2
Installation
The AFBR-709ASMZ transceiver package is compliant
with the SFF 8432 Improved Pluggable Formfactor hous-
ing specication for the SFP+. It can be installed in any
INF-8074 or SFF-8431/2 compliant Small Form Pluggable
(SFP) port regardless of host equipment operating status
The AFBR-709ASMZ is hot-pluggable, allowing the mod-
ule to be installed while the host system is operating and
on-line. Upon insertion, the transceiver housing makes
initial contact with the host board SFP cage, mitigating
potential damage due to Electro-Static Discharge (ESD).
Digital Diagnostic Interface and Serial Identication
The two-wire interface protocol and signaling detail
are based on SFF-8431. Conventional EEPROM memo-
ry, bytes 0-255 at memory address 0xA0, is organized
in compliance with SFF-8431. New digital diagnostic
information, bytes 0-255 at memory address 0xA2, is
compliant to SFF-8472. The new diagnostic information
provides the opportunity for Predictive Failure Identi-
cation, Compliance Prediction, Fault Isolation and Com-
ponent Monitoring.
Predictive Failure Identication
The AFBR-709ASMZ predictive failure feature allows a
host to identify potential link problems before system
performance is impacted. Prior identication of link
problems enables a host to service an application via
“fail over” to a redundant link or replace a suspect device,
maintaining system uptime in the process. For applica-
tions where ultra-high system uptime is required, a digi-
tal SFP provides a means to monitor two real-time laser
metrics asso ciated with observing laser degradation and
predicting failure: average laser bias current (Tx_Bias)
and average laser optical power (Tx_Power).
Compliance Prediction
Compliance prediction is the ability to determine if an
optical transceiver is operating within its operating and
environmental requirements. AFBR-709ASMZ devices
provide real-time access to transceiver internal supply
voltage and temperature, allowing a host to identify po-
tential component compliance issues. Received optical
power is also available to assess compliance of a cable
plant and remote transmitter. When operating out of re-
quirements, the link cannot guarantee error free trans-
mission.
Fault Isolation
The fault isolation feature allows a host to quickly pin-
point the location of a link failure, minimizing downtime.
For optical links, the ability to identify a fault at a local
device, remote device or cable plant is crucial to speed-
ing service of an installation. AFBR-709ASMZ real-time
monitors of Tx_Bias, Tx_Power, Vcc, Temperature and
Rx_Power can be used to assess local transceiver current
operating conditions. In addition, status ags TX_DIS-
ABLE and Rx Loss of Signal (LOS) are mirrored in memory
and available via the two-wire serial interface.
Component Monitoring
Component evaluation is a more casual use of the AFBR-
709ASMZ real-time monitors of Tx_Bias, Tx_Power, Vcc,
Temperature and Rx_Power. Potential uses are as debug-
ging aids for system installation and design, and trans-
ceiver parametric evaluation for factory or eld quali-
cation. For example, temperature per module can be
observed in high density applications to facilitate ther-
mal evaluation of blades, PCI cards and systems.
Description, continued