DMV1500L (R) DAMPER + MODULATION DIODE FOR VIDEO Table 1: Main Product Characteristics IF(AV) DAMPER 4A MODUL. 3A VRRM 1500 V 600 V trr (max) 170 ns 50 ns VF (max) 1.5V 1.4 V DAMPER 1 MODULATION 2 3 FEATURES AND BENEFITS DESCRIPTION o r P e c u d 3 c u d Full kit in one package High breakdown voltage capability Very fast recovery diode Specified turn on switching characteristics Low static and peak forward voltage drop for low dissipation Insulated version: Insulated voltage = 2000 VRMS Capacitance = 7 pF Planar technology allowing high quality and best electrical characteristics Outstanding performance of well proven DTV as damper and new faster Turbo 2 600V technology as modulation (t s) 2 1 ) s t( TO-220FPAB DMV1500LFD e t le o s b O - o r P 2 1 3 TO-220FPAB F5 Bending DMV1500LFD5 (optional) High voltage semiconductor especially designed for horizontal deflection stage in standard and high resolution video display with E/W correction. The insulated TO-220FPAB package includes both the DAMPER diode and the MODULATION diode, thanks to a dedicated design. Assembled on automated line, it offers very low dispersion values on insulating and thermal performances. t e l o s b O Table 2: Order Codes Part Number DMV1500LFD DMV1500LFD5 September 2004 Marking DMV1500L DMV1500L REV. 1 1/9 DMV1500L Table 3: Absolute Maximum Ratings Symbol VRRM Repetitive peak reverse voltage IFSM Surge non repetitive forward current Tstg Storage temperature range Tj Value Damper Modul. Parameter Unit 1500 600 V 50 35 A tp = 10ms sinusoidal -40 to +150 C 150 C Maximum operating junction temperature Table 4: Thermal Resistance Symbol Rth(j-c) Parameter Value Unit 4.0 C/W Junction to case thermal resistance Table 5: Static Electrical Characteristics Value Symbol Parameter Test conditions Tj = 25C Typ. IR * Reverse leakage current VF ** Pulse test: Forward voltage drop Damper VR = 1500 V Modul. VR = 600 V Damper IF = 4 A Modul. IF = 3 A * tp = 5 ms, < 2% o s b O - uc Max. Typ. Max. 100 100 1000 20 d o r 3 50 1.7 1.1 1.5 1.8 1.1 1.4 P e let 1.2 ) s t( Tj = 125C Unit A V ** tp = 380 s, < 2% To evaluate the maximum conduction losses of the DAMPER and MODULATION diodes use the following equations : 2 ) s ( ct DAMPER: P = 1.2 x IF(AV) + 0.075 x IF (RMS) 2 MODULATION: P = 1.12 x IF(AV) + 0.092 x IF (RMS) u d o Table 6: Recovery Characteristics r P e Symbol Parameter t e l o bs O 2/9 trr Reverse recovery time Value Test conditions Damper Typ. IF = 100mA IR =100mA IRR = 10mA Tj = 25C IF = 1A dIF/dt = -50 A/s VR =30V Tj = 25C Max. 850 Modul. Typ. Max. 110 350 Unit ns 130 170 35 50 DMV1500L Table 7: Turn-On Switching Characteristics Symbol Parameter Damper tfr Forward recovery time Modul. Damper VFP Peak forward voltage Modul. ) s ( ct 450 IF = 6.5 A dIF/dt = 50 A/s VFR = 3 V Tj = 25C 450 IF = 3 A dIF/dt = 80 A/s VFR = 2 V Tj = 100C 240 IF = 4 A dIF/dt = 80 A/s Tj = 100C 28 IF = 6.5 A dIF/dt = 50 A/s Tj = 25C 13 IF = 3 A dIF/dt = 80 A/s Tj = 100C r P e 1.6 uc 17 d o r P e let ns ) s t( V 8 Figure 2: Average forward current versus ambient temperature IF(AV)(A) 7 Rth(j-a)=Rth(j-c) 6 bs 1.8 36 Unit o s b O - t e l o 2.0 Max. Tj = 100C u d o PF(AV)(W) Typ. IF = 4 A dIF/dt = 80 A/s VFR = 3 V Figure 1: Power dissipation versus peak forward current (triangular waveform, =0.45) 2.2 Value Test conditions DAMPER diode 5 O 1.4 4 1.2 Rth(j-a)=Rth(j-c) 1.0 3 0.8 MODULATION diode 2 0.6 T 0.4 1 0.2 IP(A) =tp/T 0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0 Tamb(C) tp 25 50 75 100 125 150 3/9 DMV1500L Figure 3: Forward voltage drop versus forward current (damper diode) Figure 4: Forward voltage drop versus forward current (modulation diode) IFM(A) IFM(A) 30 30 Tj=125C (maximum values) 25 Tj=125C (maximum values) 25 20 20 Tj=125C (typical values) 15 15 Tj=25C (maximum values) 10 Tj=125C (typical values) Tj=25C (maximum values) 10 5 5 VFM(V) VFM(V) 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Figure 5: Relative variation of thermal impedance junction to case versus pulse duration 0.0 0.5 1.0 1.5 2.0 c u d IM(A) 35 0.9 30 0.8 25 0.7 0.6 e t le DAMPER diode MODULATION diode 20 0.5 o s b O 15 0.4 0.3 10 0.2 3.0 3.5 Figure 6: Non repetitive peak forward current versus overload duration (damper diode) Zth(j-c)/Rth(j-c) 1.0 2.5 o r P ) s t( TC=25C TC=75C TC=125C IM 5 0.1 t tp(s) 1.E-03 1.E-02 1.E-01 1.E+00 (s) 1.E+01 1.E+02 t c u Figure 7: Non repetitive peak forward current versus overload duration (modulation diode) d o r P e IM(A) 30 t e l o 25 20 O 1.E-01 1.E+00 IF=IP Tj=125C 90% confidence 2.0 1.8 1.6 1.4 1.2 TC=75C 1.0 0.8 IM 0.6 0.4 t 0.2 t(s) =0.5 dIF/dt(A/s) 0.0 0 4/9 1.E-02 Figure 8: Reverse recovery charges versus dIF/dt (damper diode) 2.2 TC=125C 1.E-03 1.E-03 Qrr(nC) 10 5 0 2.4 TC=25C bs 15 t(s) =0.5 Single pulse 0.0 1.E-02 1.E-01 1.E+00 0.1 1.0 10.0 DMV1500L Figure 9: Reverse recovery charges versus dIF /dt (modulation diode) Figure 10: Peak reverse recovery current versus dIF/dt (damper diode) Qrr(nC) IRM(A) 200 3.0 IF=IP Tj=125C 90% confidence IF=IP Tj=125C 90% confidence 2.5 150 2.0 1.5 100 1.0 50 0.5 dIF/dt(A/s) dIF/dt(A/s) 0.0 0 0.1 1.0 10.0 0.1 100.0 Figure 11: Peak reverse recovery current versus dIF/dt (modulation diode) 1.0 10.0 IRM(A) c u d VFP(V) 6.0 50 IF=IP Tj=125C 90% confidence 5.0 IF=IP Tj=125C 90% confidence 45 40 35 4.0 e t le 30 3.0 25 20 2.0 ) s t( Figure 12: Transient peak forward voltage versus dIF/dt (damper diode) o s b O 15 o r P 10 1.0 5 dIF/dt(A/s) dIF/dt(A/s) 0 0.0 1 10 ) s ( ct 100 Figure 13: Transient peak forward voltage versus dIF/dt (modulation diode) u d o VFP(V) 11 IF=IP Tj=125C 90% confidence 10 8 7 5 60 80 100 120 140 Figure 14: Forward recovery time versus dIF/dt (damper diode) IF=IP Tj=125C VFR=3V 90% confidence 650 600 550 500 s b O 6 40 700 t e l o 9 20 tfr(ns) r P e 12 0 1000 450 400 4 350 3 300 2 1 250 dIF/dt(A/s) 0 dIF/dt(A/s) 200 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 5/9 DMV1500L Figure 15: Forward recovery time versus dIF/dt (modulation diode) Figure 16: Relative variation of dynamic parameters versus junction temperature IRM, VFP, QRR [Tj]/ IRM, VFP, QRR [Tj=125C] tfr(ns) 1.2 200 IF=IP Tj=125C VFR=2V 90% confidence 175 1.0 150 0.8 125 VFP 0.6 100 IRM 75 0.4 QRR 50 0.2 25 Tj(C) dIF/dt(A/s) 0 0.0 0 20 40 60 80 100 120 140 160 180 200 25 50 75 100 Figure 17: Junction capacitance versus reverse voltage applied (typical values) c u d C(pF) 100 F=1MHz VOSC=30mVRMS Tj=25C MODULATION diode 10 e t le DAMPER diode VR(V) 1 1 10 ) s ( ct 100 u d o r P e t e l o s b O 6/9 o s b O - 1000 o r P 125 ) s t( DMV1500L Figure 18: TO-220FPAB Package Mechanical Data REF. A B D E F F1 F2 G G1 H L2 L3 L4 L6 L7 Dia. DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.4 4.9 0.173 0.192 2.5 2.9 0.098 0.114 2.45 2.75 0.096 0.108 0.4 0.7 0.016 0.027 0.6 1 0.024 0.039 1.15 1.7 0.045 0.067 1.15 1.7 0.045 0.067 4.95 5.2 0.195 0.205 2.4 2.7 0.094 0.106 10 10.7 0.393 0.421 16 Typ. 0.630 Typ. 28.6 30.6 1.126 1.205 9.8 10.7 0.385 0.421 15.8 16.4 0.622 0.646 9 9.9 0.354 0.390 2.9 3.5 0.114 0.138 c u d e t le ) s ( ct ) s t( o r P o s b O - u d o r P e t e l o s b O 7/9 DMV1500L Figure 19: TO-220FPAB F5 Bending (option) Package Mechanical Data REF. A B D E F F1 F2 G G1 H L2 L3 L4 L6 L7 M1 R Dia. Table 8: Ordering Information Part Number Marking DMV1500LFD DMV1500LFD5 DMV1500L DMV1500L r P e Date 07-Sep-2004 t e l o s b O 8/9 e t le Weight Base qty TO-220FPAB TO-220FPAB F5 2.4 g 2.4 g 50 45 Description of Changes First issue ) s t( o r P Package ) s ( ct Revision 1 c u d o s b O - u d o Table 9: Revision History DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.4 4.9 0.173 0.192 2.5 2.9 0.098 0.114 2.45 2.75 0.096 0.108 0.4 0.7 0.016 0.027 0.6 1 0.024 0.039 1.15 1.7 0.045 0.067 1.15 1.7 0.045 0.067 4.95 5.2 0.195 0.205 2.4 2.7 0.094 0.106 10 10.7 0.393 0.421 16 Typ. 0.630 Typ. 24.16 26.9 0.951 1.059 1.65 2.41 0.065 0.095 15.8 16.4 0.622 0.646 9 9.9 0.354 0.390 2.92 3.3 0.115 0.130 1.4 Typ. 0.055 Typ. 2.9 3.5 0.114 0.138 Delivery mode Tube Tube DMV1500L c u d e t le ) s ( ct ) s t( o r P o s b O - u d o r P e t e l o s b O Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 9/9