1
Copyright
©
Cirrus Logic, Inc. 2004
(All Rights Reserved)
http://www.cirrus.com
CS4360
24-Bit, 192 kHz 6-channel D/A Converter
Features
24-bit Conversion
102 dB Dynamic Range
-91 dB THD+N
Low Clock Jitter Sensitivity
Digital Volume Control with Soft Ramp
119 dB Attenuation
1-dB Step Size
Zero Crossing Click-Free Transitions
ATAPI Mixing
Logic Levels Between 5.0 V and 1.8 V
+3.3 V or +5 V Analog Power Supply
116 mW with 3.3 V Supply
Popguard Technology® for Control of Clicks
and Pops
Description
The CS4360 is a complete 6-channel digital-to-analog
system including digital interpolation, fourth-order delta-
sigma digital-to-analog conversion, digital de-emphasis,
volume control, channel mixing and analog filtering. The
advantages of this architecture include: ideal differential
linearity, no distortion mechanisms due to resistor
matching errors, no linearity drift over time and tempera-
ture, and a high tolerance to clock jitter.
The CS4360 accepts data at audio sample rates from
4 kHz to 200 kHz, consumes very little power, and oper-
ates over a wide power supply range. These features are
ideal for cost-sensitive, multi-channel audio systems in-
cluding DVD players, A/V receivers, set-top boxes,
digital TVs and VCRs, mini-component systems, and
mixing consoles.
ORDERING INFORMATION
CS4360-KZ -10 to 70 °C 28-pin TSSOP
CS4360-KZZ -10 to 70 °C Lead Free 28-pin TSSOP
CS4360-DZZ -40 to 85 °C Lead Free 28-pin TSSOP
CDB4360 Evaluation Board
I
Control Port External
Mute Control
RST
Volume ControlInterpolation Filter Analog Filter AOUT A1
∆Σ
DAC
Mixer
Volume Control
∆Σ
DAC Analog Filter AO UTB1
Interpolation Filter
Volume ControlInterpolation Filter Analog Filter AOUT A2
∆Σ
DAC
Mixer
Volume Control
∆Σ
DAC Analog Filter AO UTB2
Interpolation Filter
Volume ControlInterpolation Filter Analog Filter AOUT A3
∆Σ
DAC
Mixer
Volume Control
∆Σ
DAC Analog Filter AO UT B3
Interpolation Filter
MCLK
Serial Port
LRCK
SCLK
SD I N1
SD I N2
SD I N3
DIF1/SCL/CCLK DIF0/SDA/CDIN M1/AD0/CS VLC
÷
2VQ
FILT+
VA
GND
VD
VLS
MUTEC1 MUTEC2 MUTEC3
M2
GND
JUL ‘04
DS517F2
CS4360
2DS517F2
TABLE OF CONTENTS
1. PIN DESCRIPTION ................................................................................................................... 5
2. TYPICAL CONNECTION DIAGRAM ...................................................................................... 7
3. CHARACTERISTICS AND SPECIFICATIONS ........................................................................ 8
SPECIFIED OPERATING CONDITIONS ................................................................................. 8
ABSOLUTE MAXIMUM RATINGS ........................................................................................... 8
ANALOG CHARACTERISTICS (CS4360-KZ/KZZ) .................................................................. 9
ANALOG CHARACTERISTICS (CS4360-DZZ) ..................................................................... 11
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE......................... 13
SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE........................................... 16
SWITCHING SPECIFICATIONS - CONTROL PORT INTERFACE ....................................... 17
SWITCHING SPECIFICATIONS - CONTROL PORT INTERFACE ....................................... 18
DC ELECTRICAL CHARACTERISTICS................................................................................. 19
DIGITAL INPUT CHARACTERISTICS ................................................................................... 19
DIGITAL INTERFACE SPECIFICATIONS.............................................................................. 20
THERMAL CHARACTERISTICS AND SPECIFICATIONS .................................................... 20
4. APPLICATIONS ...................................................................................................................... 21
4.1 Sample Rate Range/Operational Mode Select ................................................................ 21
4.1.1 Stand-alone Mode ............................................................................................... 21
4.1.2 Control Port Mode ............................................................................................... 21
4.2 System Clocking .............................................................................................................. 21
4.3 Digital Interface Format .................................................................................................... 22
4.3.1 Stand-alone Mode ............................................................................................... 22
4.3.2 Control Port Mode .............................................................................................. 23
4.4 De-emphasis Control ....................................................................................................... 23
4.4.1 Stand-alone Mode ............................................................................................... 24
4.4.2 Control Port Mode ............................................................................................... 24
4.5 Recommended Power-up Sequence ............................................................................... 24
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find one nearest you go to http://www.cirrus.com/
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is sub-
ject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and con-
ditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsi-
bility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement
of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied
under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the
information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated
circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes,
or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANT-
ED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS
OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE
SAFETY OR SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOM-
ER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF
THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER
AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM
ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trade-
marks or service marks of their respective owners.
C is a registered trademark of Philips Semiconductor. Purchase of I²C Components of Cirrus Logic, Inc., or one of its sublicensed Associated Companies con-
veys a license under the Philips I²C Patent Rights to use those components in a standard I²C system.
CS4360
DS517F2 3
4.5.1 Stand-alone Mode ............................................................................................... 24
4.5.2 Control Port Mode ............................................................................................... 24
4.6 Popguard® Transient Control .......................................................................................... 24
4.6.1 Power-up ............................................................................................................. 24
4.6.2 Power-down ........................................................................................................ 24
4.6.3 Discharge Time ................................................................................................... 25
4.7 Mute Control .................................................................................................................... 25
4.8 Grounding and Power Supply Arrangements .................................................................. 25
4.8.1 Capacitor Placement ........................................................................................... 25
4.8.2 Power Supply Sections ....................................................................................... 25
4.9 Control Port Interface ...................................................................................................... 25
4.9.1 Memory Address Pointer (MAP) ......................................................................... 26
4.9.1a INCR (Auto Map Increment) ................................................................ 26
4.9.1b MAP0-3 (Memory Address Pointer) ..................................................... 26
4.9.2 I²C Mode ............................................................................................................. 26
4.9.2a I²C Write ............................................................................................... 26
4.9.2b I²C Read ............................................................................................... 27
4.9.3 SPI Mode ............................................................................................................ 27
4.9.3a SPI Write .............................................................................................. 28
5. REGISTER QUICK REFERENCE ......................................................................................... 29
6. REGISTER DESCRIPTIONS .................................................................................................. 30
6.1 Mode Control 1 (address 01h) ......................................................................................... 30
6.1.1 Auto-mute (AMUTE) Bit 7 ....................................................................................... 30
6.1.2 Digital Interface Format (DIF) Bit 4-6 ...................................................................... 30
6.1.3 De-emphasis Control (DEM) Bit 2-3........................................................................ 31
6.1.4 Functional Mode (FM) Bit 0-1.................................................................................. 31
6.2 Invert Signal (address 02h) ............................................................................................. 31
6.2.1 Invert Signal Polarity (INV_xx) Bit 0-5..................................................................... 31
6.3 Mixing Control Pair 1 (Channels A1 & B1) (address 03h)
Mixing Control Pair 2 (Channels A2 & B2) (address 04h)
Mixing Control Pair 3 (Channels A3 & B3) (address 05h)............................................. 31
6.3.1 ATAPI Channel Mixing and Muting (atapi) Bit 0-3................................................... 32
6.4 Volume Control (addresses 06h - 0Bh) ........................................................................... 33
6.4.1 MUTE (MUTE) Bit 7 ................................................................................................ 33
6.4.2 VOLUME CONTROL (xx_VOL) Bit 0-6................................................................... 33
6.5 Mode Control 2 (address 0Dh) ......................................................................................... 33
6.5.1 Soft Ramp and Zero Cross CONTROL (SZC) Bit 6-7............................................. 33
6.5.2 Control Port Enable (CPEN) Bit 5 ........................................................................... 34
6.5.3 Power Down (PDN) Bit 4......................................................................................... 34
6.5.4 Popguard® Transient Control (POPG) Bit 3 ........................................................... 34
6.5.5 Freeze Controls (FREEZE) Bit 2............................................................................. 35
6.5.6 Master Clock DIVIDE ENABLE (MCLKDIV) Bit 1 ................................................... 35
6.5.7 Single Volume Control (SNGLVOL) Bit 0................................................................ 35
6.6 Revision Register (Read Only) (address 0Dh) ................................................................ 35
6.6.1 Revision Indicator (REV) [Read Only] Bit 0-3 ......................................................... 35
7. PARAMETER DEFINITIONS .................................................................................................. 36
Total Harmonic Distortion + Noise (THD+N) .......................................................................... 36
Dynamic Range ...................................................................................................................... 36
Interchannel Isolation ............................................................................................................. 36
Interchannel Gain Mismatch................................................................................................... 36
Gain Error ............................................................................................................................... 36
Gain Drift ................................................................................................................................ 36
CS4360
4DS517F2
8. REFERENCES ........................................................................................................................ 36
9. PACKAGE DIMENSIONS ....................................................................................................... 37
LIST OF FIGURES
Figure 1. Typical Connection Diagram .......................................................................................... 7
Figure 2. Output Test Load ......................................................................................................... 10
Figure 3. Maximum Loading ........................................................................................................ 10
Figure 4. Single-speed Stopband Rejection ................................................................................ 14
Figure 5. Single-speed Transition Band ...................................................................................... 14
Figure 6. Single-speed Transition Band (Detail) ......................................................................... 14
Figure 7. Single-speed Passband Ripple .................................................................................... 14
Figure 8. Double-speed Stopband Rejection .............................................................................. 14
Figure 9. Double-speed Transition Band ..................................................................................... 14
Figure 10. Double-speed Transition Band (Detail) ........................................................................ 15
Figure 11. Double-speed Passband Ripple ................................................................................... 15
Figure 12. Serial Mode Input Timing .............................................................................................16
Figure 13. Control Port Timing - I²C Mode .................................................................................... 17
Figure 14. Control Port Timing - SPI Mode ................................................................................... 18
Figure 15. Left Justified up to 24-Bit Data .....................................................................................23
Figure 16. I2S, up to 24-Bit Data ................................................................................................... 23
Figure 17. Right Justified Data ...................................................................................................... 23
Figure 18. De-emphasis Curve ..................................................................................................... 23
Figure 19. I²C Write ....................................................................................................................... 27
Figure 20. I²C Read ....................................................................................................................... 27
Figure 21. SPI Write ...................................................................................................................... 28
Figure 22. ATAPI Block Diagram ..................................................................................................32
LIST OF TABLES
Table 1. CS4360 Stand-alone Operational Mode............................................................................. 21
Table 2. CS4360 Control Port Operational Mode............................................................................. 21
Table 3. Single-speed Mode Standard Frequencies ........................................................................ 21
Table 4. Double-speed Mode Standard Frequencies....................................................................... 21
Table 5. Quad-speed Mode Standard Frequencies ......................................................................... 22
Table 6. Digital Interface Format - Stand-alone Mode...................................................................... 22
Table 7. Power Supply Control Sections ..........................................................................................25
Table 8. Digital Interface Formats - Control Port Mode .................................................................... 30
Table 9. ATAPI Decode.................................................................................................................... 32
Table 10. Example Digital Volume Settings ..................................................................................... 33
CS4360
DS517F2 5
1. PIN DESCRIPTION
VLS MUTEC1
SDIN1 AOUTA1
SDIN2 AOUTB1
SDIN3 MUTEC2
SCLK AOUTA2
LRCK AOUTB2
MCLK VA
VD GND
GND AOUTA3
RST AOUTB3
DIF1/SCL/CCLK MUTEC3
DIF0/SDA/CDIN VQ
M1/AD0/CS FILT+
VLC M2
1
2
3
4
5
6
7
821
22
23
24
25
26
27
28
9
10
11
12 17
18
19
20
13
14 15
16
CS4360
CS4360
6DS517F2
Pin Name #Pin Description
VLS 1Serial Audio Interface Power (Input) - Positive power for the serial audio interface.
SDIN1
SDIN2
SDIN3
2
3
4
Serial Audio Data Input (Input) - Input for two’s complement serial audio data.
SCLK 5Serial Clock (Input) - Serial clock for the serial audio interface.
LRCK 6Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial audio
data line.
MCLK 7Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.
VD 8Digital Power (Input) - Positive power supply for the digital section.
GND 9
21
Ground (Input)
RST 10 Reset (Input) - Powers down device and resets all internal resisters to their default settings.
VLC 14 Control Port Interface Power (Input) - Positive power for the control port interface.
FILT+ 16 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
VQ 17 Quiescent Voltage (Output) - Filter connection for internal quiescent voltage.
VA 22 Analog Power (Input) - Positive power supply for the analog section.
AOUTB3
AOUTA3
AOUTB2
AOUTA2
AOUTB1
AOUTA1
19
20
23
24
26
27
Analog Outputs (Output) - The full scale analog line output level is specified in the An alo g Ch ara cteri s -
tics and Specifications table.
MUTEC3
MUTEC2
MUTEC1
18
25
28
Mute Control (Output) - Control signal for optional mute circuit.
Control Port
Definitions
SCL/CCLK 11 Serial Control Port Clock (Input) - Serial clock for the control port interface.
SDA/CDIN 12 Serial Control Data I/O (Input/Output) - Input/Output for I²C data. Input for SPI data.
AD0/CS 13 Address Bit / Chip Select (Input) - Chip address bit in C Mode. Control signal used to select the chip
in SPI mode.
Stand-Alone
Definitions
DIF1
DIF0
11
12
Digital Interface Format (Input) - Defines the required relationship between the Left Right Clock, Serial
Clock and Serial Audio Data.
M1
M2
13
15
Mode Selection (Input) - Determines the operational mode of the device.
CS4360
DS517F2 7
2. TYPICAL CONNECTION DIAGRAM
21
Digital
Audio
Source
VLS
GND
CS4360
MCLK
VA
AOUTA1
5
4
3
8
0.1 µF +1 µF
+3.3 V to +5 V *
µ C/
Mode
Configuration 13
10
12
SDIN1
6
DIF1/SCL/CCLK
DIF0/SDA/CDIN
M1/AD0/CS
RST
MUTEC1
OPTIONAL
MUTE
CIRCUIT
3.3 µF 0.1 µF
AOUTA1
C = 4πFs(R 560)
L
RL
+
+
16
17
FILT+
VQ
11
15 M2
7
LRCK
SCLK
SDIN3
SDIN2
3.3 µF 10 k C
560
+
28
27
3.3 µF 10 kC
560
+
26 AOUTB1
RL
OPTIONAL
MUTE
CIRCUIT
AOUTA2
RL
3.3 µF 10 kC
560
+
25
24
3.3 µF 10 k C
560
+
23 AOUTB2
RL
OPTIONAL
MUTE
CIRCUIT
AOUTA3
RL
3.3 µF 10 k C
560
+
18
20
3.3 µF 10 kC
560
+
19 AOUTB3
RL
AOUTB1
0.1 µ F3.3 µF
AOUTA2
MUTEC2
AOUTB2
AOUTA3
MUTEC3
AOUTB3
VD
0.1 µF
+
1 µF
GND
9
0.1 µF
+1.8 V to +5 V *
VLC
0.1 µF
+1.8 V to +5 V *
RL+560
+3.3 V to VA *
* All supplies can be tied together
22
1
14
2
Figure 1. Typical Connection Diagram
CS4360
8DS517F2
3. CHARACTERISTICS AND SPECIFICATIONS
Typical performance characteristics are derived from measurements taken at TA = 25°C. Min/Max performance
characteristics and specifications are guaranteed over the operating temperature and voltages.
SPECIFIED OPERATING CONDITIONS GND = 0 V; all voltages with respect to GND.
ABSOLUTE MAXIMUM RATINGS
GND = 0 V; all voltages with respect to GND. Operation beyond these limits may result in permanent damage to
the device. Normal operation is not guaranteed at these extremes.
Notes: 1. Nominal VD supply must be less than or equal to the nominal VA supply.
2. Any pin except supplies.
Parameters Symbol Min Typ Max Units
DC Power Supply
Analog 3.3 V Nominal
(Note 1) 5.0 V Nominal
VA 3.0
4.5
3.3
5
3.6
5.5
V
V
Digital 2.5 V Nominal
(Note 1) 3.3 V Nominal
5.0 V Nominal
VD 2.25
3.0
4.5
2.5
3.3
5
2.75
3.6
5.5
V
V
V
Serial Audio Interface 1.8 V Nominal
2.5 V Nominal
3.3 V Nominal
5.0 V Nominal
VLS 1.7
2.25
3.0
4.5
1.8
2.5
3.3
5
1.9
2.75
3.6
5.5
V
V
V
V
Control Port Interface 1.8 V Nominal
2.5 V Nominal
3.3 V Nominal
5.0 V Nominal
VLC 1.7
2.25
3.0
4.5
1.8
2.5
3.3
5
1.9
2.75
3.6
5.5
V
V
V
V
Parameters Symbol Min Max Units
DC Power Supply Analog
Digital
Serial Audio Interface
Control Port Interface
VA
VD
VLS
VLC
-0.3
-0.3
-0.3
-0.3
6.0
6.0
6.0
6.0
V
V
V
V
Input Current (Note 2) Iin 10mA
Digital Input Voltage Serial Audio Interface
Control Port Interface
VIND_S
VIND_C
-0.3
-0.3
VLS+0.4
VLC+0.4
V
V
Ambient Operating Temperature (power applied) TA-55 125 °C
Storage Temperature Tstg -65 150 °C
CS4360
DS517F2 9
ANALOG CHARACTERISTICS (CS4360-KZ/KZZ)
Test conditions (unless otherwise specified): Input test signal is a 997 Hz sine wave at 0 dBFS; measurement
bandwidth is 10 Hz to 20 kHz; test load RL=10k, CL = 10 pF (see Figure 2). All supplies = VA = 5.0 V or 3.3 V.
Notes: 3. One-half LSB of triangular PDF dither is added to data.
Parameter
5.0 V 3.3 V
Min Typ Max Min Typ Max Unit
Single-Speed Mode Fs = 48 kHz
Dynamic Range (Note 3)
unweighted
A-Weighted
A-Weighted
94
97
-
99
102
100
-
-
-
89
92
-
94
97
97
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 3)
0 dB
-20 dB
-60 dB
-
-
-
-91
-79
-39
-86
-
-
-
-
-
-91
-74
-34
-86
-
-
dB
dB
dB
Double-Speed Mode Fs = 96 kHz
Dynamic Range (Note 3)
unweighted
A-Weighted
40 kHz Bandwidth A-Weighted
94
97
-
99
102
100
-
-
-
89
92
-
94
97
97
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 3)
0 dB
-20 dB
-60 dB
-
-
-
-91
-79
-39
-86
-
-
-
-
-
-91
-74
-34
-86
-
-
dB
dB
dB
Quad-Speed Mode Fs = 192 kHz
Dynamic Range (Note 3)
unweighted
A-Weighted
40 kHz Bandwidth A-Weighted
94
97
-
99
102
100
-
-
-
89
92
-
94
97
97
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 3)
0 dB
-20 dB
-60 dB
-
-
-
-91
-79
-39
-86
-
-
-
-
-
-91
-74
-34
-86
-
-
dB
dB
dB
CS4360
10 DS517F2
ANALOG CHARACTERISTICS (CS4360-KZ/KZZ) (Continued)
4. Refer to Figure 3.
.
Parameters Symbol Min Typ Max Units
Dynamic Performance for All Modes
Interchannel Isolation (1 kHz) - 102 - dB
DC Accuracy
Interchannel Gain Mismatch ICGM - 0.1 - dB
Gain Drift - ±100 - ppm/°C
Analog Output Characteristics and Specifications
Full Scale Output Voltage 0.60•VA 0.66•VA 0.72•VA Vpp
Output Impedance Zout - 100 -
Minimum AC-Load Resistance (Note 4) RL-3-k
Maximum Load Capacitance (Note 4) CL- 100 - pF
AOUTx
AGND
3.3 µF
V
out
RLCL
+
Figure 2. Output Test Load
100
50
75
25
2.5
51015
Safe Operating
Region
Capacitive Load -- C (pF)
L
Resistive Load -- R (k
)
L
125
3
20
Figure 3. Maximum Loading
CS4360
DS517F2 11
ANALOG CHARACTERISTICS (CS4360-DZZ)
Test conditions (unless otherwise specified): Input test signal is a 997 Hz sine wave at 0 dBFS; measurement
bandwidth is 10 Hz to 20 kHz; test load RL = 10 k, CL = 10 pF (see Figure 2). All supplies = VA = 5.0 V and 3.3 V.
Parameter
VA = 5.0 V VA = 3.3 V
Min Typ Max Min Typ Max Unit
Single-speed Mode Fs = 48 kHz
Dynamic Range (Note 3)
unweighted
A-Weighted
A-Weighted
89
92
-
99
102
100
-
-
-
89
92
-
94
97
97
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 3)
0 dB
-20 dB
-60 dB
-
-
-
-91
-79
-39
-84
-
-
-
-
-
-91
-74
-34
-84
-
-
dB
dB
dB
Double-speed Mode Fs = 96 kHz
Dynamic Range (Note 3)
unweighted
A-Weighted
40 kHz Bandwidth A-Weighted
89
92
-
99
102
100
-
-
-
89
92
-
94
97
97
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 3)
0 dB
-20 dB
-60 dB
-
-
-
-91
-79
-39
-84
-
-
-
-
-
-91
-74
-34
-84
-
-
dB
dB
dB
Quad-speed Mode Fs = 192 kHz
Dynamic Range (Note 3)
unweighted
A-Weighted
40 kHz Bandwidth A-Weighted
89
92
-
99
102
100
-
-
-
89
92
-
94
97
97
-
-
-
dB
dB
dB
Total Harmonic Distortion + Noise (Note 3)
0 dB
-20 dB
-60 dB
-
-
-
-91
-79
-39
-84
-
-
-
-
-
-91
-74
-34
-84
-
-
dB
dB
dB
CS4360
12 DS517F2
ANALOG CHARACTERISTICS (CS4360-DZZ) (Continued)
Parameters Symbol Min Typ Max Units
Dynamic Performance for All Modes
Interchannel Isolation (1 kHz) - 102 - dB
DC Accuracy
Interchannel Gain Mismatch ICGM - 0.1 - dB
Gain Drift - ±100 - ppm/°C
Analog Output Characteristics and Specifications
Full Scale Output Voltage 0.60•VA 0.66•VA 0.72•VA Vpp
Output Impedance Zout - 100 -
AC-load Resistance (Note 4) RL3- -k
Load Capacitance (Note 4) CL--100pF
CS4360
DS517F2 13
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
The filter characteristics and the X-axis of the response plots have been normalized to the sample rate (Fs) and can
be referenced to the desired sample rate by multiplying the given characteristic by Fs.
Notes: 5. For Single-speed Mode, the measurement bandwidth is 0.5465 Fs to 3 Fs.
For Double-speed Mode, the measurement bandwidth is 0.577 Fs to 1.4 Fs.
6. De-emphasis is only available in Single-speed Mode.
Parameter Min Typ Max Unit
Single-Speed Mode (4 kHz to 50 kHz sample rates)
Passband
to -0.05 dB corner
to -3 dB corner
0
0
-
-
0.4535
0.4998
Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.02 - +0.035 dB
StopBand 0.5465 - - Fs
StopBand Attenuation (Note 5) 50 - - dB
Group Delay - 9/Fs - s
De-emphasis Error (Relative to 1 kHz) (Note 6)
Control Port Mode Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
St and-al one Mode Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
-
-
-
-
-
-
+0.2/-0.1
+0.05/-0.14
+0/-0.22
+1.5/-0
+0.05/-0.14
+0.2/-0.4
dB
dB
dB
dB
dB
dB
Double-Speed Mode (50 kHz to 100 kHz sample rates)
Passband
to -0.1 dB corner
to -3 dB corner
0
0
-
-
0.4621
0.4982
Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.1 - 0 dB
StopBand 0.577 - - Fs
StopBand Attenuation (Note 5) 55 - - dB
Group Delay - 4/Fs - s
Quad-Speed Mode - (100 kHz to 200 kHz sample rates)
Passband
to -3 dB corner 0 - 0.25 Fs
Frequency Response 10 Hz to 20 kHz -0.7 - 0 dB
Group Delay - 1.5/Fs - s
CS4360
14 DS517F2
Figure 4. Single-speed Stopband Rejection Figure 5. Single-speed Transition Band
Figure 6. Single-speed Transition Band (Detail) Figure 7. Single-speed Passband Ripple
Figure 8. Double-speed Stopband Rejection Figure 9. Double-speed Transition Band
CS4360
DS517F2 15
Figure 10. Double-speed Transition Band (Detail) Figure 11. Double-speed Passband Ripple
CS4360
16 DS517F2
SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE
Inputs: Logic 0 = GND, Logic 1 = VLS.
Parameters Symbol Min Max Units
MCLK Frequency 1.024 51.2 MHz
MCLK Duty Cycle 40 60 %
Input Sample Rate Single-speed Mode
Double-speed Mode
Quad-speed Mode
Fs
Fs
Fs
4
50
100
50
100
200
kHz
kHz
kHz
LRCK Duty Cycle 45 55 %
SCLK Pulse Width Low tsclkl 20 - ns
SCLK Pulse Width High tsclkh 20 - ns
SCLK Frequency Single-speed Mode
Double-speed Mode
-
-
128xFs
64xFs
Hz
Hz
Quad-speed Mode (MCLKDIV = 0) -Hz
Quad-speed Mode (MCLKDIV = 1) -Hz
SCLK rising to LRCK edge delay tslrd 20 - ns
SCLK rising to LRCK edge setup time tslrs 20 - ns
SDINx valid to SCLK rising setup time tsdlrs 20 - ns
SCLK rising to SDINx hold time tsdh 20 - ns
Figure 12. Serial Mode Input Timing
sclkh
t
slrs
t
slrd
t
sdlrs
tsdh
t
sclkl
t
SDINx
SCLK
LRCK
MCLK
2
-----------------
MCLK
4
-----------------
CS4360
DS517F2 17
SWITCHING SPECIFICATIONS - CONTROL PORT INTERFACE
Inputs: Logic 0 = GND, Logic 1 = VLC
Notes: 7. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
8. The acknowledge delay is based on MCLK and can limit the maximum transaction speed.
9. for Single-Speed Mode, for Double-Speed Mode, for Quad-Speed Mode.
Parameter Symbol Min Max Unit
I²C Mode
SCL Clock Frequency fscl - 100 kHz
RST Rising Edge to Start tirs 500 - ns
Bus Free Time Between Transmissions tbuf 4.7 - µs
Start Condition Hold Time (prior to first clock pulse) thdst 4.0 - µs
Clock Low time tlow 4.7 - µs
Clock High Time thigh 4.0 - µs
Setup Time for Repeated Start Condition tsust 4.7 - µs
SDA Hold Time from SCL Falling (Note 7) thdd 0-µs
SDA Setup time to SCL Rising tsud 250 - ns
Rise Time of SCL and SDA trc, trc -1µs
Fall Time SCL and SDA tfc, tfc - 300 ns
Setup Time for Stop Condition tsusp 4.7 - µs
Acknowledge Delay from SCL Falling (Note 8) tack - (Note 9) ns
5
2
56 F
s
×
-
-----------------
---
5
1
28 F
s
×
-
------------------
--
5
6
4F
s
×
-
---------------
--
tbuf thdst
tlow thdd
thigh
tsud
Stop Start
SDA
SCL
tirs
RST
thdst
trc
tfc
tsust
tsusp
Start Stop
Repeated
trd tfd
tack
Figure 13. Control Port Timing - I²C Mode
CS4360
18 DS517F2
SWITCHING SPECIFICATIONS - CONTROL PORT INTERFACE (Continued)
Notes: 10. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times.
11. Data must be held for sufficient time to bridge the transition time of CCLK.
12. For fsclk < 1 MHz.
Parameter Symbol Min Max Unit
SPI Mode
CCLK Clock Frequency fsclk -6MHz
RST Rising Edge to CS Falling tsrs 500 - ns
CCLK Edge to CS Falling (Note 10) tspi 500 - ns
CS High Time Between Transmissions tcsh 1.0 - µs
CS Falling to CCLK Edge tcss 20 - ns
CCLK Low Time tscl -ns
CCLK High Time tsch -ns
CDIN to CCLK Rising Setup Time tdsu 40 - ns
CCLK Rising to DATA Hold Time (Note 11) tdh 15 - ns
Rise Time of CCLK and CDIN (Note 12) tr2 - 100 ns
Fall Time of CCLK and CDIN (Note 12) tf2 - 100 ns
1
MCLK
-----------------
1
MCLK
-----------------
tr2 tf2
tdsu t
dh
t
sch
tscl
CS
CCLK
CDIN
tcss t
csh
tspi
tsrs
RST
Figure 14. Control Port Timing - SPI Mode
CS4360
DS517F2 19
DC ELECTRICAL CHARACTERISTICS GND = 0 V; all voltages with respect to GND.
Notes: 13. Normal operation is defined as RST = HI with a 997 Hz, 0 dBFS input sampled at the highest Fs for each
speed mode, and open outputs, unless otherwise specified.
14. ILC measured with no external loading on pin 12 (SDA).
15. Power Down Mode is defined as RST = LO with all clocks and data lines held static.
16. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figure 1. Increasing the
capacitance will also increase the PSRR.
DIGITAL INPUT CHARACTERISTICS GND = 0 V; all voltages with respect to GND.
Parameters Symbol Min Typ Max Units
Normal Operation (Note 13)
Power Supply Current VA = 5.0 V
VD = 5.0 V
VA = 3.3 V
VD = 3.3 V
VLS = 5.0 V
VLC = 5.0 V
VLS = 3.3 V
VLC = 3.3 V
(Note 14)
IA
ID
IA
ID
ILS
ILC
ILS
ILC
-
-
-
-
-
-
-
-
22
25
21
14
6
2
2
1
-
-
-
-
-
-
-
-
mA
mA
mA
mA
µA
µA
µA
µA
Power Dissipation All Supplies = 5.0 V
All Supplies = 3.3 V
-
-
235
116
265
128
mW
mW
Power-down Mo de (Note 15)
Power Supply Current All Supplies = 5.0 V
All Supplies = 3.3 V
-
-
16
12
-
-
µA
µA
Power Dissipation All Supplies = 5.0 V
All Supplies = 3.3 V
-
-
80
40
-
-
µW
µW
All Modes of Operation
Power Supply Rejection Ratio (Note 16) 1 kHz
60 Hz
PSRR -
-
60
40
-
-
dB
dB
VQ Nominal Voltage
Output Impedance
Maximum allowable DC current source/sink
-
-
-
0.5•VA
250
0.01
-
-
-
V
k
mA
Filt+ Nominal Voltage
Output Impedance
Maximum allowable DC current source/sink
-
-
-
VA
250
0.01
-
-
-
V
k
mA
MUTEC Low-level Output Voltage - 0 - V
MUTEC High-level Output Voltage - VA - V
Maximum MUTEC Drive Current - 3 - mA
Parameters Symbol Min Typ Max Units
Input Leakage Current Iin --±10µA
Input Capacitance - 8 - pF
CS4360
20 DS517F2
DIGITAL INTERFACE SPECIFICATIONS GND = 0 V; all voltages with respect to GND.
THERMAL CHARACTERISTICS AND SPECIFICATIONS
Parameters Symbol Min Max Units
1.8 V Logic
High-level Input Voltage Serial Audio
Control Port
VIH
VIH
80%
80%
-
-
VLS
VLC
Low-level Input Voltage Serial Audio
Control Port
VIL
VIL
-13%
13%
VLS
VLC
2.5 V Logic
High-level Input Voltage Serial Audio
Control Port
VIH
VIH
70%
70%
-
-
VLS
VLC
Low-level Input Voltage Serial Audio
Control Port
VIL
VIL
-13%
13%
VLS
VLC
3.3 V Logic
High-level Input Voltage Serial Audio
Control Port
VIH
VIH
70%
70%
-
-
VLS
VLC
Low-level Input Voltage Serial Audio
Control Port
VIL
VIL
-13%
13%
VLS
VLC
5.0 V Logic
High-level Input Voltage Serial Audio
Control Port
VIH
VIH
70%
70%
-
-
VLS
VLC
Low-level Input Voltage Serial Audio
Control Port
VIL
VIL
-13%
13%
VLS
VLC
Parameters Symbol Min Typ Max Units
Package Thermal Resistance TSSOP (-KZ/KZZ & -DZZ) θJA -40-°C/Watt
Ambient Operating Temperature (Power Applied) -KZ/KZZ
-DZZ
TA-10
-40
-
-
+70
+85
°C
°C
CS4360
DS517F2 21
4. APPLICATIONS
4.1 Sample Rate Range/Operational Mode Select
4.1.1 Stand-Alone Mode
The device operates in one of four operational modes determined by the Mode pins in Stand-alone mode.
Sample rates outside the specified range for each mode are not supported.
4.1.2 Control Port Mode
The device operates in one of three operational modes determined by the FM bits (see section 6.1.4) in
Control Port mode. Sample rates outside the specified range for each mode are not supported.
4.2 System Clocking
The device requires external generation of the master (MCLK), left/right (LRCK) and serial (SCLK) clocks.
The LRCK, defined also as the input sample rate (Fs), must be synchronously derived from the MCLK
according to specified ratios. The specified ratios of MCLK to LRCK, along with several standard audio
sample rates and the required MCLK frequency, are illustrated in Tables 3-5.
Sample Rate
(kHz)
MCLK (MHz)
256x 384x 512x 768x 1024x*
32 8.1920 12.2880 16.3840 24.5760 32.7680
44.1 11.2896 16.9344 22.5792 33.8688 45.1584
48 12.2880 18.4320 24.5760 36.8640 49.1520
Table 3. Single-speed Mode Standard Frequencies
Sample Rate
(kHz)
MCLK (MHz)
128x 192x 256x 384x 512x*
64 8.1920 12.2880 16.3840 24.5760 32.7680
88.2 11.2896 16.9344 22.5792 33.8688 45.1584
96 12.2880 18.4320 24.5760 36.8640 49.1520
Table 4. Double-speed Mode Standard Frequencies
M2 M1 Input Sample Rate (FS)MODE
0 0 4 kHz - 50 kHz Single-Speed (without De-emphasis)
0 1 32 kHz - 48 kHz Single-Speed (with De-emphasis)
1 0 50 kHz - 100 kHz Double-Speed
1 1 100 kHz - 200 kHz Quad-Speed
Table 1. CS4360 Stand-Alone Operational Mode
FM1 FM0 Input Sample Rate (FS)MODE
0 0 4 kHz - 50 kHz Single-speed
0 1 50 kHz - 100 kHz Double-speed
1 0 100 kHz - 200 kHz Quad-speed
1 1 Reserved Reserved
Table 2. CS4360 Control Port Operational Mode
CS4360
22 DS517F2
*Requires MCLKDIV bit = 1 in the Mode Control 2 register (address 0Ch)
4.3 Digital Interface Format
The device will accept audio samples in 1 of 4 digital interface formats in Stand-alone mode, as illustrated
in Table 6, and 1 of 6 formats in Control Port mode, as illustrated in Table 8.
4.3.1 Stand-Alone Mode
The desired format is selected via the DIF1 and DIF0 pins. For an illustration of the required relationship
between the LRCK, SCLK and SDIN, see Figures 15-17.
Sample Rate
(kHz)
MCLK (MHz)
64x 96x 128x 192x 256x*
176.4 11.2896 16.9344 22.5792 33.8688 45.1584
192 12.2880 18.4320 24.5760 36.8640 49.1520
Table 5. Quad-speed Mode Standard Frequencies
DIF1 DIF0 DESCRIPTION FORMAT FIGURE
00
Left Justified, up to 24-bit Data 016
01
I2S, up to 24-bit Data 115
10
Right Justified, 16-bit Data 217
11
Right Justified, 24-bit Data 317
Table 6. Digital Interface Format - Stand-alone Mode
CS4360
DS517F2 23
4.3.2 Control Port Mode
The desired format is selected via the DIF2, DIF1 and DIF0 bits in the Mode Control 2 register (see section
6.1.2). For an illustration of the required relationship between LRCK, SCLK and SDIN, see Figures 15-17.
4.4 De-Emphasis Control
The device includes on-chip digital de-emphasis. Figure 18 shows the de-emphasis curve for Fs equal to
44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in
sample rate, Fs.
Notes: De-emphasis is only available in Single-speed Mode.
LRCK
SCLK
Left Channel Right Channel
SDIN +3 +2 +1+5 +4
MSB -1 -2 -3 -4 -5 +3 +2 +1+5 +4
-1 -2 -3 -4
LSB MSB LS B
Figure 15. Left Justified up to 24-Bit Data
LRCK
SCLK
Left Channel Right Channel
SDIN +3 +2 +1+5 +4
MSB -1 -2 -3 -4 -5 +3 +2 +1+5 +4
-1 -2 -3 -4
MSB
LSB LSB
Figure 16. I2S, up to 24-Bit Data
LRCK
SCLK
Left Channel
SDIN +6 +5 +4 +3 +2+1+7-1 -2 -3 -4 -5LSB
Right Channel
MSB LSB +6 +5 +4 +3 +2+1+7-1 -2 -3 -4 -5
MSB LSB
Figure 17. Right Justified Data
Gain
dB
-10dB
0dB
Frequency
T2 = 15 µs
T1=50 µs
F1 F2
3.183 kHz 10.61 kHz
Figure 18. De-emphasis Curve
CS4360
24 DS517F2
4.4.1 Stand-Alone Mode
The operational mode pins, M2 and M1, selects the 44.1 kHz de-emphasis filter. Please see section 4.1
for the desired de-emphasis control.
4.4.2 Control Port Mode
The Mode Control bits selects either the 32, 44.1, or 48 kHz de-emphasis filter. Please see section 6.1.3
for the desired de-emphasis control.
4.5 Recommended Power-up Sequence
4.5.1 Stand-Alone Mode
1) Hold RST low until the power supply and configuration pins are stable, and the master and left/right
clocks are locked to the appropriate frequencies, as discussed in section 4.2. In this state, the control
port is reset to its default settings and VQ will remain low.
2) Bring RST high. The device will remain in a low power state with VQ low and will initiate the Stand-
alone power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK
cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).
4.5.2 Control Port Mode
1) Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the
appropriate frequencies, as discussed in section 4.2. In this state, the control port is reset to its default
settings and VQ will remain low.
2) Bring RST high. The device will remain in a low power state with VQ low.
3) Load the desired register settings while keeping the PDN bit set to 1.
4) Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µS when
the POPG bit is set to 0. If the POPG bit is set to 1, see Section 4.6 for a complete description of pow-
er-up timing.
4.6 Popguard® Transient Control
The CS4360 uses a novel technique to minimize the effects of output transients during power-up and pow-
er-down. This technology, when used with external DC-blocking capacitors in series with the audio out-
puts, minimizes the audio transients commonly produced by single-ended single-supply converters. It is
activated inside the DAC when the RST pin or PDN bit is enabled/disabled and requires no other external
control, aside from choosing the appropriate DC-blocking capacitors.
4.6.1 Power-up
When the device is initially powered-up, the audio outputs, AOUTAx and AOUTBx, are clamped to GND.
Following a delay of approximately 1000 LRCK cycles, each output begins to ramp toward the quiescent
voltage. Approximately 10,000 LRCK cycles later, the outputs reach VQ and audio output begins. This
gradual voltage ramping allows time for the external DC-blocking capacitors to charge to the quiescent
voltage, minimizing the power-up transient.
4.6.2 Power-down
To prevent transients at power-down, the device must first enter its power-down state. When this occurs,
audio output ceases and the internal output buffers are disconnected from AOUTAx and AOUTBx. In their
place, a soft-start current sink is substituted which allows the DC-blocking capacitors to slowly discharge.
Once this charge is dissipated, the power to the device may be turned off and the system is ready for the
next power-on.
CS4360
DS517F2 25
4.6.3 Discharge Time
To prevent an audio transient at the next power-on, the DC-blocking capacitors must fully discharge be-
fore turning on the power or exiting the power-down state. If full discharge does not occur, a transient will
occur when the audio outputs are initially clamped to GND. The time that the device must remain in the
power-down state is related to the value of the DC-blocking capacitance and the output load. For example,
with a 3.3 µF capacitor, the minimum power-down time will be approximately 0.4 seconds.
4.7 Mute Control
The Mute Control pins go high during power-up initialization, reset, muting (see section 6.1.1 and 6.4.1),
or if the MCLK to LRCK ratio is incorrect. These pins are intended to be used as control for external mute
circuits to prevent the clicks and pops that can occur in any single-ended single supply system.
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute
minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system
designer to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute
circuit. Please see the CDB4360 data sheet for a suggested mute circuit.
4.8 Grounding and Power Supply Arrangements
As with any high-resolution converter, the CS4360 requires careful attention to power supply and ground-
ing arrangements if its potential performance is to be realized. Figure 1 shows the recommended power
arrangements, with VA, VD, VLS and VLC connected to clean supplies. If the ground planes are split be-
tween digital ground and analog ground, the GND pins of the CS4360 should be connected to the analog
ground plane.
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted
coupling into the modulators. The CDB4360 evaluation board demonstrates the optimum layout and pow-
er supply arrangements.
4.8.1 Capacitor Placement
Decoupling capacitors should be placed as close to the DAC as possible, with the low-value ceramic ca-
pacitor being the closest. To further minimize impedance, these capacitors should be located on the same
layer as the DAC. If desired, all supply pins may be connected to the same supply, but a decoupling ca-
pacitor should still be placed on each supply pin and referenced to analog ground.
4.8.2 Power Supply Sections
Each power supply pin provides power to specific sections of the CS4360. The logic voltage level for each
section must adhere to the corresponding power supply voltage setting. For example: If VLC = 1.8 V; VLS
= 3.3 V; VD = VA = 5 V; then the logic level for all mode configuration inputs must equal 1.8 V.
4.9 Control Port Interface
The control port is used to load all the internal register settings (see section 6). The operation of the control
port may be completely asynchronous with the audio sample rate. However, to avoid potential interfer-
ence problems, the control port pins should remain static if no operation is required.
The control port operates in one of two modes: I²C or SPI.
Notes: MCLK must be applied during all I²C communication.
Pin #s Description Power Supply Reference
2, 3, 4, 5, 6, 7 Serial Audio Interface Inputs VLS
10, 11, 12, 13, 15 Mode Configuration Inputs VLC
Table 7. Power Supply Control Sections
CS4360
26 DS517F2
4.9.1 Memory Address Pointer (MAP)
The MAP byte precedes the control port register byte during a write operation and is not available again
until after a start condition is initiated. During a read operation the byte transmitted after the ACK will con-
tain the data of the register pointed to by the MAP (see sections 4.9.1a and 4.9.3 for write/read details).
4.9.1a INCR (Auto Map Increment)
The device has MAP auto increment capability enabled by the INCR bit (the MSB) of the MAP. If INCR is
set to 0, MAP will stay constant for successive I²C writes or reads and SPI writes. If INCR is set to 1, MAP
will auto increment after each byte is written, allowing block reads or writes of successive registers.
Default = ‘0’
0 - Disabled
1 - Enabled
4.9.1b MAP0-3 (Memory Address Pointer)
Default = ‘0000
4.9.2 C Mode
In the I²C mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial
control port clock, SCL. There is no CS pin. Pin AD0 enables the user to alter the chip address
(001000[AD0][R/W]) and should be tied to VLC or GND as required, before powering up the device. If the
device ever detects a high-to-low transition on the AD0/CS pin after power-up, SPI mode will be selected.
4.9.2a I²C Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-
tions in section 3.
1) Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001000. The seventh bit must match the setting of the AD0 pin, and the eighth must be 0. The eighth
bit of the address byte is the R/W bit.
2) Wait for an acknowledge (ACK) from the device, then write to the memory address pointer, MAP. This
byte points to the register to be written.
3) Wait for an acknowledge (ACK) from the device, then write the desired data to the register pointed to
by the MAP.
4) If the INCR bit (see section 4.9.1a) is set to 1, repeat the previous step until all the desired registers
are written, then initiate a STOP condition to the bus.
5) If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to repeat
the procedure detailed from step 1. If no further writes to other registers are desired, initiate a STOP
condition to the bus.
76543210
INCR Reserved Reserved Reserved MAP3 MAP2 MAP1 MAP0
00000000
CS4360
DS517F2 27
4.9.2b I²C Read
To read from the device, follow the procedure below while adhering to the control port Switching Specifi-
cations. During this operation it is first necessary to write to the device, specifying the appropriate register
through the MAP.
1) After writing to the MAP (see section 4.9.1), initiate a repeated START condition to the I²C bus fol-
lowed by the address byte. The upper 6 bits must be 001000. The seventh bit must match the setting
of the AD0 pin, and the eighth must be 1. The eighth bit of the address byte is the R/W bit.
2) Signal the end of the address byte by not issuing an acknowledge. The device will then transmit the
contents of the register pointed to by the MAP. The MAP will contain the address of the last register
written to the MAP.
3) If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Con-
tinue providing a clock but do not issue an ACK on the bytes clocked out of the device. After all the
desired registers are read, initiate a STOP condition to the bus.
4) If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to repeat
the procedure detailed from step 1. If no further reads from other registers are desired, initiate a STOP
condition to the bus.
4.9.3 SPI Mode
In SPI mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK
(see Figure 21 for the clock to data relationship). There is no AD0 pin. Pin CS is the chip select signal and
is used to control SPI writes to the control port. When the device detects a high-to-low transition on the
AD0/CS pin after power-up, SPI mode will be selected. All signals are inputs and data is clocked in on the
rising edge of CCLK.
SDA
SCL
001000 AD0 W
Start
ACK MAP
1-8 ACK DATA
1-8 ACK
Stop
Figure 19. C Write
SDA
SCL
001000 AD0 W
Start
ACK MAP
1-8 ACK 001000 AD0 R
Repeated START
or
Aborted W RITE
ACK Data 1-8
(pointed to by MAP)
Data 1-8
(pointed to by MAP)
ACK
Stop
Figure 20. I²C Read
CS4360
28 DS517F2
4.9.3a SPI Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-
tions in section 3.
1) Bring CS low.
2) The address byte on the CDIN pin must then be 00100000.
3) Write to the memory address pointer, MAP. This byte points to the register to be written.
4) Write the desired data to the register pointed to by the MAP.
5) If the INCR bit (see section 4.9.1a) is set to 1, repeat the previous step until all the desired registers
are written, then bring CS high.
6) If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring
CS high, and repeat the procedure detailed from step 1. If no further writes to other registers are de-
sired, bring CS high.
MAP
MSB
LSB
DATA
byte 1 byte n
R/W
MAP = Memory Address Pointer
ADDRESS
CHIP
CDIN
CCLK
CS
0010000
Figure 21. SPI Write
CS4360
DS517F2 29
5. REGISTER QUICK REFERENCE
Addr Function 7 6 5 4 3 2 1 0
1h Mode Control 1 AMUTE DIF2 DIF1 DIF0 DEM1 DEM0 FM1 FM0
default 10000000
2h Invert Signal Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
default 00000000
3h Mixing Control P1 Reserved Reserved Reserved Reserved P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0
default 00001001
4h Mixing Control P2 Reserved Reserved Reserved Reserved P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0
default 00001001
5h Mixing Control P3 Reserved Reserved Reserved Reserved P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0
default 00001001
6h Volume Control A1 A1_MUTE A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A1_VOL0
default 00000000
7h Volume Control B1 B1_MUTE B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B1_VOL0
default 00000000
8h Volume Control A2 A2_MUTE A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL0
default 00000000
9h Volume Control B2 B2_MUTE B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0
default 00000000
0Ah Volume Control A3 A3_MUTE A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_VOL2 A3_VOL1 A3_VOL0
default 00000000
0Bh Volume Control B3 B3_MUTE B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0
default 00000000
0Ch Mode Control 2 SZC1 SZC0 CPEN PDN POPG FREEZE MCLKDIV SNGLVOL
default 10011000
0Dh Revision Indicator Reserved Reserved Reserved Reserved REV3 REV2 REV1 REV0
default 0000XXXX
CS4360
30 DS517F2
6. REGISTER DESCRIPTIONS
Note: All registers are read/write in I²C mode and write only in SPI, unless otherwise stated.
6.1 MODE CONTROL 1 (ADDRESS 01H)
6.1.1 AUTO-MUTE (AMUTE) BIT 7
Defaul t = 1
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute following the reception of 8192 consecutive audio
samples of static 0 or 1. A single sample of non-static data will release the mute. Detection and muting
is done independently for each channel. The quiescent voltage on the output will be retained and the
Mute Control pin will become active during the mute period. The muting function is affected, similar
to volume control changes, by the Soft and Zero Cross bits in the Power and Muting Control register.
6.1.2 DIGITAL INTERFACE FORMAT (DIF) BIT 4-6
Default = 000 - Format 0 (Left Justified, up to 24-bit data)
Function:
The required relationship between the Left/Right clock, serial clock and serial data is defined by the
Digital Interface Format and the options are detailed in Figures 15-17.
76543210
AMUTE DIF2 DIF1 DIF0 DEM1 DEM0 FM1 FM0
10000000
DIF2 DIF1 DIF0 DESCRIPTION Format FIGURE
000
Left Justified, up to 24-bit data 015
001
I2S, up to 24-bit data 116
010
Right Justified, 16-bit data 217
011
Right Justified, 24-bit data 317
100
Right Justified, 20-bit data 417
101
Right Justified, 18-bit data 517
110
Reserved --
111
Reserved --
Table 8. Digital Interface Formats - Control Port Mode
CS4360
DS517F2 31
6.1.3 DE-EMPHASIS CONTROL (DEM) BIT 2-3
Defaul t = 00
00 - Disabled
01 - 44.1 kHz
10 - 48 kHz
11 - 32 kHz
Function:
Selects the appropriate digital filter to maintain the standard 15 µs/50 µs digital de-emphasis filter re-
sponse at 32-, 44.1- or 48-kHz sample rates. (See Figure 18.)
Note: De-emphasis is only available in Single-speed Mode.
6.1.4 FUNCTIONAL MODE (FM) BIT 0-1
Defaul t = 00
00 - Single-speed Mode (4- to 50-kHz sample rates)
01 - Double-speed Mode (50- to 100-kHz sample rates)
10 - Quad-speed Mode (100- to 200-kHz sample rates)
11 - Reserved
Function:
Selects the required range of input sample rates.
6.2 INVERT SIGNAL (ADDRESS 02H)
6.2.1 INVERT SIGNAL POLARITY (INV_XX) BIT 0-5
Defaul t = 0
0 - Disabled
1 - Enabled
Function:
When enabled, these bits invert the signal polarity for each of their respective channels.
6.3 MIXING CONTROL PAIR 1 (CHANNELS A1 & B1) (ADDRESS 03H)
MIXING CONTROL PAIR 2 (CHANNELS A2 & B2) (ADDRESS 04H)
MIXING CONTROL PAIR 3 (CHANNELS A3 & B3) (ADDRESS 05H)
76543210
Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
00000000
76543210
Reserved Reserved Reserved Reserved PxATAPI3 PxATAPI2 PxATAPI1 PxATAPI0
00001001
CS4360
32 DS517F2
6.3.1 ATAPI CHANNEL MIXING AND MUTING (ATAPI) BIT 0-3
Default = 1001 - AOUTAx = L, AOUTBx = R (Stereo)
Function:
The CS4360 implements the channel mixing functions of the ATAPI CD-ROM specification. Refer to
Table 9 and Figure 22 for additional information.
Note: All mixing functions occur prior to the digital volume control. Mixing only occurs in channel pairs.
ATAPI3 ATAPI2 ATAPI1 ATAPI0 AOUTAx AOUTBx
0000 MUTE MUTE
0001 MUTE R
0010 MUTE L
0011 MUTE [(L+R)/2]
0100 R MUTE
0101 R R
0110 R L
0111 R [(L+R)/2]
1000 L MUTE
1001 L R
1010 L L
1011 L [(L+R)/2]
1100[(L+R)/2] MUTE
1101[(L+R)/2] R
1110[(L+R)/2] L
1111[(L+R)/2] [(L+R)/2]
Table 9. ATAPI Decode
Σ
A Channel
Volume
Control Aout
A
Aout
B
Left Channel
Audio Data
Right Channel
Audio Data
B Channel
Volume
Control
& Mute
& Mute
Figure 22. ATAPI Block Diagram
CS4360
DS517F2 33
6.4 VOLUME CONTROL (ADDRESSES 06H - 0BH)
6.4.1 MUTE (MUTE) BIT 7
Defaul t = 0
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output
will be retained. The muting function is affected, similar to attenuation changes, by the Soft and Zero
Cross bits. The MUTEC pin will become active during the mute period if the Mute function is enabled
for both channels in the pair.
6.4.2 VOLUME CONTROL (XX_VOL) BIT 0-6
Default = 0
Function:
The Digital Volume Control registers allow independent control of the signal levels in 1-dB increments
from 0 to -119 dB. Volume settings are decoded as shown in Table 10. The volume changes are im-
plemented as dictated by the Soft Ramp and Zero Cross bits. All volume settings less than -119 dB
are equivalent to enabling the MUTE bit.
6.5 MODE CONTROL 2 (ADDRESS 0DH)
6.5.1 SOFT RAMP AND ZERO CROSS CONTROL (SZC) BIT 6-7
Defaul t = 10
00 - Immediate Change
01 - Zero Cross
10 - Soft Ramp
11 - Soft Ramp and Zero Cross
Function:
Immediate Change
When Immediate Change is selected all level changes will be implemented immediately in one step.
76543210
xx_MUTE xx_VOL6 xx_VOL5 xx_VOL4 xx_VOL3 xx_VOL2 xx_VOL1 xx_VOL0
00000000
Binary Code Decimal Value Volume Setting
0001010 10 -10 dB
0010100 20 -20 dB
0101000 40 -40 dB
0111100 60 -60 dB
1011010 90 -90 dB
Table 10. Example Digital Volume Settings
76543210
SZC1 SZC0 CPEN PDN POPG FREEZE MCLKDIV SNGLVOL
10011000
CS4360
34 DS517F2
Zero Cross
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will
occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur
after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample
rate) if the signal does not encounter a zero crossing. The zero cross function is independently mon-
itored and implemented for each channel.
Soft Ramp
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally
ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock
periods.
Soft Ramp and Zero Cross
Soft Ramp and Zero Cross dictates that signal level changes, either by attenuation changes or mut-
ing, will occur in 1/8 dB steps and will be implemented on successive signal zero crossings. The
1/8 dB level changes will occur after timeout periods between 512 and 1024 sample periods (10.7 ms
to 21.3 ms at 48 kHz sample rate) if the signal does not encounter zero crossings. The zero cross
function is independently monitored and implemented for each channel.
6.5.2 CONTROL PORT ENABLE (CPEN) BIT 5
Defaul t = 0
0 - Disabled
1 - Enabled
Function:
The Control Port will become active and reset to the default settings when this function is enabled.
6.5.3 POWER DOWN (PDN) BIT 4
Defaul t = 1
0 - Disabled
1 - Enabled
Function:
The entire device will enter a low-power state when this function is enabled, but the contents of the
control registers will be retained in this mode. The power-down bit defaults to ‘enabled’ on power-up
and must be disabled before normal operation in Control Port mode can occur.
6.5.4 POPGUARD® TRANSIENT CONTROL (POPG) BIT 3
Defaul t = 1
0 - Disabled
1 - Enabled
Function:
The PopGuard® Transient Control allows the quiescent voltage to slowly ramp to and from 0 volts to
the quiescent voltage during power-on or power-off when this function is enabled. Please see section
4.6 for implementation details.
CS4360
DS517F2 35
6.5.5 FREEZE CONTROLS (FREEZE) BIT 2
Defaul t = 0
0 - Disabled
1 - Enabled
Function:
This function allows modifications to be made to the registers without the changes taking effect until
the FREEZE is disabled. To have multiple changes in the control port registers take effect simulta-
neously, enable the FREEZE bit, make all register changes, then disable the FREEZE bit.
6.5.6 MASTER CLOCK DIVIDE ENABLE (MCLKDIV) BIT 1
Defaul t = 0
0 - Disabled
1 - Enabled
Function:
The MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2 prior to all
other internal circuitry.
6.5.7 SINGLE VOLUME CONTROL (SNGLVOL) BIT 0
Defaul t = 0
0 - Disabled
1 - Enabled
Function:
The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. When enabled, the volume on all channels is determined by the
A1 Channel Volume Control Byte, and the other Volume Control Bytes are ignored.
6.6 REVISION REGISTER (READ ONLY) (ADDRESS 0DH)
6.6.1 REVISION INDICATOR (REV) [READ ONLY] BIT 0-3
Defaul t = none
0001 - Revision A
0010 - Revision B
0011 - Revision C
etc.
Function:
This read-only register indicates the revision level of the device.
76543210
Reserved Reserved Reserved Reserved REV3 REV2 REV1 REV0
0000XXXX
CS4360
36 DS517F2
7. PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
The ratio of the RMS value of the signal to the RMS sum of all other spectral components over the spec-
ified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full-scale RMS value of the signal to the RMS sum of all other spectral components over
the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth
made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement
to full scale. This technique ensures that the distortion components are below the noise level and do not
affect the measurement. This measurement technique has been accepted by the Audio Engineering So-
ciety, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in
decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
8. REFERENCES
1) CDB4360 Evaluation Board Datasheet
2) “The I²C Bus Specification: Version 2.1” Philips Semiconductors, January 2000.
http://www.semiconductors.philips.com
CS4360
DS517F2 37
9. PACKAGE DIMENSIONS
Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per
side.
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not
reduce dimension “b” by more than 0.07 mm at least material condition.
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.
INCHES MILLIMETERS NOTE
DIM MIN NOM MAX MIN NOM MAX
A-- --0.47-- --1.20
A1 0.002 0.004 0.006 0.05 0.10 0.15
A2 0.03150 0.035 0.04 0.80 0.90 1.00
b 0.00748 0.0096 0.012 0.19 0.245 0.30 2,3
D 0.378 BSC 0.382 BSC 0.386 BSC 9.60 BSC 9.70 BSC 9.80 BSC 1
E 0.248 0.2519 0.256 6.30 6.40 6.50
E1 0.169 0.1732 0.177 4.30 4.40 4.50 1
e -- 0.026 BSC -- -- 0.65 BSC --
L 0.020 0.024 0.029 0.50 0.60 0.75
8°
JEDEC #: MO-153
Controlling Dimension is Millimeters.
28L TSSOP (4.4 mm BODY) PACKAGE DRAWING
E
N
123
eb2A1
A2 A
D
SEATING
PLANE
E11
L
SIDE VIEW
END VIEW
TOP VIEW