Semiconductor Components Industries, LLC, 1999
November, 1999 – Rev. 3 1Publication Order Number:
MC33201/D
MC33201 MC33202
MC33204
Rail-to-Rail Operational
Amplifiers
The MC33201/2/4 family of operational amplifiers provide
rail–to–rail operation on both the input and output. The inputs can be
driven as high as 200 mV beyond the supply rails without phase
reversal on the outputs, and the output can swing within 50 mV of each
rail. This rail–to–rail operation enables the user to make full use of the
supply voltage range available. It is designed to work at very low
supply voltages (±0.9 V) yet can operate with a supply of up to +12 V
and ground. Output current boosting techniques provide a high output
current capability while keeping the drain current of the amplifier to a
minimum. Also, the combination of low noise and distortion with a
high slew rate and drive capability make this an ideal amplifier for
audio applications.
Low Voltage, Single Supply Operation
(+1.8 V and Ground to +12 V and Ground)
Input Voltage Range Includes both Supply Rails
Output Voltage Swings within 50 mV of both Rails
No Phase Reversal on the Output for Over–driven Input Signals
High Output Current (ISC = 80 mA, Typ)
Low Supply Current (ID = 0.9 mA, Typ)
600 Output Drive Capability
Extended Operating Temperature Ranges
(–40° to +105°C and –55° to +125°C)
Typical Gain Bandwidth Product = 2.2 MHz
http://onsemi.com
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
ORDERING INFORMATION
P SUFFIX
CASE 626
(Quad, Top View)
8
1
(SO–8)
D SUFFIX
CASE 751
81
P SUFFIX
CASE 646
14
1(SO–14)
D SUFFIX
CASE 751A
14 1
Output 1
Inputs 1
VEE
VCC
Output 2
Inputs 2
1
2
6
7
8
5
3
2
1
4
Output 1
Inputs 1
VCC
Output 4
Inputs 4
112
13
14
11
3
2
1
4
105
96
Output 2 8
7
Inputs 2 2
4
3
VEE
Inputs 3
Output 3
(Dual, Top View)
6
7
8
5
3
2
1
4
NC
Inputs
VEE
NC
VCC
NC
Output
(Single, Top View)
(TSSOP–14)
DTB SUFFIX
CASE 948G
14
1
(Micro–8)
DM SUFFIX
CASE 846A
81
MC33201 MC33202 MC33204
http://onsemi.com
2
Vin Vout
Figure 1. Circuit Schematic
(Each Amplifier)
VEE
VCC
VCC
VCC
VCC
Vin +
VEE
This device contains 70 active transistors (each amplifier).
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) VS+13 V
Input Differential Voltage Range VIDR (Note 1) V
Common Mode Input Voltage Range (Note 2) VCM VCC + 0.5 V to
VEE 0.5 V V
Output Short Circuit Duration ts(Note 3) sec
Maximum Junction Temperature TJ+150 °C
Storage Temperature Tstg 65 to +150 °C
Maximum Power Dissipation PD(Note 3) mW
NOTES: 1.The differential input voltage of each amplifier is limited by two internal parallel back–to–back diodes. For additional differential input voltage
range, use current limiting resistors in series with the input pins.
2.The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on
either input must not exceed either supply rail by more than 500 mV.
3.Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2)
MC33201 MC33202 MC33204
http://onsemi.com
3
DC ELECTRICAL CHARACTERISTICS (TA = 25°C)
Characteristic VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Unit
Input Offset Voltage
VIO (max)
MC33201
MC33202
MC33204
±8.0
±10
±12
±8.0
±10
±12
±6.0
±8.0
±10
mV
Output Voltage Swing
VOH (RL = 10 k)
VOL (RL = 10 k)1.9
0.10 3.15
0.15 4.85
0.15 Vmin
Vmax
Power Supply Current
per Amplifier (ID)1.125 1.125 1.125 mA
Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = Gnd.
DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic Figure Symbol Min Typ Max Unit
Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V)
MC33201: TA = + 25°C
MC33201: TA = – 40° to +105°C
MC33201: TA = – 55° to +125°C
MC33202: TA = + 25°C
MC33202: TA = – 40° to +105°C
MC33202: TA = – 55° to +125°C
MC33204: TA = + 25°C
MC33204: TA = – 40° to +105°C
MC33204: TA = – 55° to +125°C
3VIO
6.0
9.0
13
8.0
11
14
10
13
17
mV
Input Offset Voltage Temperature Coef ficient (R S = 50 )
TA = – 40° to +105°C
TA = – 55° to +125°C
4VIO/T
2.0
2.0
µV/°C
Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = – 40° to +105°C
TA = – 55° to +125°C
5, 6 IIB
80
100
200
250
500
nA
Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = – 40° to +105°C
TA = – 55° to +125°C
IIO
5.0
10
50
100
200
nA
Common Mode Input Voltage Range VICR VEE VCC V
Large Signal Voltage Gain (VCC = + 5.0 V, VEE = – 5.0 V)
RL = 10 k
RL = 600
7 AVOL 50
25 300
250
kV/V
Output Voltage Swing (VID = ±0.2 V)
RL = 10 k
RL = 10 k
RL = 600
RL = 600
8, 9, 10 VOH
VOL
VOH
VOL
4.85
4.75
4.95
0.05
4.85
0.15
0.15
0.25
V
Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR 60 90 dB
Power Supply Rejection Ratio
VCC/VEE = 5.0 V/Gnd to 3.0 V/Gnd 12 PSRR 500 25 µV/V
Output Short Circuit Current (Source and Sink) 13, 14 ISC 50 80 mA
Power Supply Current per Amplifier (VO = 0 V)
TA = – 40° to +105°C
TA = – 55° to +125°C
15 ID
0.9
0.9 1.125
1.125
mA
MC33201 MC33202 MC33204
http://onsemi.com
4
AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic Figure Symbol Min Typ Max Unit
Slew Rate
(VS = ±2.5 V, VO = – 2.0 V to + 2.0 V, RL = 2.0 k, AV = +1.0) 16, 26 SR 0.5 1.0 V/µs
Gain Bandwidth Product (f = 100 kHz) 17 GBW 2.2 MHz
Gain Margin (RL = 600 , CL = 0 pF) 20, 21, 22 AM 12 dB
Phase Margin (RL = 600 , CL = 0 pF) 20, 21, 22
O
M 65 Deg
Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) 23 CS 90 dB
Power Bandwidth (VO = 4.0 Vpp, RL = 600 , THD 1 %) BWP 28 kHz
Total Harmonic Distortion (RL = 600 , VO = 1.0 Vpp, AV = 1.0)
f = 1.0 kHz
f = 10 kHz
24 THD
0.002
0.008
%
Open Loop Output Impedance
(VO = 0 V, f = 2.0 MHz, AV = 10) ZO 100
Differential Input Resistance (VCM = 0 V) Rin 200 k
Differential Input Capacitance (VCM = 0 V) Cin 8.0 pF
Equivalent Input Noise Voltage (RS = 100 )
f = 10 Hz
f = 1.0 kHz
25 en
25
20
Hz
nV/
Equivalent Input Noise Current
f = 10 Hz
f = 1.0 kHz
25 in
0.8
0.2
pA/
Hz
MC33201 MC33202 MC33204
http://onsemi.com
5
300
260
220
180
T
A
, AMBIENT TEMPERATURE (°C)
100
140
P
E
R
CEN
T
A
G
E
O
F
A
MPLIFI
E
RS
(
%
)
TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C)
50
30
0
40
10
20
AVOL, OPEN LOOP VOLTAGE GAIN (kV/V)
Figure 2. Maximum Power Dissipation
versus Temperature Figure 3. Input Offset Voltage Distribution
PERCENTAGE OF AMPLIFIERS (%)
40
35
VIO, INPUT OFFSET VOLTAGE (mV)
30
25
15
0
20
Figure 4. Input Offset Voltage
Temperature Coefficient Distribution
2500
2000
1000
500
0
TA, AMBIENT TEMPERA TURE ( °C)
Figure 5. Input Bias Current
versus Temperature
Figure 6. Input Bias Current
versus Common Mode Voltage Figure 7. Open Loop Voltage Gain versus
Temperature
150
50
0
–50
V
C
M, INPUT COMMON MODE VOLTAGE (V)
1500
PD(max)
,
M
A
XIMUM P
O
W
E
R
D
ISSIP
A
TI
ON
(
mW
)
200
160
120
80
TA, AMBIENT TEMPERA TURE ( °C)
0
IIB , INPUT BIAS CURRENT (nA)
40
5.0
10
VCC = + 5.0 V
VEE = Gnd
VCM > 1.0 V
VCM = 0 V to 0.5 V
IIB
,
I
N
PUT BI
A
S
C
URR
EN
T
(
n
A)
100
–100
–150
200
250 55 40 25 0 25 70 85 125
50 0 20 40 50–10 10 30–30–40 –20
–10 0 4.0 8.0 10 55 40 25 0 25 50 85 125
2.0 4.0
2.0 2.0 6.0 6.0 8.0 4.0
–55 40 25 0 25 70 85 125
0 6.0 8.0 10 12 105
8 and 14 Pin DIP Pkg
SO–14 Pkg
SO–8 Pkg
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = + 5.0 V
VEE = Gnd
TA = 25°C
DIP Package
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = + 5.0 V
VEE = Gnd
TA = 25°C
DIP Package
VCC = + 5.0 V
VEE = Gnd
RL = 600
VO = 0.5 V to 4.5 V
VCC = 12 V
VEE = Gnd
TA = 25°C
TSSOP–14 Pkg
MC33201 MC33202 MC33204
http://onsemi.com
6
VO, OUTPUT VOLT AGE (V )
pp VO, OUTPUT VOLT AGE (V )
pp
40
20
100
80
60
Vout, OUTPUT VOLTAGE (V)
0
f, FREQUENCY (Hz)
12
0
9.0
3.0
6.0
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600
AV = +1.0
TA = 25°C
Figure 8. Output Voltage Swing
versus Supply Voltage Figure 9. Output Saturation Voltage
versus Load Current
V
IL, LOAD CURRENT (mA)
VEE
Figure 10. Output Voltage
versus Frequency
12
10
6.0
2.0
0
VCC,VEE SUPPLY VOLTAGE (V)
Figure 11. Common Mode Rejection
versus Frequency
Figure 12. Power Supply Rejection
versus Frequency Figure 13. Output Short Circuit Current
versus Output Voltage
120
80
60
f, FREQUENCY (Hz)
8.0
100
80
60
40
f, FREQUENCY (Hz)
0
CMR, COMMON MODE REJECTION (dB)
20
VCC = + 6.0 V
VEE = – 6.0 V
TA = – 55° to +125°C
PSR, POWER SUPPLY REJECTION (dB)
100
40
20
0
VCC = + 6.0 V
VEE = – 6.0 V
TA = – 55° to +125°C
VCC = + 6.0 V
VEE = – 6.0 V
TA = 25°C
4.0
SAT, OUTPUT SATURATION VOLT AGE (V)
TA = 25°C
TA = – 55°C
PSR+
PSR–
ISC , OUTPUT SHORT CIRCUIT CURRENT (mA)
Source
Sink
VCC = + 5.0 V
VEE = – 5.0 V
TA = 125°C
TA = 125°CTA = – 55°C
TA = 25°C
10 100 1.0 k 10 k 100 k 1.0 M 0 1.0 2.0 3.0 4.0 5.0 6.0
1.0 k 100 k 1.0 M10 k
01520±1.0 ±2.0 105.0
10 100 1.0 k 10 k 100 k 1.0 M
±3.0 ±4.0 ±5.0 ±6.0
RL = 600
TA = 25°C
VCC
VCC – 0.2 V
VCC – 0.4 V
VEE + 0.4 V
VEE + 0.2 V
MC33201 MC33202 MC33204
http://onsemi.com
7
, EXCESS PHASE (DEGREES)
VCC, VEE, SUPPLY VOL TAGE (V)
ISC , OUTPUT SHORT CIRCUIT CURRENT (mA)SR, SLEW RATE (V/ s)µ
TA, AMBIENT TEMPERA TURE ( °C)
VCC = + 2.5 V
VEE = – 2.5 V
VO = ±2.0 V
Figure 14. Output Short Circuit Current
versus Temperature Figure 15. Supply Current per Amplifier
versus Supply Voltage with No Load
I
Figure 16. Slew Rate
versus Temperature
TA, AMBIENT TEMPERA TURE ( °C)
Figure 17. Gain Bandwidth Product
versus Temperature
Figure 18. Voltage Gain and Phase
versus Frequency Figure 19. Voltage Gain and Phase
versus Frequency
f, FREQUENCY (Hz)
GBW , GAIN BANDWIDTH PRODUCT (MHz)
A , OPEN LOOP VOLTAGE GAIN (dB)
VCC = + 5.0 V
VEE = Gnd
CC, SUPPLY CURRENT PER AMPLIFIER (mA)
TA = 125°C
TA = – 55°C
Source
Sink TA = 25°C
+Slew Rate
–Slew Rate
TA, AMBIENT TEMPERA TURE ( °C)
VCC = + 2.5 V
VEE = – 2.5 V
f = 100 kHz
VOL
, EXCESS PHASE (DEGREES)
f, FREQUENCY (Hz)
O
O
70
50
30
10
–10
–30
2.0
0
1.5
0.5
1.0
2.0
1.6
0
150
125
75
25
0
70
50
30
100
4.0
3.0
2.0
0
1.0
10
–10
–30
50
1.2
0.8
0.4
±1.0 ±2.0 ±3.0 ±4.0 ±5.0 ±6.0
10 k 100 k 1.0 M 10 M
55 40 25 25 70 1250 85 105 ±0
55 40 25 25 70 1250 85 105 55 40 25 25 70 1250 85 105
10 k 100 k 1.0 M 10 M
240
40
80
120
160
200
40
80
120
160
200
240
A , OPEN LOOP VOLTAGE GAIN (dB)
VOL
1A – Phase, CL = 0 pF
1B – Gain, CL = 0 pF
2A – Phase, CL = 300 pF
2B – Gain, CL = 300 pF
1A – Phase, VS = ±6.0 V
1B – Gain, VS = ±6.0 V
2A – Phase, VS = ±1.0 V
2B – Gain, VS = ±1.0 V
VS = ±6.0 V
TA = 25°C
RL = 600
CL = 0 pF
TA = 25°C
RL = 600
1A
2A
2B
1B
1A
2A
2B 1B
MC33201 MC33202 MC33204
http://onsemi.com
8
M, PHASE MARGIN (DEGREES)
i , INPUT REFERRED NOISE CURRENT (pA/ Hz)
n
50
40
30
e , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
20
10
0
n
RT, DIFFERENTIAL SOURCE RESISTANCE ()
CL, CAPACITIVE LOAD (pF)
80
0
70
40
Figure 20. Gain and Phase Margin
versus Temperature Figure 21. Gain and Phase Margin
versus Differential Source Resistance
75
60
0
Figure 22. Gain and Phase Margin
versus Capacitive Load
70
60
40
10
0
TA, AMBIENT TEMPERA TURE ( °C)
Figure 23. Channel Separation
versus Frequency
Figure 24. Total Harmonic Distortion
versus Frequency Figure 25. Equivalent Input Noise Voltage
and Current versus Frequency
10
1.0
0.1
f, FREQUENCY (Hz)
50
150
90
60
0
CS, CHANNEL SEPARA TION (dB)
30
THD, TOTAL HARMONIC DISTOR TION (%)
0.01
0.001
20
45
30
15
Phase Margin
Gain Margin
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
M, PHASE MARGIN (DEGREES)
30
AM, GAIN MARGIN (dB)
AM, GAIN MARGIN (dB)
60
10
20
30
50
AM, GAIN MARGIN (dB)
AV = 10
120
AV = 100
AV = 10
AV = 1.0
AV = 100
M, PHASE MARGIN (DEGREES)
O
O
O
100 1.0 k 10 k 100 k
10 100 1.0 k 100 k
55 40 25 25 70 1250 85 105 10
10 100 1.0 k 100 1.0 k 10 k
10 100 10 k 100 k10 k 1.0 k
5.0
4.0
3.0
2.0
1.0
0
70
60
40
10
0
50
20
30
75
60
0
45
30
15
16
0
14
8.0
12
2.0
4.0
6.0
10
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600
CL = 100 pF
VCC = + 6.0 V
VEE = – 6.0 V
TA = 25°C
Phase Margin
Phase Margin
Gain Margin
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600
AV = 100
TA = 25°C
Gain Margin
VCC = + 6.0 V
VEE = – 6.0 V
VO = 8.0 Vpp
TA = 25°C
VCC = + 5.0 V
TA = 25°C
VO = 2.0 Vpp
VEE = – 5.0 V
RL = 600 VCC = + 6.0 V
VEE = – 6.0 V
TA = 25°C
Noise Voltage
Noise Current
AV = 1000
MC33201 MC33202 MC33204
http://onsemi.com
9
DETAILED OPERATING DESCRIPTION
General Information
The MC33201/2/4 family of operational amplifiers are
unique in their ability to swing rail–to–rail on both the input
and the output with a completely bipolar design. This offers
low noise, high output current capability and a wide
common mode input voltage range even with low supply
voltages. Operation is guaranteed over an extended
temperature range and at supply voltages of 2.0 V, 3.3 V and
5.0 V and ground.
Since the common mode input voltage range extends from
VCC to VEE, it can be operated with either single or split
voltage supplies. The MC33201/2/4 are guaranteed not to
latch or phase reverse over the entire common mode range,
however, the inputs should not be allowed to exceed
maximum ratings.
Circuit Information
Rail–to–rail performance is achieved at the input of the
amplifiers by using parallel NPN–PNP differential input
stages. When the inputs are within 800 mV of the negative
rail, the PNP stage is on. When the inputs are more than 800
mV greater than VEE, the NPN stage is on. This switching
of input pairs will cause a reversal of input bias currents (see
Figure 6). Also, slight differences in offset voltage may be
noted between the NPN and PNP pairs. Cross–coupling
techniques have been used to keep this change to a
minimum.
In addition to its rail–to–rail performance, the output stage
is current boosted to provide 80 mA of output current,
enabling the op amp to drive 600 loads. Because of this
high output current capability, care should be taken not to
exceed the 150°C maximum junction temperature.
O, OUTPUT VOLT AGE (50 mV/DIV)V
t, TIME (10 µs/DIV)
Figure 26. Noninverting Amplifier Slew Rate Figure 27. Small Signal Transient Response
t, TIME (5.0 µs/DIV)
Figure 28. Large Signal Transient Response
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600
CL = 100 pF
TA = 25°C
O, OUTPUT VOLT AGE (2.0 mV/DIV)
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600
CL = 100 pF
AV = 1.0
TA = 25°C
V
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600
CL = 100 pF
TA = 25°C
t, TIME (10 µs/DIV)
O, OUTPUT VOLT AGE (2.0 V/DIV)V
MC33201 MC33202 MC33204
http://onsemi.com
10
ORDERING INFORMATION
Operational
Amplifier Function Device Operating
Temperature Range Package Shipping
MC33201D SO–8 98 Units / Rail
MC33201DR2 TA= –40 ° to +105°CSO–8 2500 Units / Tape & Reel
Single
MC33201P Plastic DIP 50 Units / Rail
Single
MC33201VD SO–8 98 Units / Rail
MC33201VDR2 TA = –40 ° to +125°CSO–8 2500 Units / Tape & Reel
MC33201VP Plastic DIP 50 Units / Rail
MC33202D SO–8 98 Units / Rail
MC33202DR2
TA= –40
°
to +105
°
C
SO–8 2500 Units / Tape & Reel
MC33202DMR2
TA
= –
40
°
to
+105°C
Micro–8 4000 Units / Tape & Reel
Dual MC33202P Plastic DIP 50 Units / Rail
MC33202VD SO–8 98 Units / Rail
MC33202VDR2 TA = –40 ° to +125°CSO–8 2500 Units / Tape & Reel
MC33202VP Plastic DIP 50 Units / Rail
MC33204D SO–14 55 Units / Rail
MC33204DR2 SO–14 2500 Units / Tape & Reel
MC33204DTB TA= –40 ° to +105°CTSSOP–14 96 Units / Rail
Quad
MC33204DTBR2 TSSOP–14 2500 Units / Tape & Reel
Quad
MC33204P Plastic DIP 25 Units / Rail
MC33204VD SO–14 55 Units / Rail
MC33204VDR2 TA = –40 ° to +125°CSO–14 2500 Units / Tape & Reel
MC33204VP Plastic DIP 25 Units / Rail
MC33201 MC33202 MC33204
http://onsemi.com
11
PACKAGE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
14
58
F
NOTE 2 –A–
–B–
–T–
SEATING
PLANE
H
J
GDK
N
C
L
M
M
A
M
0.13 (0.005) B M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A9.40 10.16 0.370 0.400
B6.10 6.60 0.240 0.260
C3.94 4.45 0.155 0.175
D0.38 0.51 0.015 0.020
F1.02 1.78 0.040 0.070
G2.54 BSC 0.100 BSC
H0.76 1.27 0.030 0.050
J0.20 0.30 0.008 0.012
K2.92 3.43 0.115 0.135
L7.62 BSC 0.300 BSC
M––– 10 ––– 10
N0.76 1.01 0.030 0.040
__
(SO–8)
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
ISSUE R
SEATING
PLANE
14
58
A0.25 MCBSS
0.25 MBM
h
q
C
X 45
_
L
DIM MIN MAX
MILLIMETERS
A1.35 1.75
A1 0.10 0.25
B0.35 0.49
C0.18 0.25
D4.80 5.00
E1.27 BSCe3.80 4.00
H5.80 6.20
h
0 7
L0.40 1.25
q
0.25 0.50
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
D
EH
A
Be
B
A1
CA
0.10
MC33201 MC33202 MC33204
http://onsemi.com
12
PACKAGE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
17
14 8
B
A
F
HG D K
C
N
L
J
M
SEATING
PLANE
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.715 0.770 18.16 19.56
B0.240 0.260 6.10 6.60
C0.145 0.185 3.69 4.69
D0.015 0.021 0.38 0.53
F0.040 0.070 1.02 1.78
G0.100 BSC 2.54 BSC
H0.052 0.095 1.32 2.41
J0.008 0.015 0.20 0.38
K0.115 0.135 2.92 3.43
L0.300 BSC 7.62 BSC
M0 10 0 10
N0.015 0.039 0.39 1.01
____
(SO–14)
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
ISSUE F NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
–B–
G
P7 PL
14 8
71 M
0.25 (0.010) B M
S
B
M
0.25 (0.010) A S
T
–T–
F
RX 45
SEATING
PLANE D14 PL K
C
J
M
_
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A8.55 8.75 0.337 0.344
B3.80 4.00 0.150 0.157
C1.35 1.75 0.054 0.068
D0.35 0.49 0.014 0.019
F0.40 1.25 0.016 0.049
G1.27 BSC 0.050 BSC
J0.19 0.25 0.008 0.009
K0.10 0.25 0.004 0.009
M0 7 0 7
P5.80 6.20 0.228 0.244
R0.25 0.50 0.010 0.019
____
MC33201 MC33202 MC33204
http://onsemi.com
13
PACKAGE DIMENSIONS
(TSSOP–14)
DTB SUFFIX
PLASTIC PACKAGE
CASE 948G–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A4.90 5.10 0.193 0.200
B4.30 4.50 0.169 0.177
C––– 1.20 ––– 0.047
D0.05 0.15 0.002 0.006
F0.50 0.75 0.020 0.030
G0.65 BSC 0.026 BSC
H0.50 0.60 0.020 0.024
J0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L6.40 BSC 0.252 BSC
M0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS. MOLD
FLASH OR GATE BURRS SHALL NOT EXCEED
0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT
EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE –W–.
____
S
U0.15 (0.006) T
2X L/2
S
U
M
0.10 (0.004) V S
T
L–U–
SEATING
PLANE
0.10 (0.004)
–T–
ÇÇ
ÇÇ
SECTION N–N
DETAIL E
JJ1
K
K1
ÉÉ
ÉÉ
DETAIL E
F
M
–W–
0.25 (0.010)
8
14
7
1
PIN 1
IDENT.
H
G
A
D
C
B
S
U0.15 (0.006) T
–V–
14X REFK
N
N
MC33201 MC33202 MC33204
http://onsemi.com
14
PACKAGE DIMENSIONS
(Micro–8)
DM SUFFIX
PLASTIC PACKAGE
CASE 846A–02
ISSUE D
S
B
M
0.08 (0.003) A S
TDIM MIN MAX MIN MAX
INCHESMILLIMETERS
A2.90 3.10 0.114 0.122
B2.90 3.10 0.114 0.122
C––– 1.10 ––– 0.043
D0.25 0.40 0.010 0.016
G0.65 BSC 0.026 BSC
H0.05 0.15 0.002 0.006
J0.13 0.23 0.005 0.009
K4.75 5.05 0.187 0.199
L0.40 0.70 0.016 0.028
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH,
PROTRUSIONS OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
–B–
–A–
D
K
G
PIN 1 ID
8 PL
0.038 (0.0015)
–T– SEATING
PLANE C
HJL
MC33201 MC33202 MC33204
http://onsemi.com
15
Notes
MC33201 MC33202 MC33204
http://onsemi.com
16
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “T ypicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly , any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Af firmative Action Employer.
PUBLICATION ORDERING INFORMATION
ASIA/PACIFIC: LDC for ON Semiconductor — Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong 800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549
Phone: 81–3–5487–8345
Email: r14153@onsemi.com
Fax Response Line: 303–675–2167
800–344–3810 Toll Free USA/Canada
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.
MC33201/D
North America Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor — European Support
German Phone: 303–308–7140 (Mon–Fri 2:30pm to 5:00pm Munich T ime)
German Email: ONlit–german@hibbertco.com
French Phone: 303–308–7141 (Mon–Fri 2:30pm to 5:00pm Toulouse Time)
French Email: ONlit–french@hibbertco.com
English Phone: 303–308–7142 (Mon–Fri 1:30pm to 5:00pm UK T ime)
English Email: ONlit@hibbertco.com