MC33201 MC33202 MC33204 Rail-to-Rail Operational Amplifiers The MC33201/2/4 family of operational amplifiers provide rail-to-rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages ( 0.9 V) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications. http://onsemi.com * * * * * * * * 8 NC 2 7 VCC 3 6 Output VEE 4 5 NC Inputs 8 1 P SUFFIX CASE 626 (Single, Top View) (SO-8) D SUFFIX CASE 751 8 * Low Voltage, Single Supply Operation 1 (+1.8 V and Ground to +12 V and Ground) Input Voltage Range Includes both Supply Rails Output Voltage Swings within 50 mV of both Rails No Phase Reversal on the Output for Over-driven Input Signals High Output Current (ISC = 80 mA, Typ) Low Supply Current (ID = 0.9 mA, Typ) 600 Output Drive Capability Extended Operating Temperature Ranges (-40 to +105C and -55 to +125C) Typical Gain Bandwidth Product = 2.2 MHz NC 1 Output 1 1 8 2 1 1 Inputs 1 3 (Micro-8) DM SUFFIX CASE 846A 8 VCC 7 Output 2 6 Inputs 2 2 VEE 4 5 (Dual, Top View) 14 1 14 1 (SO-14) D SUFFIX CASE 751A P SUFFIX CASE 646 14 1 (TSSOP-14) DTB SUFFIX CASE 948G Output 1 1 2 Inputs 1 14 Output 4 1 4 3 13 12 VCC 4 11 5 10 Inputs 2 6 2 3 9 8 Output 2 7 Inputs 4 VEE Inputs 3 Output 3 (Quad, Top View) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. Semiconductor Components Industries, LLC, 1999 November, 1999 - Rev. 3 1 Publication Order Number: MC33201/D MC33201 MC33202 MC33204 Figure 1. Circuit Schematic (Each Amplifier) VCC VCC VEE VCC Vin - Vout VCC Vin + VEE This device contains 70 active transistors (each amplifier). MAXIMUM RATINGS Rating Symbol Value Unit VS +13 V Input Differential Voltage Range VIDR (Note 1) V Common Mode Input Voltage Range (Note 2) VCM VCC + 0.5 V to VEE - 0.5 V V Output Short Circuit Duration ts (Note 3) sec Maximum Junction Temperature TJ +150 C Storage Temperature Tstg - 65 to +150 C Maximum Power Dissipation PD (Note 3) mW Supply Voltage (VCC to VEE) NOTES: 1. The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins. 2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV. 3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2) http://onsemi.com 2 MC33201 MC33202 MC33204 DC ELECTRICAL CHARACTERISTICS (TA = 25C) Characteristic VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Input Offset Voltage VIO (max) MC33201 MC33202 MC33204 8.0 10 12 8.0 10 12 6.0 8.0 10 Output Voltage Swing VOH (RL = 10 k) VOL (RL = 10 k) 1.9 0.10 3.15 0.15 4.85 0.15 Power Supply Current per Amplifier (ID) 1.125 1.125 1.125 Unit mV Vmin Vmax mA Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = Gnd. DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25C, unless otherwise noted.) Characteristic Figure Symbol Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V) MC33201: TA = + 25C MC33201: TA = - 40 to +105C MC33201: TA = - 55 to +125C MC33202: TA = + 25C MC33202: TA = - 40 to +105C MC33202: TA = - 55 to +125C MC33204: TA = + 25C MC33204: TA = - 40 to +105C MC33204: TA = - 55 to +125C 3 VIO Input Offset Voltage Temperature Coefficient (RS = 50 ) TA = - 40 to +105C TA = - 55 to +125C 4 Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25C TA = - 40 to +105C TA = - 55 to +125C 5, 6 Min Typ Max - - - - - - - - - - - - - - - - - - 6.0 9.0 13 8.0 11 14 10 13 17 - - 2.0 2.0 - - - - - 80 100 - 200 250 500 - - - 5.0 10 - 50 100 200 VEE - VCC 50 25 300 250 - - VOH VOL VOH VOL 4.85 - 4.75 - 4.95 0.05 4.85 0.15 - 0.15 - 0.25 60 90 - 500 25 - 50 80 - - - 0.9 0.9 1.125 1.125 V/C IIB nA IIO - Common Mode Input Voltage Range - VICR Large Signal Voltage Gain (VCC = + 5.0 V, VEE = - 5.0 V) RL = 10 k RL = 600 7 AVOL Output Voltage Swing (VID = 0.2 V) RL = 10 k RL = 10 k RL = 600 RL = 600 mV VIO/T Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V) TA = + 25C TA = - 40 to +105C TA = - 55 to +125C nA V Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR Power Supply Rejection Ratio VCC/VEE = 5.0 V/Gnd to 3.0 V/Gnd 12 PSRR Output Short Circuit Current (Source and Sink) 13, 14 ISC Power Supply Current per Amplifier (VO = 0 V) TA = - 40 to +105C TA = - 55 to +125C 15 ID 3 V kV/V 8, 9, 10 http://onsemi.com Unit dB V/V mA mA MC33201 MC33202 MC33204 AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25C, unless otherwise noted.) Characteristic Slew Rate (VS = 2.5 V, VO = - 2.0 V to + 2.0 V, RL = 2.0 k, AV = +1.0) Figure Symbol 16, 26 SR Min Typ Max Unit V/s 0.5 1.0 - Gain Bandwidth Product (f = 100 kHz) 17 GBW - 2.2 - MHz Gain Margin (RL = 600 , CL = 0 pF) 20, 21, 22 AM - 12 - dB Phase Margin (RL = 600 , CL = 0 pF) 20, 21, 22 OM - 65 - Deg 23 CS - 90 - dB BWP - 28 - kHz - - 0.002 0.008 - - - 100 - Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) Power Bandwidth (VO = 4.0 Vpp, RL = 600 , THD 1 %) Total Harmonic Distortion (RL = 600 , VO = 1.0 Vpp, AV = 1.0) f = 1.0 kHz f = 10 kHz 24 THD % ZO Open Loop Output Impedance (VO = 0 V, f = 2.0 MHz, AV = 10) Differential Input Resistance (VCM = 0 V) Rin - 200 - k Differential Input Capacitance (VCM = 0 V) Cin - 8.0 - pF - - 25 20 - - - - 0.8 0.2 - - Equivalent Input Noise Voltage (RS = 100 ) f = 10 Hz f = 1.0 kHz 25 Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz 25 http://onsemi.com 4 en in nV/ Hz pA/ Hz Figure 2. Maximum Power Dissipation versus Temperature Figure 3. Input Offset Voltage Distribution 2500 40 PERCENTAGE OF AMPLIFIERS (%) PD(max) , MAXIMUM POWER DISSIPATION (mW) MC33201 MC33202 MC33204 8 and 14 Pin DIP Pkg 2000 TSSOP-14 Pkg 1500 SO-14 Pkg 1000 SO-8 Pkg 500 0 - 55 - 40 - 25 0 25 50 85 TA, AMBIENT TEMPERATURE (C) 360 amplifiers tested from 3 (MC33204) wafer lots VCC = + 5.0 V VEE = Gnd TA = 25C DIP Package 35 30 25 20 15 10 5.0 0 -10 - 8.0 - 6.0 - 4.0 - 2.0 0 2.0 4.0 6.0 VIO, INPUT OFFSET VOLTAGE (mV) 125 Figure 4. Input Offset Voltage Temperature Coefficient Distribution 40 30 I IB , INPUT BIAS CURRENT (nA) PERCENTAGE OF AMPLIFIERS (%) 200 360 amplifiers tested from 3 (MC33204) wafer lots VCC = + 5.0 V VEE = Gnd TA = 25C DIP Package 120 10 -10 0 10 20 30 40 VCC = + 5.0 V VEE = Gnd 160 20 0 - 50 - 40 - 30 - 20 VCM = 0 V to 0.5 V 80 VCM > 1.0 V 40 0 - 55 - 40 - 25 50 TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (V/C) A VOL , OPEN LOOP VOLTAGE GAIN (kV/V) 100 50 0 - 50 -100 VCC = 12 V VEE = Gnd TA = 25C - 200 0 2.0 4.0 6.0 8.0 10 VCM, INPUT COMMON MODE VOLTAGE (V) 25 70 85 125 Figure 7. Open Loop Voltage Gain versus Temperature 150 -150 0 TA, AMBIENT TEMPERATURE (C) Figure 6. Input Bias Current versus Common Mode Voltage I IB , INPUT BIAS CURRENT (nA) 10 Figure 5. Input Bias Current versus Temperature 50 - 250 8.0 300 260 220 180 140 VCC = + 5.0 V VEE = Gnd RL = 600 VO = 0.5 V to 4.5 V 100 - 55 - 40 - 25 12 http://onsemi.com 5 0 25 70 85 TA, AMBIENT TEMPERATURE (C) 105 125 MC33201 MC33202 MC33204 Figure 8. Output Voltage Swing versus Supply Voltage RL = 600 TA = 25C 10 8.0 6.0 4.0 2.0 0 1.0 VCC VSAT, OUTPUT SATURATION VOLTAGE (V) VO, OUTPUT VOLTAGE (Vpp ) 12 Figure 9. Output Saturation Voltage versus Load Current 2.0 3.0 4.0 5.0 VCC,VEE SUPPLY VOLTAGE (V) 6.0 TA = - 55C TA = 125C VCC - 0.4 V TA = - 55C CMR, COMMON MODE REJECTION (dB) VO, OUTPUT VOLTAGE (Vpp ) 6.0 VCC = + 6.0 V VEE = - 6.0 V RL = 600 AV = +1.0 TA = 25C 5.0 I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) PSR, POWER SUPPLY REJECTION (dB) 100 PSR+ 80 60 PSR- 40 VCC = + 6.0 V VEE = - 6.0 V TA = - 55 to +125C 0 1.0 k 10 k f, FREQUENCY (Hz) VEE 20 15 80 60 40 100 k 1.0 M VCC = + 6.0 V VEE = - 6.0 V TA = - 55 to +125C 20 1.0 M 120 100 10 IL, LOAD CURRENT (mA) 100 0 10 k 100 k f, FREQUENCY (Hz) Figure 12. Power Supply Rejection versus Frequency 10 VEE + 0.2 V Figure 11. Common Mode Rejection versus Frequency 9.0 20 TA = 25C TA = 125C 0 12 0 1.0 k VEE + 0.4 V VCC = + 5.0 V VEE = - 5.0 V Figure 10. Output Voltage versus Frequency 3.0 VCC - 0.2 V TA = 25C 10 100 1.0 k 10 k f, FREQUENCY (Hz) 100 k Figure 13. Output Short Circuit Current versus Output Voltage 100 Source 80 60 Sink 40 VCC = + 6.0 V VEE = - 6.0 V TA = 25C 20 0 0 1.0 2.0 3.0 4.0 Vout, OUTPUT VOLTAGE (V) http://onsemi.com 6 1.0 M 5.0 6.0 MC33201 MC33202 MC33204 Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load I CC , SUPPLY CURRENT PER AMPLIFIER (mA) 150 125 VCC = + 5.0 V VEE = Gnd 100 Source 75 Sink 50 25 0 - 55 - 40 - 25 0 25 70 85 TA, AMBIENT TEMPERATURE (C) 105 125 2.0 1.6 TA = 125C 1.2 TA = 25C 0.8 TA = - 55C 0.4 0 0 1.0 Figure 16. Slew Rate versus Temperature GBW, GAIN BANDWIDTH PRODUCT (MHz) +Slew Rate 1.0 -Slew Rate 0.5 25 70 85 105 0 - 55 - 40 - 25 0 25 70 85 Figure 18. Voltage Gain and Phase versus Frequency Figure 19. Voltage Gain and Phase versus Frequency 40 VS = 6.0 V TA = 25C RL = 600 80 30 120 1A 2A 10 A 1.0 TA, AMBIENT TEMPERATURE (C) 50 - 30 10 k 2.0 TA, AMBIENT TEMPERATURE (C) 70 -10 VCC = + 2.5 V VEE = - 2.5 V f = 100 kHz 3.0 125 2B 1A - Phase, CL = 0 pF 1B - Gain, CL = 0 pF 2A - Phase, CL = 300 pF 2B - Gain, CL = 300 pF 100 k 1B 1.0 M 160 200 O , EXCESS PHASE (DEGREES) , OPEN LOOP VOLTAGE GAIN (dB) VOL 0 4.0 A VOL, OPEN LOOP VOLTAGE GAIN (dB) SR, SLEW RATE (V/ s) VCC = + 2.5 V VEE = - 2.5 V VO = 2.0 V 0 - 55 - 40 - 25 6.0 Figure 17. Gain Bandwidth Product versus Temperature 2.0 1.5 2.0 3.0 4.0 5.0 VCC, VEE, SUPPLY VOLTAGE (V) 70 50 30 80 1A 120 2A 10 -10 1A - Phase, VS = 6.0 V 1B - Gain, VS = 6.0 V 2A - Phase, VS = 1.0 V 2B - Gain, VS = 1.0 V f, FREQUENCY (Hz) 100 k f, FREQUENCY (Hz) http://onsemi.com 7 125 40 CL = 0 pF TA = 25C RL = 600 - 30 10 k 240 10 M 105 1B 160 2B 200 1.0 M 240 10 M O , EXCESS PHASE (DEGREES) I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) Figure 14. Output Short Circuit Current versus Temperature MC33201 MC33202 MC33204 Figure 20. Gain and Phase Margin versus Temperature 75 50 50 40 30 VCC = + 6.0 V VEE = - 6.0 V RL = 600 CL = 100 pF 40 30 20 20 10 10 Gain Margin 0 - 55 - 40 - 25 0 25 70 85 105 O M , PHASE MARGIN (DEGREES) 60 A , GAIN MARGIN (dB) M O M , PHASE MARGIN (DEGREES) 60 60 60 VCC = + 6.0 V VEE = - 6.0 V TA = 25C 45 30 15 0 0 125 10 100 Phase Margin 50 Gain Margin 14 12 10 40 8.0 30 6.0 20 4.0 10 2.0 0 10 AV = 100 120 90 AV = 10 60 30 VCC = + 6.0 V VEE = - 6.0 V VO = 8.0 Vpp TA = 25C 0 100 1.0 k CL, CAPACITIVE LOAD (pF) VEE = - 5.0 V RL = 600 AV = 1000 0.1 0.01 0.001 10 AV = 100 AV = 10 AV = 1.0 100 1.0 k 10 k 100 k en , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz) THD, TOTAL HARMONIC DISTORTION (%) 1.0 VCC = + 5.0 V TA = 25C VO = 2.0 Vpp 10 k f, FREQUENCY (Hz) Figure 24. Total Harmonic Distortion versus Frequency 10 0 100 k 150 0 1.0 k 100 10 k Figure 23. Channel Separation versus Frequency 16 60 1.0 k RT, DIFFERENTIAL SOURCE RESISTANCE () A , GAIN MARGIN (dB) M CS, CHANNEL SEPARATION (dB) O M , PHASE MARGIN (DEGREES) 70 15 Gain Margin Figure 22. Gain and Phase Margin versus Capacitive Load VCC = + 6.0 V VEE = - 6.0 V RL = 600 AV = 100 TA = 25C 45 30 TA, AMBIENT TEMPERATURE (C) 80 75 Phase Margin A , GAIN MARGIN (dB) M 70 Phase Margin Figure 25. Equivalent Input Noise Voltage and Current versus Frequency 50 5.0 VCC = + 6.0 V VEE = - 6.0 V TA = 25C 40 30 3.0 Noise Voltage 20 10 2.0 1.0 Noise Current 0 10 f, FREQUENCY (Hz) 100 1.0 k f, FREQUENCY (Hz) http://onsemi.com 8 4.0 10 k 0 100 k i n , INPUT REFERRED NOISE CURRENT (pA/ Hz) 70 Figure 21. Gain and Phase Margin versus Differential Source Resistance MC33201 MC33202 MC33204 DETAILED OPERATING DESCRIPTION General Information Circuit Information The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail-to-rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground. Since the common mode input voltage range extends from VCC to VEE, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings. Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than VEE, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum. In addition to its rail-to-rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 loads. Because of this high output current capability, care should be taken not to exceed the 150C maximum junction temperature. Figure 27. Small Signal Transient Response VCC = + 6.0 V VEE = - 6.0 V RL = 600 CL = 100 pF TA = 25C V , OUTPUT VOLTAGE (50 mV/DIV) O VCC = + 6.0 V VEE = - 6.0 V RL = 600 CL = 100 pF TA = 25C t, TIME (10 s/DIV) t, TIME (5.0 s/DIV) Figure 28. Large Signal Transient Response V , OUTPUT VOLTAGE (2.0 V/DIV) O V , OUTPUT VOLTAGE (2.0 mV/DIV) O Figure 26. Noninverting Amplifier Slew Rate VCC = + 6.0 V VEE = - 6.0 V RL = 600 CL = 100 pF AV = 1.0 TA = 25C t, TIME (10 s/DIV) http://onsemi.com 9 MC33201 MC33202 MC33204 ORDERING INFORMATION Operational Amplifier Function Device Operating Temperature Range MC33201D MC33201DR2 TA= -40 to +105C MC33201P Package Shipping SO-8 98 Units / Rail SO-8 2500 Units / Tape & Reel Plastic DIP 50 Units / Rail SO-8 98 Units / Rail SO-8 2500 Units / Tape & Reel Plastic DIP 50 Units / Rail SO-8 98 Units / Rail Single MC33201VD MC33201VDR2 TA = -40 to +125C MC33201VP MC33202D MC33202DR2 MC33202DMR2 Dual TA= -40 to +105C MC33202P MC33202VD MC33202VDR2 TA = -40 to +125C MC33202VP MC33204D MC33204DR2 SO-8 2500 Units / Tape & Reel Micro-8 4000 Units / Tape & Reel Plastic DIP 50 Units / Rail SO-8 98 Units / Rail SO-8 2500 Units / Tape & Reel Plastic DIP 50 Units / Rail SO-14 55 Units / Rail SO-14 2500 Units / Tape & Reel TSSOP-14 96 Units / Rail MC33204DTBR2 TSSOP-14 2500 Units / Tape & Reel MC33204P Plastic DIP 25 Units / Rail SO-14 55 Units / Rail SO-14 2500 Units / Tape & Reel Plastic DIP 25 Units / Rail MC33204DTB TA= -40 to +105C Quad MC33204VD MC33204VDR2 TA = -40 to +125C MC33204VP http://onsemi.com 10 MC33201 MC33202 MC33204 PACKAGE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 626-05 ISSUE K 8 5 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. -B- 1 4 F L C J -T- N SEATING PLANE D M K MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --- 10_ 0.76 1.01 DIM A B C D F G H J K L M N -A- NOTE 2 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --- 10_ 0.030 0.040 G H 0.13 (0.005) M T A M B M (SO-8) D SUFFIX PLASTIC PACKAGE CASE 751-05 ISSUE R NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. D A 8 5 C 0.25 H E M B M 1 4 B e h A C SEATING PLANE X 45 _ q 0.10 A1 B 0.25 M C B S A L S DIM A A1 B C D E e H h L q http://onsemi.com 11 MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ MC33201 MC33202 MC33204 PACKAGE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 646-06 ISSUE L 14 NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. 8 B 1 7 A F DIM A B C D F G H J K L M N L C J N H G D SEATING PLANE K M INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0_ 10_ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0_ 10_ 0.39 1.01 (SO-14) D SUFFIX PLASTIC PACKAGE CASE 751A-03 ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. -A- 14 8 -B- 1 P 7 PL 0.25 (0.010) 7 G M B M R X 45 _ C F -T- SEATING PLANE 0.25 (0.010) M T B J M K D 14 PL S A S http://onsemi.com 12 DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 MC33201 MC33202 MC33204 PACKAGE DIMENSIONS (TSSOP-14) DTB SUFFIX PLASTIC PACKAGE CASE 948G-01 ISSUE O 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S N 2X 14 L/2 0.25 (0.010) 8 M B -U- L PIN 1 IDENT. F 7 1 0.15 (0.006) T U N S DETAIL E K A -V- EE CC CC EE K1 J J1 SECTION N-N -W- C 0.10 (0.004) -T- SEATING PLANE D G H DETAIL E http://onsemi.com 13 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. MILLIMETERS INCHES DIM MIN MAX MIN MAX A 4.90 5.10 0.193 0.200 B 4.30 4.50 0.169 0.177 C --- 1.20 --- 0.047 D 0.05 0.15 0.002 0.006 F 0.50 0.75 0.020 0.030 G 0.65 BSC 0.026 BSC H 0.50 0.60 0.020 0.024 J 0.09 0.20 0.004 0.008 J1 0.09 0.16 0.004 0.006 K 0.19 0.30 0.007 0.012 K1 0.19 0.25 0.007 0.010 L 6.40 BSC 0.252 BSC M 0_ 8_ 0_ 8_ MC33201 MC33202 MC33204 PACKAGE DIMENSIONS (Micro-8) DM SUFFIX PLASTIC PACKAGE CASE 846A-02 ISSUE D NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. -A- -B- K PIN 1 ID G D 8 PL 0.08 (0.003) -T- M T B S A S SEATING PLANE C 0.038 (0.0015) H L J http://onsemi.com 14 DIM A B C D G H J K L MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 --- 1.10 0.25 0.40 0.65 BSC 0.05 0.15 0.13 0.23 4.75 5.05 0.40 0.70 INCHES MIN MAX 0.114 0.122 0.114 0.122 --- 0.043 0.010 0.016 0.026 BSC 0.002 0.006 0.005 0.009 0.187 0.199 0.016 0.028 MC33201 MC33202 MC33204 Notes http://onsemi.com 15 MC33201 MC33202 MC33204 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION North America Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor -- Asia Support Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800-4422-3781 Email: ONlit-asia@hibbertco.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor -- European Support German Phone: 303-308-7140 (Mon-Fri 2:30pm to 5:00pm Munich Time) German Email: ONlit-german@hibbertco.com French Phone: 303-308-7141 (Mon-Fri 2:30pm to 5:00pm Toulouse Time) French Email: ONlit-french@hibbertco.com English Phone: 303-308-7142 (Mon-Fri 1:30pm to 5:00pm UK Time) English Email: ONlit@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549 Phone: 81-3-5487-8345 Email: r14153@onsemi.com Fax Response Line: 303-675-2167 800-344-3810 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. http://onsemi.com 16 MC33201/D