V 50 mA 30 mA 12.5 V CE = PGM = VIL 11.5 AC programming characteristics TA = 25 5 C, VCC = 6.5 0.25V, VPP = 13.0 0.25V Limits (1) Symbol Parameter Test conditions tAS Address setup time tCES CE setup time tOES OE setup time tDS Data setup time tAH Address hold time tDH Data hold time Input rise and fall times: (10% to 90%) 20ns Input pulse levels: 0.45V to 2.4V tDFP OE high to output float delay tVPS VPP setup time tVCS VCC setup time (2) Output timing reference level: 0.8V to 2.0V (3) PGM program pulse width tOE Data valid from OE tPRT VPP pulse rise time during programming Max Units 2 s 2 s 2 s 2 s 0 s 2 s 0 Input timing reference level: 0.8V to 2.0V tPW Notes: Min 130 ns 2 s 2 s 95 105 s 150 ns 50 ns 1. VCC must be applied simultaneously with or before VPP and removed simultaneously with or after VPP. 2. This parameter is only sampled, and is not 100% tested. Output float is defined as the point where data is no longer driven. See timing diagram. 3. Program pulse width tolerance is 100sec 5%. Table 5-8. The Atmel AT27BV1024 integrated product identification code(1) Pins A0 O15O8 O7 O6 O5 O4 O3 O2 O1 O0 Hex data Manufacturer 0 0 0 0 0 1 1 1 1 0 001E Device type 1 0 1 1 1 1 0 0 0 1 00F1 Codes Note: 1. The Atmel AT27BV1024 has the same product identification code as the Atmel AT27C1024. Both are programming compatible 7 0631F-EPROM-4/11 6. Rapid programming algorithm A 100s PGM pulse width is used to program. The address is set to the first location. VCC is raised to 6.5V and VPP is raised to 13.0V. Each address is first programmed with one 100s PGM pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a word fails to pass verification, up to 10 successive 100s pulses are applied with a verification after each pulse. If the word fails to verify after 10 pulses have been applied, the part is considered failed. After the word verifies properly, the next address is selected until all have been checked. VPP is then lowered to 5.0V and VCC to 5.0V. All words are read again and compared with the original data to determine if the device passes or fails. Figure 6-1. 8 Rapid programming algorithm Atmel AT27BV1024 0631F-EPROM-4/11 Atmel AT27BV1024 7. Ordering information Green package (Pb/hailde-free) ICC (mA) tACC (ns) Active Standby Atmel ordering code Lead finish Package Operation range 90 8 0.02 AT27BV1024-90JU Matte tin 44J Industrial (-40C to 85C) Package type 44J 44-lead, plastic, J-leaded chip carrier (PLCC) 9 0631F-EPROM-4/11 8. Packaging Information 44J - PLCC 1.14(0.045) X 45 PIN NO. 1 1.14(0.045) X 45 0.318(0.0125) 0.191(0.0075) IDENTIFIER E1 E D2/E2 B1 B e A2 D1 A1 D A 0.51(0.020)MAX 45 MAX (3X) COMMON DIMENSIONS (Unit of Measure = mm) Notes: 1. This package conforms to JEDEC reference MS-018, Variation AC 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line. 3. Lead coplanarity is 0.004" (0.102mm) maximum SYMBOL MIN NOM MAX A 4.191 - 4.572 A1 2.286 - 3.048 A2 0.508 - - D 17.399 - 17.653 D1 16.510 - 16.662 E 17.399 - 17.653 E1 16.510 - 16.662 D2/E2 14.986 - 16.002 B 0.660 - 0.813 B1 0.330 - 0.533 e NOTE Note 2 Note 2 1.270 TYP 10/04/01 Package Drawing Contact: packagedrawings@atmel.com 10 TITLE 44J, 44-lead, Plastic J-leaded chip carrier (PLCC) DRAWING NO. 44J REV. B Atmel AT27BV1024 0631F-EPROM-4/11 Atmel AT27BV1024 9. Revision history Doc. rev. Date 0631F 04/2011 0631E 12/2007 Comments Remove VSOP package Add lead finish to ordering information Change 120ns to 90ns 11 0631F-EPROM-4/11 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600 www.atmel.com Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (+81) (3) 3523-3551 Fax: (+81) (3) 3523-7581 (c) 2011 Atmel Corporation. All rights reserved. / Rev.: 0631F-EPROM-4/11 Atmel(R), logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.