Document Number: 323178-003
Intel® CoreTM i7-660UE, i7-620LE/
UE, i7-610E, i5-520E, i3-330E and
Intel® Celeron® Processor P4505,
U3405 Series
Datasheet Addendum
August 2010
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
2Document Number: 323178-003
Legal Lines and Discla ime rs
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELA TING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel
or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Designers must not rely on the absence or characteristics of any features or instructions mark ed “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. See http://www.intel.com/products/processor_number for details.
The Intel® CoreTM i7-620LE/UE, i7-610E and i5-5 20E Processor Series may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.
Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a HT Technology enabled
chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/
products/ht/Hyperthreading_more.htm for additional information.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel lit erature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.
BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, Dialogic, FlashFile, i960, InstantIP, Intel, Intel log o, Intel386 , In te l4 86 ,
Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside,
MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Int el Corporation or its subsidiaries in the United States and ot her countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2010, Intel Corporation. All Rights Reserved.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 3
Contents
1 Introduction and Features Summary .........................................................................8
1.1 Introduction .......................................................................................................8
1.2 Interfaces ........................................................................................................10
1.2.1 System Memory Support.........................................................................10
1.2.2 PCI Express* .........................................................................................10
1.3 Package...........................................................................................................11
1.4 Terminology .....................................................................................................12
1.5 Related Documents ...........................................................................................13
2Interfaces................................................................................................................15
2.1 System Memory Interface ..................................................................................15
2.1.1 System Memory Technology Supp orte d................. ... .. .. .. ............. .. .. ..........15
2.1.2 System Memory Timing Supp o rt............... .. .. .. ..........................................16
2.1.3 System Memory Organization Modes.........................................................16
2.1.4 Rules for Populating Memory Slots............................................................18
2.1.5 Technology Enhancements of Intel® Fast Memory Access (Intel® FMA)..........18
2.1.6 DRAM Clock Generation...........................................................................19
2.1.7 DDR3 On-Die Termination .......................................................................19
2.2 PCI Express* Interface.......................................................................................19
2.2.1 PCI Express* Configuration Mechanism .....................................................19
2.2.2 PCI Express Port Bifurcation.... .. .. .. .. ............. ............. .. ............ ............. ....20
3 Signal Description ...................................................................................................21
3.1 System Memory Interface ..................................................................................21
3.2 Reset and Miscellaneous Signals..........................................................................24
4 Electrical Specifications...........................................................................................25
4.1 Signal Groups................. ........... .. .. ..................... .. .. ........... .. .. .......... ... .. .......... ..25
4.2 DC Specifications ..............................................................................................25
4.2.1 Voltage and Current Specifications............................................................25
5 Processor Ball and Signal Information.....................................................................27
5.1 Processor Ball Assignments.................................................................................27
6 Processor Configuration Registers...........................................................................70
6.1 Register Terminology.........................................................................................70
6.1.1 DEVEN - Device Enable ...........................................................................72
6.1.2 ERRSTS - Error Status ............................................................................73
6.1.3 ERRCMD - Error Command ......................................................................74
6.1.4 SMICMD - SMI Command........................................................................76
6.1.5 C0WRDATACTRL - Channel 0 Write Data Control.........................................77
6.1.6 COECCERRLOG - Channel 0 ECC Error Log.................................................78
6.1.7 C1WRDATACTRL - Channel 1 Write Data Control.........................................80
6.1.8 C1ECCERRLOG - Channel 1 ECC Erro r Log ........... .. ... ............ ............. ........80
6.2 PCI Device 6.....................................................................................................81
6.2.1 VID6 - Vendor Identification ....................................................................85
6.2.2 DID6 - Device Identification.....................................................................85
6.2.3 PCICMD6 - PCI Command........................................................................86
6.2.4 PCISTS6 - PCI Status..............................................................................88
6.2.5 RID6 - Revision Identification...................................................................90
6.2.6 CC6 - Class Code ...................................................................................90
6.2.7 CL6 - Cache Line Size .............................................................................91
6.2.8 HDR6 - Header Type...............................................................................91
6.2.9 PBUSN6 - Primary Bus Number ................................................................92
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
4Document Number: 323178-003
6.2.10 SBUSN6 - Secondary Bus Number.............................................................92
6.2.11 SUBUSN6 - Subordinate Bus Number ........................................................93
6.2.12 IOBASE6 - I/O Base Address....................................................................93
6.2.13 IOLIMIT6 - I/O Limit Address ...................................................................94
6.2.14 SSTS6 - Secondary Status .......................................................................95
6.2.15 MBASE6 - Memory Base Address...............................................................96
6.2.16 MLIMIT6 - Memory Limit Address..............................................................97
6.2.17 PMBASE6 - Prefetchable Memory Base Address...........................................98
6.2.18 PMLIMIT6 - Prefetchable Memory Limit Address ...... .. ... .. .. ............ ... ............99
6.2.19 PMBASEU6 - Prefetchable Memory Base Address Upper..............................100
6.2.20 PMLIMITU6 - Prefetchable Memory L imit Address Upper............. ............. ...101
6.2.21 CAPPTR6 - Capabilities Pointer................................................................102
6.2.22 INTRLINE6 - Interrupt Line ....................................................................102
6.2.23 INTRPIN6 - Interrupt Pin........................................................................103
6.2.24 BCTRL6 - Bridge Control........................................................................103
6.2.25 PM_CAPID6 - Power Management Capabilities ..........................................105
6.2.26 PM_CS6 - Power Management Control/Status...........................................106
6.2.27 SS_CAPID - Subsystem ID and Vendor ID Capabilities........... ....................108
6.2.28 SS - Subsystem ID and Subsystem Vendor ID..........................................108
6.2.29 MSI_CAPID - Message Signaled Interrupts Capability ID ............................109
6.2.30 MC - Message Control............................................................................109
6.2.31 MA - Message Address...........................................................................111
6.2.32 MD - Message Data...............................................................................111
6.2.33 PEG_CAPL - PCI Express-G Capability List ................................................112
6.2.34 PEG_CAP - PCI Express-G Capabilities .....................................................112
6.2.35 DCAP - Device Capabilities.....................................................................113
6.2.36 DCTL - Device Control ...........................................................................114
6.2.37 DSTS - Device Status............................................................................115
6.2.38 LCAP - Link Capabilities .........................................................................116
6.2.39 LCTL - Link Control ...............................................................................119
6.2.40 LSTS - Link Status................................................................................121
6.2.41 SLOTCAP - Slot Capabilities....................................................................123
6.2.42 SLOTCTL - Slot Control..........................................................................124
6.2.43 SLOTSTS - Slot Status.......... .. .. .. ..................... .. .. .. ........... .. .. .. ...............127
6.2.44 RCTL - Root Control ..............................................................................129
6.2.45 RSTS - Root Status...............................................................................130
6.2.46 LCTL2 - Link Control 2...........................................................................130
6.2.47 LSTS2 - Link Status 2............................................................................132
6.2.48 PEGLC - PCI Express-G Legacy Control ....................................................133
6.3 PCI Device 6 - Extended Configuration................................................................134
6.3.1 VCECH - Virtual Channel Enhanced Capability Header ................................134
6.3.2 PVCCAP1 - Port VC Capability Register 1..................................................134
6.3.3 PVCCAP2 - Port VC Capability Register 2..................................................135
6.3.4 PVCCTL - Port VC Control.......................................................................136
6.3.5 VC0RCAP - VC0 Resource Capability........................................................136
6.3.6 VC0RCTL - VC0 Resource Control............................................................137
6.3.7 VC0RSTS - VC0 Resource Status.............................................................138
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 5
Figures
1Intel
® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series on the Intel® CoreTM i7 processor based
low-power platform................ .. .. ..................... .. ... .. .......... .. .. ...................... .. .. ............9
2Intel
® Flex Memory Technology Operation...................................................................17
3 Dual-Channel Symmetric (Interleaved) and Dual-Channel Asymmetric Mode s ............ .. .. ..18
4 PCI Express* Related Register Structures in the Intel® CoreTM i7-660UE, i7-620L E/UE,
i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 S eries ............... 20
5Intel
® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series Ballmap (Top View, Upper-Left Quadrant).......................28
6Intel
® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series Ballmap (Top View, Upper-Right Quadrant).....................29
7Intel
® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series Ballmap (Top View, Lower-Left Quadrant) .......................30
8Intel
® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series Ballmap (Top View, Lower-Right Quadrant).....................31
Tables
1 Processor Documents ............. .. ..................... .. .. ... ..................... .. .. .. ........... .. .. .. ........13
2 PCH Documents........................... ... .. .......... .. ........... .. .. ........... .. .. .......... .. ... .......... .. ..14
3 Public Specifications................... ........... .. .. .. ..................... .. .. ... .......... .. .. .. .................14
4 Supported DIMM Module Configurations......................................................................15
5 DDR3 System Memory Timing Support........................................................................16
6 Signal Description Buffer Types.................................... ..............................................21
7 Memory Channel A...................................................................................................21
8 Memory Channel B...................................................................................................23
9 Reset and Miscellaneous Signals ................................................................................24
10 Mobile Signal Groups1 ..............................................................................................25
11 DDR3 Signal Group DC Specifications .........................................................................25
12 Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series Ball List by Ball Name...................................................32
13 Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series Ball List by Ball Number................................................49
14 Register Terminology................................................................................................70
15 DEVEN - Device Enable Register.................................................................................72
16 Error Status Register....................... .. .. .. .......... .. ... ..................... .. .. .. ........... .. .. ..........73
17 Error Command Registers ....... .. .. ..................... .. ... .. ............................... .. ... .. ............75
18 SMI Command Registers...........................................................................................76
19 Channel 0 Write Data Control Registers.......................................................................77
20 Channel 0 ECC Error Registers............ .......................................................................78
21 Channel 1 Write Data Control Registers.......................................................................80
22 Channel 1 ECC Error Registers............ .......................................................................81
23 PCI Device 6 Registe r................. .. ........... .. .. ........... .. .. .......... ... .. ..................... .. .. ......82
24 VID6 - Vendor Identification Register..........................................................................85
25 DID6 - Device Identification Register ..........................................................................85
26 PCICMD6 - PCI Command Register.............................................................................86
27 PCISTS6 - PCI Status Register...................................................................................88
28 RID6 - Revision Identification Register........................................................................90
29 CC6 - Class Code Register.................. .. .. ....................................................... ............90
30 CL6 - Cache Line Size Register...................................................................................91
31 HDR6 - Header Type Register ....................................................................................91
32 PBUSN6 - Primary Bus Number Register ......................................................................92
33 SBUSN6 - Secondary Bus Number Register..................................................................92
34 SUBUSN6 - Subordinate Bus Number Register .............................................................93
35 IOBASE6 - I/O Base Address Register.........................................................................94
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
6Document Number: 323178-003
36 IOLIMIT6 - I/O Limit Address Register.........................................................................94
37 SSTS6 - Secondary Status Register......................................... ....................................95
38 MBASE6 - Memory Base Address Register....................................................................96
39 MLIMIT6 - Memory Limit Address Register ...................................................................97
40 PMBASE6 - Prefetchable Memory Base Address Register ................................................98
41 PMLIMIT6 - Prefetchable Memory Limit Address Register................................................99
42 PMBASEU6 - Prefetchable Memory Base Address Upper Register...................................100
43 PMLIMITU6 - Prefetchable Memory Limit Address Upper Register ..................................101
44 CAPPTR6 - Capabilities Pointer Register .....................................................................102
45 INTRLINE6 - Interrupt Line Register............. .. .. .........................................................102
46 INTRPIN6 - Interrupt Pin Re g i ster........ .. .. .. .................................. .............................103
47 BCTRL6 - Bridge Control Register .............................................................................103
48 PM_CAPID6 - Power Management Capabilities Register................................................105
49 PM_CS6 - Power Management Control/Status Register ................................................106
50 SS_CAPID - Subsystem ID and Vendor ID Capabilities Register ....................................108
51 SS - Subsystem ID and Subsystem Vendor ID Register................................................108
52 MSI_CAPID - Message Signaled Interrupts Capability ID Register..................................109
53 MC - Message Control Register.................................................................................109
54 MA - Message Address Register................................................................................111
55 MD - Message Data Register ....................................................................................111
56 PEG_CAPL - PCI Express-G Capability List Register......................................................112
57 PEG_CAP - PCI Express-G Capabilities Register...........................................................112
58 DCAP - Device Capabilities Register ..........................................................................113
59 DCTL - Device Control Register.................................................................................114
60 DSTS - Device Status Register .................................................................................115
61 LCAP - Link Capabilities Register...............................................................................116
62 LCTL - Link Control Register.....................................................................................119
63 LSTS - Link Status Register......................................................................................121
64 SLOTCAP - Slot Capabilities Register .........................................................................123
65 SLOTCTL - Slot Control Register ...............................................................................124
66 SLOTSTS - Slot Status Register................................................................................127
67 RCTL - Root Control Register....................................................................................129
68 RSTS - Root Status Register ....................................................................................130
69 LCTL2 - Link Control 2 Register ................................................................................130
70 LSTS2 - Link Status 2 Register.................................................................................132
71 PEGLC - PCI Express-G Legacy Control Register..........................................................133
72 PCI Device 6 - Extended Configuration ......................................................................134
73 VCECH - Virtual Channel Enhanced Capability Header..................................................134
74 PVCCAP1 - Port VC Capability Register 1....................................................................135
75 PVCCAP2 - Port VC Capability Register 2....................................................................136
76 PVCCTL - Port VC Control ........................................................................................136
77 VC0RCAP - VC0 Resource Capability..........................................................................136
78 VC0RCTL - VC0 Resource Control..............................................................................138
79 VC0RSTS - VC0 Resource Status ..............................................................................139
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 7
Revision History
Date Revision Description
January 2010 001 Initial release of this document.
April 2010 002 Added information for the Intel® Celeron® Processor P4500 and P4505 Series.
Corrected first bullet in Section 2.1.1 to “No support for mixed ECC and non-ECC DIMM
configurations.
August 2010 003
Added information for the Intel® CoreTM i7-660UE, i3-330E and Celeron® Processor U3405
Removed all references to Celeron® Processor P4500 since it is a PGA package and does not
relate to this document (was included by error in last revision).
CMD mode for DDR3 is restated to 1n instead of 1n and 2n
Introduction and Features Summary
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
8Document Number: 323178-003
1 Introduction and Features
Summary
1.1 Introduction
This Datasheet Addendum is a supplement to the Intel® CoreTM i7-600, i5-500 and i3-
300 Mobile Processor Series Datasheet. It contains the additional DC and AC electrical
specifications, signal integrity, differential signaling specifications, pinout and signal
definitions, interface functional descriptions, additional feature information and
configuration registers pertinent to the implementation and operation of the Intel®
CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series on its respective platform.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series is the next generation of 64-bit, multi-core mobile
processor built on a 32- nanometer process technology. Throughout this document,
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series may be referred to as simply the processor. The
processor is designed for a two-chip platform as opposed to the traditional three-chip
platforms (processor, GMCH, and ICH). The two-chip platform consists of a processor
and the Platform Controller Hub (PCH) and enables higher performance, lower cost,
easier validation, and improved x-y footprint. The PCH may also be referred to as
Mobile Intel® 5 Series Chipset (formerly Ibex Pe ak-M). Intel® CoreTM i7-660UE, i7-
620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405
Series is designed for the Intel® CoreTM i7 processor based low-power platform and is
offered in a BGA1288 package.
Included in this family of processors is an integrated graphics and memory controller
die on the same package as the processor core die. This two-chip solution of a
processor core die with an integrated gr aphics and memory controller die is known as a
multi-chip package (MCP) processor.
Note: Integrated graphics and memory controller die is built on 45-nanometer process
technology.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 9
Introduction and Features Summary
Figure 1. Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel®
Celeron® Processor P4505, U3405 Series on the Intel® CoreTM i7 processor
based low-po we r platform
Intel CoreTM i7/i5/i3 and Celeron
Processor
(MCP Processor)
Discrete Graphics
(PEG)
Analog CRT
Gigabit
Network Connection
USB 2.0
Intel® HD Audio
FWH
TPM 1.2
Super I/O
PCI
Serial ATA
Mobile Intel 5 Series Chipset
PCH
DDR3 DIMMs
PCI Express* x16
14 Ports
PCI
6 Ports
3 Gb/s
SPI
Digital Display x 3
Intel® Flexible
Display Interface
SPI Flash
LPC
SMBUS 2.0
PECI
GPIO
OR
GPU, Memory
Controller
Dual-core
Processor
800/1066 MT/s
2 Channels
1 DIMM / Channel
DMI2
(x4)
LVDS Flat Panel
Intel®
Management
Engine
Embedded
DisplayPort* (eDP)
PCI Express x 1
PCI Express*
Controller Link 1
8 PCI Express* x1
Ports
(2.5 GT/s)
Introduction and Features Summary
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
10 Document Number: 323178-003
1.2 Interfaces
1.2.1 System Memory Support
One or two channels of DDR3 memory with a maximum of one DIMM per channel
Single- and dual-channel memory organization modes
Data burst length of eight for all memory organization modes
Memory DDR3 data transfer rates of 800 and 1066 MT/s
64-bit wide channels (72-bit wide including ECC)
DDR3 I/O Voltage of 1.5 V
Supports ECC and non-ECC, unbuffered DDR3 DIMMs
Mixing of ECC and Non-ECC DIMMS is not supported
Theoretical maximum memory bandwidth of:
12.8 GB/s in dual-channel mode assuming DDR3 800 MT /s
17.1 GB/s in dual-channel mode assuming DDR3 1066 MT/ s
1-Gb, and 2-Gb DDR3 DRAM technologies for x8 and x16 devices
Using 2-Gb device technologies, the largest memory capacity possible is 8 GB,
assuming dual-channel mode with two x8, dual-rank, un-buffered, DIMM memory
configuration.
Up to 32 simultaneous open pages, 16 per channel (assuming 4 Ranks of 8 Bank
Devices)
Memory organizations:
Single-channel modes
Dual-channel modes
Dual-channel symmetric (Interleaved)
Dual-channel asymmetric
Intel® Flex Memory Technology
Command launch mode of 1n
Partial Writes to memory using Data Mask (DM) signals
On-Die Termination (ODT)
•Intel
® Fast Memory Access (Intel® FMA):
Just-in-Time Command Scheduling
—Command Overlap
Out-of-Order Scheduling
1.2.2 PCI Express*
The processor PCI Express* port(s) are fully-compliant to the PCI Express Base
Specification, Revision 2.0 at 2.5GT/s.
The processor supports:
One 16-lane PCI Express port for graphics or I/O.
Two 8-lane PCI Express ports for graphics or I/O.
PCI Express Port 0 is mapped to PCI Device 1.
PCI Express Port 1 is mapped to PCI Device 6.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 11
Introduction and Features Summary
1.3 Package
The Intel Core i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel Celeron
Processor P4505, U3405 Series are available on a 34 x 28 mm BGA package
(BGA1288).
Note: Although the BGA1288 package is shared with Intel® CoreTM i7-640UM/LM, i7-620M/
UM/LM, i5-540M, i5-520M/UM and i5-430M Processor Series they are not ball-out
compatible.
Introduction and Features Summary
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
12 Document Number: 323178-003
1.4 Terminology
Term Description
BLT Block Level Transfer
CRT Cathode Ray Tube
DDR3 Third generation Double Data Rate SDRAM memory technology
DP DisplayPort*
DMA Direct Memory Access
DMI Direct Media Interface
DTS Digital Thermal Sensor
ECC Error Correction Code
eDP* Embedded DisplayPort*
Intel® DPST Intel® Display Power Saving Technology
Enhanced Intel
SpeedStep® Technology Technology that provides power management capabilities to laptops.
Execute Disable Bit
The Execute Disable bit allows memory to be marked as executable or non-
executable, when combined with a supporting operating system. If code
attempts to run in non-executable memory the processor raises an error to the
operating system. This feature can prevent some classes of viruses or worms
that exploit buffer overrun vulnerabilities and can thus help improve the overall
security of the system. See the Intel® 64 and IA-32 Architectures Software
Developer's Manuals for more detailed information.
EU Execution Unit
(G)MCH Legacy component - Graphics Memory Controller Hub.
GPU Graphics Processing Unit
ICH The legacy I/O Controller Hub component that contains the main PCI interface,
LPC interface, USB2, Serial ATA, and other I/O functions. It communicates with
the legacy (G)MCH over a proprietary interconnect called DMI.
IMC Integrated Memory Controller
Intel® 64 Technology 64-bit memory extensions to the IA-32 architecture.
Intel® FDI Intel® Flexible Display Interface.
Intel® TXT Intel® Trusted Execution Technology
Intel® Virtualization
Technology Processor virtualization which when used in conjunction with Virtual Machine
Monitor software enables multiple, robust independent software environments
inside a single platform.
ITPM Integrated Trusted Platform Module
IOV I/O Virtualization
LCD Liquid Crystal Display
LVDS Low Voltage Differential Signaling
A high speed, low power data transmission standard used for display connections
to LCD panels.
MCP Multi-Chip Package
NCTF Non-Critical to Function: NCTF locations are typically redundant ground or non-
critical reserved , so the loss of the solder jo int continuity at end of life conditi ons
will not affect the overall product functionality.
PCH
Platform Controller Hub. The new 2009 chipset with centralized platform
capabilities including the main I/O interfaces along with display connectivity,
audio features, power management, manageability, security and storage
features. The PCH may also be referred to using the code name Ibex Peak.
PECI Platform Environment Control Interface
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 13
Introduction and Features Summary
1.5 Related Documents
Refer to the documents in Table 1 for additional information.
PEG PCI Express* Graphics. External Graphics using PCI Express Architecture. A
high-speed serial interface whose configuration is software compatible with the
existing PCI specifications.
Processor The 64-bit, single-core or multi-core component (package)
Processor Core The term “processor core” refers to Si die itself which can contain multiple
executio n cores. Each execution core has an instruction cache, data ca che, and
256-KB L2 cache. All execution cores share the L3 cache.
Rank A unit of DRAM corresponding four to eight devices in parallel, ignoring ECC.
These devices are usually, but not always, mounted on a single side of a SO-
DIMM.
SCI System Control Interrupt. Used in ACPI protocol.
Storage Conditions
A non-operational state. The processor may be installed in a platform, in a tray,
or loose. Processors may be sealed in packaging or exposed to free air. Under
these conditions, processor landings should not be connected to any supply
voltages, hav e any I/Os biased or receive any clocks . Upon exposure to “free air”
(i.e., unsealed packaging or a device removed from packaging material) the
processor must be handled in accordance with moisture sensitivity labeling
(MSL) as indicated on the packaging material.
TAC Thermal Averaging Constant
TDP Thermal Design Power
TOM Top of Memory
TTM Time-To-Market
VCC Processor core power supply
VSS Processor ground
VAXG Graphics core power supply
VTT L3 shared cache, memory controller, and processor I/O power rail
VDDQ DDR3 power rail
VLD Variable Length Decoding
x1 Refers to a Link or Port with one Physical Lane
x4 Refers to a Link or Port with four Physical Lanes
x8 Refers to a Link or Port with eight Physical Lanes
x16 Refers to a Link or Port with sixteen Physical Lanes
Term Description
Table 1. Processor Documents
Document Document Number/
Location
Intel® CoreTM i7-600, i5-500 and i3-300 Mobile Processor Series Datasheet http://www.intel.com
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel®
Celeron® Processor P4505, U3405 Series Datasheet Addendum Specification
Update http://www.intel.com
Introduction and Features Summary
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
14 Document Number: 323178-003
§ §
Table 2. PCH Documents
Document Document Number/
Location
Intel® 5 Series Chipset and Intel® 3400 Series Chipset Datasheet http://www.intel.com
Table 3. Public Specifications
Document Document Number/
Location
Advanced Configuration and Power Interface Specification 3.0 http://www.acpi.info/
PCI Local Bus Specification 3.0 http://www.pcisig.com/
specifications
PCI Express Base Specification 2.0 http://www.pcisig.com
DDR3 SDRAM Specification http://www.jedec.org
DisplayPort Specification http://www.vesa.org
Intel® 64 and IA-32 Architectures Software Developer's Manuals http://www.intel.com/
products/processor/
manuals/index.htm
Volume 1: Basic Architecture 253665
Volume 2A: Instruction Set Reference, A-M 253666
Volume 2B: Instruction Set Reference, N-Z 253667
Volume 3A: System Programming Guide 253668
Volume 3B: System Programming Guide 253669
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 15
Interfaces
2 Interfaces
This chapter describes the interfaces supported by the processor.
2.1 System Memory Interface
2.1.1 System Memory Technology Supported
The Integrated Memory Controller (IMC) supports DDR3 protocols with two,
independent, 64-bit wide channels each accessing one DIMM. It supports:
ECC and non-ECC un-buf fered D IMMs. No su pport for m i xed ECC and non-ECC
DIMM configurations.
DDR3 Data Transfer Rates:
800 MT/s (PC3-6400), and 1066 MT/s (PC3-8500)
•DDR3 DIMM Modules:
Raw Card A – single rank x8 unbuffered non-ECC
Raw Card B – dual rank x8 unbuffered non-ECC
Raw Card C – single rank x16 unbuffered non-ECC
Raw Card D – single rank x8 unbuffered ECC
Raw Card E – dual rank x8 unbuffered ECC
Raw Card F - dual rank x16 unbuffered non-ECC
DDR3 DRAM Dev i ce Technology:
Standard 1-Gb, and 2-Gb technologies and addressing are supported for x16
and x8 devices. There is no support for memory modules with different
technologies or capacities on opposite sides of the same memory module. If
one side of a memory module is populated, the other side is either identica l or
empty.
Table 4. Supported DIMM Module Configurations (Sheet 1 of 2)
Raw
Card
Version
DIMM
Capacity
DRAM
Device
Technology
DRAM
Organization
# of
DRAM
Devices
# of
Physical
Device
Ranks
# of Row/
Col
Address
Bits
# of
Banks
Inside
DRAM
Page
Size
A
512 MB 512 Mb 64 M x 8 8 1 13/10 8 8K
1 GB 1 Gb 128 M x 8 8 1 14/10 8 8K
2 GB 2 Gb 256M x 8 8 1 15/10 8 8K
B
1 GB 512 Mb 64 M x 8 16 2 13/10 8 8K
2 GB 1 Gb 128 M x 8 16 2 14/10 8 8K
4 GB 2 Gb 256 M x 8 16 2 15/10 8 8K
C
256MB 512 Mb 32 M x 16 4 1 12/10 8 8K
512 MB 1 Gb 64 M x 8 4 1 13/10 8 8K
1 GB 2 Gb 128 M x 16 4 1 14/10 8 8K
Interfaces
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
16 Document Number: 323178-003
2.1.2 System Memory Timing Support
The IMC supports the following DDR3 Speed Bin, CAS Write Latency (CWL), and
command signal mode timings on the main memory interface:
tCL = CAS Latency
tRCD = Activate Command to READ or WRITE Command delay
tRP = PRECHARGE Command Period
CWL = CAS Write Latency
Command Signal modes = 1n indicates a new command may be issued every
clock. Command launch mode programming depends on the transfer rate and
memory configuration.
2.1.3 System Memory Organization Modes
The IMC supports two memory organization modes, single-channel and dual-channel.
Depending upon how the DIMM Modules are populated in each memory channel, a
number of different configurations can exist.
2.1.3.1 Single-Channel Mode
In this mode, all memory cycles are directed to a single-channel. Single-channel mode
is used when either Channel A or Channel B DIMM connectors are populated in any
order, but not both.
D
512 MB 512 Mb 64 M x 8 9 1 13/10 8 8K
1 GB 1 Gb 128 M x 8 9 1 14/10 8 8K
2 GB 2 Gb 256 M x 8 9 1 15/10 8 8K
E
1 GB 512 Mb 64M x 8 18 2 13/10 8 8K
2 GB 1 Gb 128 M x 8 18 2 14/10 8 8K
4 GB 2 Gb 256 M x 8 18 2 15/10 8 8K
F
512 MB 512 Mb 32 M x 16 8 2 12/10 8 8K
1 GB 1 Gb 64 M x 16 8 2 13/10 8 8K
2 GB 2 Gb 128 M x 16 8 2 14/10 8 8K
Table 4. Supported DIMM Module Configurations (Sheet 2 of 2)
Raw
Card
Version
DIMM
Capacity
DRAM
Device
Technology
DRAM
Organization
# of
DRAM
Devices
# of
Physical
Device
Ranks
# of Row/
Col
Address
Bits
# of
Banks
Inside
DRAM
Page
Size
Table 5. DDR3 System Memory Timing Support
Transfer
Rate
(MT/s)
tCL
(tCK) tRCD
(tCK) tRP
(tCK) CWL
(tCK) CMD Mode Notes
800 6 6 6 5 1n 1
1066 777
61n 1
888
NOTES:
1. System Memory timing support is based on availability and is subject to change.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 17
Interfaces
2.1.3.2 Dual-Channel Mode - Intel® Flex Memory Technology Mode
The IMC supports Intel® Flex Memory Technology Mode. This mode combines the
advantages of the Dual-Channel Symmetric (Interleaved) and Dual-Channel
Asymmetric Modes. Memory is divided into a symmetric and a asymmetric zone. The
symmetric zone starts at the lowest address in each channel and is contiguous until the
asymmetric zone begins or until the top address of the channel with the smaller
capacity is reached. In this mode, the system runs with one zone of dual-channel mode
and one zone of single-channel mode, simultaneously, across the whole memory array.
2.1.3.2.1 Dual-Channel Symmetric Mode
Dual-Channel Symmetric mode, also known as interleaved mode, provides maximum
performance on real world applications. Addresses are ping-ponged betwee n the
channels after each cache line (64-byte boundary). If there are two requests, and the
second request is to an address on the opposite channel from the first, that request can
be sent before data from the first request has returned. If two consecutive cache lines
are requested, both may be retrieved simultaneously, since they are ensured to be on
opposite channels. Use Dual-Channel Symmetric mode when both Channel A and
Channel B DIMM connectors are populated in any order, with the total amount of
memory in each channel being the same.
When both channels are populated with the same memory capacity and the boundary
between the dual channel zone and the single channel zone is the top of memory, IMC
operates completely in Dual-Channel Symmetric mode.
Note: The DRAM device technology and width may vary from one channel to the other.
2.1.3.2.2 Dual-Channel Asymmetric Mode
This mode trades performance for system design flexibility. Unlike the previous mode,
addresses start at the bottom of Channel B and stay there until the end of the highest
rank in Channel B, and then addresses continue from the bottom of Channel A to the
top. Real world applications are unlikely to make requests that alternate between
addresses that sit on opposite channels with this memory organization, so in most
cases, bandwidth is limited to a single channel.
Figure 2. Intel® Flex Memory Technology Operation
CH BCH A
CH BCH A
B B
C
BB
C
B
B
CN on interleaved
access
D ual channel
interleaved access
TOM
B – T he largest physical m em ory am ount of the sm aller size m em ory m odule
C – The rem aining physical m em ory am ount of the larger size m em ory m odule
Interfaces
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
18 Document Number: 323178-003
This mode is used when Intel® Flex Memory Technology is disabled and both Channel A
and Channel B DIMM connectors are populated in any order with the total amount of
memory in each channel being different.
2.1.4 Rules for Populating Memory Slots
In all modes, the frequency of system memory is the lowest frequency of all memory
modules placed in the system, as determined through the SPD registers on the
memory modules. The system memory controller supports only one DIMM connector
per channel.For dual-channel modes both channels must have an DIMM connector
populated and for single-channel mode only a single-channel must have an DIMM
connector populated.
2.1.5 Technology Enhancements of Intel® Fast Memory Access
(Intel® FMA)
The following sections describe the Just-in-Time Scheduling, Command Overlap, and
Out-of-Order Scheduling Intel® FMA technology enhancements.
2.1.5.1 Just-in-Time Command Scheduling
The memory controller has an advanced command scheduler where all pending
requests are examined simultaneously to determine the most efficient request to be
issued next. The most efficient request is picked from all pending requests and issued
to system memory Just-in-Time to make optimal use of Command Overlapping. Thus,
instead of having all memory access requests go individually through an arbitration
mechanism forcing requests to be executed one at a time, they can be started without
Figure 3. Dual-Channel Symmetric (Interleaved) and Dual-Channel Asymmetric Modes
CH. B
CH. A
CH. B
CH. A
CH. B
CH. A
CL
0
Top of
Memory
CL
0
CH. A
CH. B CH.B-top
DRB
Dual Channel Interleaved
(memory sizes must match) Dual Channel Asymmetric
(memory sizes can differ)
Top of
Memory
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 19
Interfaces
interfering with the current request allowing for concurrent issuing of requests. This
allows for optimized bandwidth and reduced latency while maintaining appropriate
command spacing to meet system memory protocol.
2.1.5.2 Command Overlap
Command Overlap allows the insertion of the DRAM commands between the Activate,
Precharge, and Read/Write commands normally used, as long as the inserted
commands do not affect the currently executing command. Multiple commands can be
issued in an overlapping manner, increasing the efficiency of system memory protocol.
2.1.5.3 Out-of-Order Scheduling
While leveraging the Just-in-Time Scheduling and Command Overlap enhancements,
the IMC continuously monitors pending requ ests to system memory for th e best use of
bandwidth and reduction of latency. If there are multiple requests to the same open
page, these requests would be launched in a back to back manner to make optimum
use of the open memory page. This ability to reorder requests on the fly allows the IMC
to further reduce latency and increase bandwidth efficiency.
2.1.6 DRAM Clock Generation
Two differential clock pairs for every supported DIMM. There are total of four clock pairs
driven directly by the processor to two DIMMs.
2.1.7 DDR3 On-Die Termination
On-Die Termination (OD T) is a feature that allows a DRAM device to turn on/off internal
termination resistance for each DQ, DQS/DQS#, and DM signal via the OD T control pin.
The ODT feature improves signal integrity of the memory channel by allowing the
DRAM controller to independently turn on or off the termination resistance for any or all
DRAM devices themselves instead of on the motherboard.
The IMC drives out the required ODT signals, based on the memory configuration and
which rank is being written to or read from, to the DRAM devices on a targeted DIMM
module rank to enable or disable their termination resistance.
2.2 PCI Express* Interface
This section describes the PCI Express* interface capabilities of the processor. See the
PCI Express Base Specification for further details on PCI Express.
The processor has two options for PCI Express controllers available:
1 x16 PCI Express Port
or
2 x8 PCI Express Ports
Enabled with CFG[0] strapping, see Section 2.2.2 and Section 3.2
2.2.1 PCI Express* Configuration Mechanism
The PCI Express* link is mapped through a PCI-to-PCI bridge structure.
Interfaces
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
20 Document Number: 323178-003
2.2.2 PCI Express Port Bifurcation
When bifurcated, the wires which had previously been assigned to lanes 15:8 of the
single x16 prim ary port (Port 0) are reassig ned to lanes 7:0 of the x8 secondary port
(Port 1). This assignment applies whether the lane numbering is reversed or not. The
controls for the secondary port (Port 1) and the associated virtual PCI-to-PCI bridge
can be found in PCI Device 6.
When the primary port is not bifurcated, Device 6 is hidden from the discovery
mechanism used in PCI enumeration, such that configuration of the device is neither
possible nor necessary.
Figure 4. PCI Express* Related Register Structures in the
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i 5-520 E, i3-330E and Intel®
Celeron® Processor P4505, U3405 Series
PCI-PCI Bridge
representing root
PCI Express port
(Device 1)
PCI-PCI Bridge
representing root
PCI Express port
(Device 6)
PCI Compatible
Host Bridge Device
(Device 0)
PCI Express
Device
PCI Express
Device
Port 0
Port 1
DMI
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 21
Signal Description
3 Signal Description
This chapter describes the processor signals. They are arranged in functional groups
according to their associated interface or category. The following notations are used to
describe the signal type:
The signal description also includes the type of buffer used for the particular signal:
NOTES:
1. Qualifier for a buffer type.
3.1 System Memory Interface
Notations Signal Type
IInput Pin
OOutput Pin
I/O Bi-directional Input/Output Pin
Table 6. Signal Description Buffer Types
Signal Description
PCI Express* PC I Express interface signals. These signals are compatible with PCI Express 2.0
Signalling Environment AC Specifications and are AC coupled. The buffers are not 3.3-
V tolerant. Refer to the PCIe specification.
FDI Intel Flexible Display interface signals. These signals are compatible with PCI Express
2.0 Signaling Environment AC Specifications, b ut are DC co uple d. Th e b uffers are not
3.3-V tolerant.
DMI Direct Media Interface signals. These signals are compatible with PCI Express 2.0
Signaling Enviro nment AC Sp ec ifications, but are DC coupled. Th e buf fers are not 3.3 -
V tolerant.
CMOS CMOS buffers. 1.1-V tolerant
DDR3 DDR3 buffers: 1.5-V tolerant
AAnalog reference or output. May be used as a threshold voltage or for buffer
compensation.
GTL Gunning Transceiver Logic signaling technology.
Ref Voltage reference signal.
Asynchronous1Signal has no timing relationship with any reference clock.
Table 7. Memory Channel A (S heet 1 of 2)
Signal Name Description Direction/Buffer
Type
SA_BS[2:0] Bank Select: These signals define which banks
are selected within each SDRAM rank. O
DDR3
SA_WE# Write Enable Control Signal: Used with
SA_RAS# and SA_CAS# (along with SA_CS#) to
define the SDRAM Commands.
O
DDR3
Signal Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
22 Document Number: 323178-003
SA_RAS# RAS Control Signal: Used with SA_CAS# and
SA_WE# (along with SA_CS#) to define the SRAM
Commands.
O
DDR3
SA_CAS# CAS Control Signal: Used with SA_RAS# and
SA_WE# (along with SA_CS#) to define the SRAM
Commands.
O
DDR3
SA_DM[7:0]
Data Mask: These signals are used to mask
individual bytes of data in the case of a partial
write and to interrupt bur st writes. When activated
during writes, the corresponding data groups in
the SDRAM are mas k ed. T here i s one SA _DM[7 :0]
for every data byte lane.
O
DDR3
SA_DQS[8] ECC Data Strobe: SA_DQS[8] is the data strobe
for the ECC check data bits SA_DQ[71:64]
Note: Not required for non-ECC mode
I/O
DDR3
SA_DQS[7:0]
Data Strobes: SA_DQS[7:0] and its complement
signal group make up a differential stro be pair. The
data is captured at the crossing point of
SA_DQS[7:0] and its SA_DQS#[7:0] during read
and write transactions
I/O
DDR3
SA_DQS#[8]
ECC Data Strobe Complement: SA_DQS#[8] is
the complement strobe for the ECC check data bits
SA_DQ[71:64]
Note: Not required for non-ECC mode
I/O
DDR3
SA_DQS#[7:0] Data Strobe Complements: These are the
complementary strobe signals. I/O
DDR3
SA_DQ[71:64] ECC Check Data Bits: SA_DQ[71:64] are the ECC
check data bits for Channel A.
Note: Not required for non-ECC mode
I/O
DDR3
SA_DQ[63:0] Data Bus: Channel A data signal interface to the
SDRAM data bus. I/O
DDR3
SA_MA[15:0] Memory Address: Th ese signals are used to
provide the multiplexed row and column address
to the SDRAM.
O
DDR3
SA_CK[1:0]
SDRAM Differential Clock: Channel A SDRAM
Differential clock signal pair. The crossing of the
positive edge of SA_CK and the negative ed ge of
its complement SA_CK# are used to sample the
command and control signals on the SDRAM.
O
DDR3
SA_CK#[1:0] SDRAM Inverted Differential Clock: Channel A
SDRAM Differential clock signal-pair complement. O
DDR3
SA_CKE[1:0]
Clock Enable: (1 per rank) Used to:
- Initialize the SDRAMs during power-up
- Power-down SDRAM ranks
- Place all SDRAM ranks into and out of self -refresh
during STR
O
DDR3
SA_CS#[1:0] Chip Select: (1 per rank) Used to select partic ular
SDRAM components during the active state . There
is one Chip Select for each SDRAM rank.
O
DDR3
SA_ODT[1:0] On Die Termination: Active Termination Control. O
DDR3
Table 7. Memory Channel A (Sheet 2 of 2)
Signal Name Description Direction/Buffer
Type
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 23
Signal Description
Table 8. Memory Channel B (She et 1 of 2)
Signal Name Description Direction/Buffer
Type
SB_BS[2:0] Bank Select: These signals define which banks
are selected within each SDRAM rank. O
DDR3
SB_WE# Write Enable Control Signal: Used with
SB_RAS# and SB_CAS# (along with SB_CS#) to
define the SDRAM Commands.
O
DDR3
SB_RAS# RAS Control Signal: Used with SB_CAS# and
SB_WE# (along with SB_CS#) to define the SRAM
Commands.
O
DDR3
SB_CAS# CAS Control Signal: Used with SB_RAS# and
SB_WE# (along with SB_CS#) to define the SRAM
Commands.
O
DDR3
SB_DM[7:0]
Data Mask: These signals are used to mask
individual bytes of data in the case of a partial
write, and to interrupt burst writes. When
activated during writes, the corresponding data
groups in the SDRAM are masked. There is one
SB_DM[7:0] for every data byte lane.
O
DDR3
SB_DQS[8] ECC Data Strobe: SB_DQS[8] is the data strobe
for the ECC check data bits SB_DQ[71:64]
Note: Not required for non-ECC mode
I/O
DDR3
SB_DQS[7:0]
Data Strobes: SB_DQS[7:0] and its complement
signal group make up a differen tial strobe pair. The
data is captured at the crossing point of
SB_DQS[7:0] and its SB_DQS#[7:0] during read
and write transactions.
I/O
DDR3
SB_DQS#[8]
ECC Data Strobe Complement: SB_DQS#[8] is
the complement strobe for the ECC check data bits
SB_DQ[71:64]
Note: Not required for non-ECC mode
I/O
DDR3
SB_DQS#[7:0] Data Strobe Complements: These are the
complementary strobe signals. I/O
DDR3
SB_DQ[71:64] ECC Check Data Bits: SB_DQ[71:64] are the ECC
check data bits for Channel B
Note: Not required for non-ECC mode
I/O
DDR3
SB_DQ[63:0] Data Bus: Channel B data signal interface to the
SDRAM data bus. I/O
DDR3
SB_MA[15:0] Memory Address: These signals are used to
provide the multiplexed row and column address
to the SDRAM.
O
DDR3
SB_CK[1:0]
SDRAM Differential Clock: Channel B SDRAM
Differential clock signal pair. The crossing of the
positive edge of SB_CK and the n egative edge of
its complement SB_CK# are used to sample the
command and control signals on the SDRAM.
O
DDR3
SB_CK#[1:0] SDRAM Inverted Differential Clock: Channel B
SDRAM Differential clock signal-pair complement. O
DDR3
SB_CKE[1:0]
Clock Enable: (1 per rank) Used to:
- Initialize the SDRAMs during power-up.
- Power-down SDRAM ranks.
- Place all SDRAM ranks into and out of self -refresh
during STR .
O
DDR3
SB_CS#[1:0] Chip Select: (1 per rank) Used to select particular
SDRAM components during the act iv e state. T here
is one Chip Select for each SDRAM rank.
O
DDR3
Signal Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
24 Document Number: 323178-003
3.2 Reset and Miscellaneous Signals
§ §
SB_ODT[1:0] On Die Termination: Active Termination Control. O
DDR3
Table 9. Reset and Miscellaneous Signals
Signal Name Description Direction/Buffer
Type
SM_DRAMRST# DDR3 DRAM Reset: Reset signal from processor
to DRAM devices. One for all channels of DIMMs. O
DDR3
CFG[17:0]
Configuration signals:
The CFG signals have a default value of 1 if not
terminated on the board. Refer to the Platform
Design Guide for pull-down recommendations
when logic low is desired.
CFG[0]: PCI Express* Bifurcation:
1 = 1 x16 PCI Express I/O
0 = 2 x 8 PCI Express I/O
CFG[1]: Reserved
CFG[2]: Reserved configuration lands. A test
point may be placed on the board for this land.
CFG[3]: PCI Express* Static Lane Numbering
Reversal. A test point may be placed on the
board for this land. Lane reversal will be
applied across all 16 lanes.
—1: No Reversal
—0: Reversal
In the case of Bifurcation with NO Lane Reversal
the physical lane mapping is as follows:
Lanes 15:8 => Port 1 Lanes 7:0
Lanes 7:0 => Port 0 Lanes 7:0
In the case of Bifurcation with WITH Lane R evers al
the physical lane mapping is as follows:
Lanes 15:8 => Port 0 Lanes 0:7
Lanes 7:0 => Port 1 Lanes 0:7
CFG[4]: Embedded DisplayPort Detection:
This is used to detect the presence of a device
on the Embedded DisplayPort.
1: No Physical Display Port attached to
the Embedded Display Port
0: An external Display Port device is
connected to the Embedded Display Port
CFG[17:5]: Reserved configuration lands.
Intel does not recommend a test point on the
board for these lands.
I
CMOS
Table 8. Memory Channel B (Sheet 2 of 2)
Signal Name Description Direction/Buffer
Type
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 25
Electrical Specifications
4 Electrical Specifications
4.1 Signal Groups
Signals are grouped by buffer type and similar characteristics as listed in Table 10. The
buffer type indicates which signaling technology and specifications apply to the signals.
All the differential signals, and selected DDR3 and Control Sideband signals have On-
Die Termination (ODT) resistors. There are some signals that do not have ODT and
need to be terminated on the board.
All Control Sideband Asynchronous signals are required to be asserted/deasserted for
at least eight BCLKs in order for the processor to recognize the proper signal state. See
Section 4.2 for the DC specifications.
4.2 DC Specifications
The processor DC specifications in this section are defined at the processor
pins, unless noted otherwise. See Chapter 5 for the processor pin listings and
Chapter 3 for signal definitions.
The DC specifications for the DDR3 signals are listed in Table 11.
4.2.1 Voltage and Current Specifications
Table 10. Mobile Signal Groups1
Signal Group Alpha
Group Type Signals
DDR3 Data Signals2
Single ended (e) DDR3 Bi-directional SA_DQ[71:0], SB_DQ[71:0]
Differential (f) DDR3 Bi-directional SA_DQS[8:0], SA_DQS#[8:0]
SB_DQS[8:0], SB_DQS#[8:0]
Power/Ground/Other
Single Ended (z) Other DBR#, PROC_DETECT, VCAP0, VCAP1, VCAP2
NOTES:
1. Refer to Chapter 3 for signal description details.
2. SA and SB refer to DDR3 Channel A and DDR3 Channel B.
Table 11. DDR3 Signal Group DC Specifications (Sheet 1 of 2)
Symbol Parameter Alpha
Group Min Typ Max Units Notes1,9
VIL Input Low Voltage (e,f) 0.43*VDDQ V2,4
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.
4. VIH and VOH may experience excursions above VDDQ. However, input signal drivers must comply with the signal quality
specifications.
5. RVTT_TERM is the termination on the DIMM and in not controlled by the processor.
Electrical Specifications
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
26 Document Number: 323178-003
VIH Input High Voltage (e,f) 0.57*VDDQ V3
VOL Output Low Voltage (c,d,e,f) (VDDQ / 2)* (RON /
(RON+RVTT_TERM)) 5
VOH Output High Voltage (c,d,e,f) VDDQ - ((VDDQ / 2)*
(RON/
(RON+RVTT_TERM)) V4,5
Table 11. DDR3 Signal Group DC Specifications (Sheet 2 of 2)
Symbol Parameter Alpha
Group Min Typ Max Units Notes1,9
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.
4. VIH and VOH may experience excursions above VDDQ. However, input signal drivers must comply with the signal quality
specifications.
5. RVTT_TERM is the termination on the DIMM and in not controlled by the processor.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 27
Processor Ball and Signal Information
5 Processor Ball and Signal
Information
5.1 Processor Ball Assignments
Table 12 provides a listing of all processor pins ordered alphabetically by ball name
for the Intel® Core TM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel®
Celeron® Processor P4505, U3405 Series package respectively.
Table 13 provides a listing of all processor pins ordered alphabetically by ball
number for the Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E
and Intel® Celeron® Processor P4505, U3405 Series package respectively.
Figure 5, Figure 6, Figure 7, and Figure 8 show the Top-Down view of the Intel®
CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®
Processor P4505, U3405 Series ballmap
Processor Ball and Signal Information
323178-003 28
Figure 5. Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Ser ies Ballmap
(Top View, Upper-Left Quadrant)
71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36
BV DC_TES
T_BV71
DC_TES
T_BV69
DC_TES
T_BV68 VSS VSS SB_DQS
[6]
SB_DQ[4
8]
SB_DQ[4
7]
SB_DM[5
]
SB_DQS
#[5]
SB_DQ[3
9]
SB_DQ[3
7]
SB_DQ[3
4]
SB_DQ[3
3]
SB_DM[4
]
SB_ODT
[0]
SB_BS[1
]
SB_BS[0
]
SM_RCO
MP[2]
SB_CK[1
]
SA_MA[2
]
BU SB_DM[6
]
SB_DQS
#[6] VSS SB_DQ[4
6] VSS SB_DQS
[5] VSS SB_DQ[4
1] VSS SB_ODT
[1] VSS SB_CAS
#VSS SB_MA[1
0]
SA_DQ[6
6]
SB_CK#[
1] VSS
BT DC_TES
T_BT71
DC_TES
T_BT69 VSS SB_DQ[5
3]
SB_DQ[4
2]
SB_DQ[4
3]
SB_DQ[4
4]
SB_DQ[3
8]
SB_DQS
[4]
SB_DQS
#[4]
SB_DQ[3
2]
SB_DQ[3
6]
SB_MA[1
3]
SB_CS#[
1] SB_WE# SB_RAS
#SA_BS[0] SA_MA[0
]
BR DC_TES
T_BR71 VSS VSS SB_DQ[5
0]
SB_DQ[5
1]
SB_DQ[5
2]
BP SB_DQ[4
9]
SA_DQS
#[6]
SB_DQ[4
5]
SB_DQ[4
0]
SB_DQ[3
5]
SB_CS#[
0] VSS SM_RCO
MP[1]
BN VSS SB_DQ[5
4]
SA_DQ[5
0] VSS SA_DM[6
]
SA_DQ[4
9]
SA_DQ[4
7]
SA_DQ[4
1]
SA_DQ[4
0]
SA_DQ[3
9]
SA_DQ[3
8]
SA_DQ[3
6]
SB_DQ[6
8]
BM VSS SA_DQS[
6]
SA_DQ[4
6] VSS VSS SA_DQ[3
3]
BL VSS SB_DQ[5
5] VSS VSS VSS SA_ODT[
1] VSS SA_RAS
#
BK SB_DQ[6
0]
SB_DQ[6
1]
SA_DQ[5
4] VSS SA_DQ[5
5] VSS VSS SA_DQS
#[5]
SA_DQS[
4]
SA_CAS
#
SA_CK#[
1]
BJ SB_DQ[5
6]
SB_DQS
[7]
SA_DQ[6
0] VSS SA_DQ[5
6]
SA_DQ[5
1]
SA_DQ[5
3]
SA_DQ[4
3]
SA_DQ[4
5]
SA_CS#[
1]
SA_DQ[3
2]
SA_DQ[7
1]
BH VSS SA_DM[7
]VSS VSS SA_DQ[4
2]
SA_DQS[
5]
SA_DQ[4
4] VSS SA_DQS
#[4]
SA_DQ[3
7]
SA_CS#[
0] SA_BS[1] SA_CK[1
]
BG SB_DQ[5
8]
SB_DQS
#[7]
SA_DM[5
]VSS SA_DM[4
]
SA_DQ[7
0] VSS
BF SB_DQ[5
7]
SB_DM[7
]
SA_DQ[6
1]
SA_DQ[5
7] VSS VTT0 VTT0 SA_DQ[5
2]
SA_DQ[4
8]
SA_DQ[3
5]
SA_DQ[3
4]
SA_ODT[
0]
SA_MA[1
3] SA_WE#
BE RSVD VSS RSVD VSS SA_DQS[
7]
SA_DQS
#[7]
BD SB_DQ[6
2]
SB_DQ[6
3] VTT 0 VTT0 VSS VCAP0 VSS VCAP0 VSS VCAP0 VSS VCAP1 VSS VCAP1 VSS VCAP1
BC SA_DQ[6
3]
SB_DQ[5
9]
BB VSS RSVD SA_DQ[5
9]
SA_DQ[5
8] VSS VT T 0 VTT 0 VSS VCAP0 VSS VCAP0 VSS VCAP0 VSS VCAP1 VSS VCAP1 VSS VCAP1
BA VSS
AY VSS RSVD VSS SA_DQ[6
2] VSS VT T 0 VSS VCAP0 VSS VCAP0 VSS VCAP0 VSS VCAP1 VSS VCAP1 VSS VCAP1 VSS
AW RSVD VSS VSS VTT 0 VSS VCAP0 VSS VCAP0 VSS VCAP0 VSS VCAP1 VSS VCAP1 VSS VCAP1 VSS
AV RSVD RSVD PM_EXT
_TS#[0]
PM_EXT
_TS#[1]
AU RSVD VSS RSVD VSS VT T 0 VT T 0 VSS VCAP0 VSS VCAP0 VSS VCAP0 VSS VCAP1 VSS VCAP1 VSS VCAP1
AT RSVD RSVD VSS
AR RSVD RSVD VSS VT T 0 VTT 0 VSS VCAP0 VSS VCAP0 VSS VCAP0 VSS VCAP1 VSS VCAP1 VSS VCAP1
AP VSS RSVD VSS
AN GFX_VID
[4] RSVD VSS VT T 0 VT T 0 VCAP0 VSS VCAP0 VSS VCAP0 VSS VCAP1 VSS VCAP1 VSS VCAP1 VSS
AM GFX_VID
[6]
GFX_VID
[5] RSVD VSS
AL GFX_DP
RSLPVR
GFX_IM
ON VSS VT T 0 VTT 0 VCAP0 VSS VCAP0 VSS VCAP0 VSS VCAP1 VSS VCAP1 VSS VCAP1 VSS
AK RSVD VSS RSVD RSVD VSS VCAP2 VCAP2 VCAP2 VCAP0 VSS VCAP0 VSS VCAP0 VSS VCAP1 VSS VCAP1 VSS VCAP1 VSS
AJ VSS
AH GFX_VID
[3]
GFX_VR
_EN RSVD VSS VCAP2 VCAP2 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS
AG GFX_VID
[2]
GFX_VID
[1] VSS
AF GFX_VID
[0] VSS VSS VCAP2 VCAP2 VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VT T 0 VTT 0
AE VSS COMP0 VSS
AD COMP3 COMP1 VSS VCAP2 VCAP2 VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VT T 0 VT T0
AC RSVD COMP2 RSVD VSS VSS
AB VSS VSS VCAP2 VCAP2 VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VSS
Processor Ball and Signal Information
29 323178-003
Figure 6. Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Ser ies Ballmap
(Top View, Upper-Right Quadrant)
3534333231302928272625242322212019181716151413121110987654321
SB_CK#[
0]
SM_RCO
MP[0]
SB_MA[4
]
SB_MA[2
]
SB_MA[8
]
SB_MA[1
4]
SB_BS[2
]
SB_DQ[2
6]
SB_DQ[3
0]
SB_DQ[2
9]
SB_DQ[2
2]
SB_DQ[1
9]
SB_DQS
[2]
SB_DQ[2
0]
SB_DQ[1
5]
RSVD_N
CTF
RSVD_N
CTF
DC_TES
T_BV5
DC_TES
T_BV3
DC_TES
T_BV1 BV
SA_DQ[6
7]
SB_CK[0
]VSS SB_MA[3
]
SB_DQ[7
1]
SB_MA[1
1] VSS SB_MA[1
5] VSS SB_DQ[2
5] VSS SB_DQ[2
3] VSS SB_DQS
#[2] VSS SB_DQ[1
4] VSS BU
SB_MA[0
]
SB_MA[5
]
SB_MA[6
]
SB_MA[1
2]
SB_MA[9
]
SB_CKE[
0]
SB_CKE[
1]
SB_DQ[2
7]
SB_DQ[3
1]
SB_DQS
#[3]
SB_DQS
[3]
SB_DQ[1
8]
SB_DM[2
]
SB_DQ[1
7]
RSVD_N
CTF
DC_TES
T_BT3
DC_TES
T_BT1 BT
SB_DQ[1
6]
SB_DQ[1
1]
SB_DQ[1
0]
RSVD_N
CTF VSS DC_TES
T_BR1 BR
SA_CK#[
0]
SA_MA[1
]
SB_MA[1
]
SB_MA[7
]
SB_DM[3
]
SB_DQ[2
8]
SB_DQ[2
4]
SB_DQ[2
1] BP
SA_MA[5
]
SA_MA[8
]
SA_MA[1
4]
SA_MA[1
5]
SA_DM[3
]
SA_DQS[
3]
SA_DQ[2
4]
SA_DQ[1
6]
SA_DQS
#[2]
SA_DQ[2
0]
SA_DQ[1
7]
SA_DQ[1
5] VSS SB_DQS
#[1] VSS BN
SA_CK[0
]VSS SB_DQ[6
7] VSS VSS SA_DM[2
]
SB_DQS
[1] BM
SB_DQ[7
0] VSS SA_DQS
#[3] VSS SA_DQS[
2]
SB_DM[1
]VSS BL
VSS SA_MA[6
]
SA_DQ[2
6]
SA_CKE[
1]
SA_DQ[2
3]
SA_DQ[2
2] VSS SA_DQ[2
1]
SA_DQ[1
4]
SA_DM[1
]
SB_DQ[1
3] BK
SA_MA[7
]
SA_MA[1
2] VSS SA_DQ[2
8]
SM_DRA
MRST#
SA_DQ[1
0] VSS SA_DQS
#[1]
SA_DQS[
1]
SB_DQ[1
2] VSS BJ
SA_MA[1
0]
SB_DQ[6
6]
SA_MA[1
1]
SA_DQ[6
9]
SA_DQ[2
7] VSS SA_DQ[2
9] VSS SA_DQ[1
8] VSS SA_DQ[1
1]
SB_DQ[7
]BH
SA_MA[3
]
SA_MA[4
]
SA_DQ[3
1]
SA_DQ[3
0]
SA_DQ[1
9]
SA_DQ[2
5]
SB_DQ[8
]
SB_DQ[9
]BG
VSS SA_MA[9
]SA_BS[2] SA_CKE[
0] VDDQ VDDQ VSS SA_DQ[9
]
SA_DQ[1
2] VSS SA_DQ[1
3]
SB_DQ[6
]BF
SA_DQ[8
]VSS SA_DQ[7
]
SA_DQ[6
]
SB_DQ[3
]
SB_DQS
#[0] VSS BE
VDDQ SA_DQS[
8]
SA_DQS
#[8]
SA_DQ[6
4]
SA_DQ[6
5]
SA_DQ[6
8]
SB_DQ[6
5]
SB_DQ[6
9]
SB_DQ[6
4]
SB_DQS
[8]
SB_DQS
#[8] VDDQ VSS SB_DQS
[0]
SB_DQ[2
]BD
SB_DQ[5
]BC
VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ_C
K
VDDQ_C
K
SA_DM[0
]
SA_DQ[3
]VSS SA_DQ[2
]
SB_DM[0
]VSS BB
SB_DQ[0
]BA
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VTT0 VSS SA_DQS[
0]
SA_DQS
#[0] VSS SB_DQ[4
]AY
VTT0 VTT0 VTT0_D
DR
VTT0_D
DR
VTT0_D
DR
VTT0_D
DR
VTT0_D
DR
VTT0_D
DR
VTT0_D
DR
VTT0_D
DR
VTT0_D
DR
VTT0_D
DR VTT0 VTT0 SB_DQ[1
]AW
VSS SA_DQ[4
]
SA_DQ[5
]RSVD VSS AV
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VTT 0 VSS RSVD RSVD_T
PAU
VSS SA_DQ[0
]
SA_DQ[1
]CFG[6] AT
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VTT 0 VSS VSS AR
RSVD_T
PAP
VTT 0 VT T 0 VAXG VAXG VAXG VAXG VAXG VAXG VAXG VAXG VT T 0 VTT 0 VT T 0 VT T 0 VTT 0 RSVD_T
PVSS VSS VTT_SE
LECT AN
VTT0 VSS
RGOOD
1
SM
_
DRA
MPWRO
K
CFG[1] AM
VSS VSS VAXG VAXG VAXG VAXG VAXG VAXG VAXG VAXG VT T 0 VTT 0 VT T0 VT T 0 CFG[0] VSS AL
VTT 0 VT T 0 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VAXG VAXG BCLK # BCLK CFG[4] CFG[3] CFG[2] AK
VAXG CFG[5] AJ
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VAXG VAXG VSS CFG[10] AH
VSS CFG[7] VSS CFG[9] AG
VTT 0 VT T 0 VT T 0 VTT 0 VAXG VAXG VAXG VAXG VAXG VAXG VAXG VAXG VAXG VAXG_S
ENSE
VSSAXG
_SENSE CFG[15] CFG[16] CFG[8] VSS AF
CFG[13] AE
VTT 0 VT T 0 VT T 0 VTT 0 VAXG VAXG VAXG VAXG VAXG VAXG VAXG VTT1 VTT1 VTT1 VSS CFG[14] AD
VSS FDI_FSY FDI_FSY VSS CFG[12] CFG[11] VSS AC
Processor Ball and Signal Information
323178-003 30
Figure 7. Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Ser ies Ballmap
(Top View, Lower-Left Quadrant)
AD COMP3 COMP1 VSS VCAP2 VCAP2 VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VTT0 VTT0
AC RSVD COMP2 RSVD VSS VSS
AB VSS VSS VCAP2 VCAP2 VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VSS
AA RSVD RSVD VSS VSS VSS VCAP2 VCAP2 VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VSS
YTAPPWR
GOOD
VCCPW
RGOOD
0
WDBR# VSS RSVD RSVD VSS VCAP2 VCAP2 VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VCCPLL VCCPLL
VVSS
UPRDY# PREQ# VSS VSS VCAP2 VCAP2 VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCCPLL
TTDO TDO_M TDI TCK
RVSS RSVD RSVD VSS VCAP2 VCAP2 VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VCCPLL VCCPLL
PTDI_M TRST# VCC
NRESET_
OBS#
PROCH
OT# TMS VSS CATERR
#VSS VCC VSS VCC VSS VCC VSS VCC VCC PEG_TX
#[0]
PEG_TX[
1]
MPROC_D
ETECT BPM#[7] VCC VSS VCC VCC VSS VSS
LVSS VSS VCC VSS VSS PEG_TX[
0]
PEG_TX
#[1]
KBCLK_IT
PBPM#[6] BPM#[3] VSS BPM#[4] VCC VSS VCC VCC VSS VSS
JBCLK_IT
P # BPM#[0] BPM#[1] VSS BPM#[5] BPM#[2] VSS VCC VSS VSS VSS PEG_RX[
1]
HVSS VCC VSS VCC VCC VSS VSS
GVSS VCC VSS VCC VSS VCC VSS VSS VCC VSS PEG_RX
#[0]
PEG_RX
#[1]
FVSS PSI#
PROC
_
D
PRSLPV
R
VCC_SE
NSE
VSS_SE
NSE VSS VCC VSS VSS PEG_RX[
0]
EDC_TES
T_E71 VSS VSS VCC VCC VCC VCC VCC VCC VSS
DVID[6] VID[5] VID[2] VID[1] VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VSS PEG_TX
#[3] VSS PEG_TX[
7]
CDC_TES
T_C71
DC_TES
T_C69 VSS
BVSS VID[4] VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS PEG_TX[
3]
PEG_TX[
4]
P
ADC_TES
T_A71
DC_TES
T_A69
DC_TES
T_A68 VSS VSS VID[3] VID[0] VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC ISENSE VSS PEG_TX
#[4] VSS
71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36
Processor Ball and Signal Information
31 323178-003
Figure 8. Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Ser ies Ballmap
(Top View, Lower-Right Quadrant)
CFG[13] AE
VTT0 VTT0 VTT0 VTT0 VAXG VAXG VAXG VAXG VAXG VAXG VAXG VTT1 VTT1 VTT1 VSS CFG[14] AD
VSS FDI_FSY
NC[1]
FDI_FSY
NC[0] VSS CFG[12] CFG[11] VSS AC
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VTT1 VSS CFG[17] FDI_INT FDI_LSY
NC[1] AB
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VTT1 VSS FDI_LSY
NC[0] AA
DPLL
_
R
EF_SSC
LK
Y
VTT0 VTT0 VTT0 VTT0 VTT0 VTT0 VTT0 VTT0 VTT1 VTT1 VTT1 VTT1 VTT1 VTT1 FDI_TX[7
]
FDI_TX#[
7] VSS
DPLL
_
R
EF_SSC
LK#
VSS W
RSVD V
VTT0 VTT0 VTT0 VTT0 VTT0 VTT0 VTT0 VTT0 VTT1 VTT1 VTT1 VTT1 VTT1 VTT1 VSS FDI_TX#[
6]
FDI_TX[6
]VSS RSVD U
RSVD RSVD VSS T
VTT0 VTT0 VTT0 VTT0 VTT0 VTT0 VTT0 VTT0 VTT1 VTT1 VTT1 VTT1 VSS
VSS
_
SE
NSE_VT
T
FDI_TX[5
]
FDI_TX#[
5] VSS FDI_TX[3
]R
PEG_RX
#[3] VSS FDI_TX#[
3] P
PEG_TX[
2] VSS PEG_TX[
11]
PEG_TX
#[12]
PEG_TX[
13] VSS PECI THERMT
RIP# VSS VTT_SE
NSE
FDI_TX#[
4]
FDI_TX[4
]
FDI_TX#[
1]
FDI_TX[1
]
FDI_TX[2
]N
VSS PEG_RX[
3]
PEG_TX
#[2]
PEG_TX[
12]
PEG_TX
#[13]
PM_SYN
C
DMI_TX[
1]
FDI_TX#[
2] VSS M
PEG_TX
#[8]
PEG_TX
#[11]
PEG_CL
K
PEG_TX[
15] VSS FDI_TX#[
0] L
VSS VSS VSS VSS PEG_RX[
6] VSS DMI_TX#
[1] VSS DMI_RX[
2]
DMI_RX#
[2] VSS VSS FDI_TX[0
]K
PEG_TX[
8]
PEG_RX[
4]
PEG_CL
K#
PEG_TX
#[15]
DMI_TX#
[2]
DMI_TX[
3] VSS DMI_RX#
[1]
DMI_RX[
1]
DMI_RX#
[3]
DMI_RX[
3] J
VSS PEG_RX
#[2]
PEG_TX[
5]
PEG_RX
#[5]
PEG_RX
#[6]
DMI_TX#
[0]
VTTPWR
GOOD VSS H
PEG_RX[
2]
PEG_TX
#[5] VSS PEG_RX
#[4]
PEG_RX[
5] VSS PEG_TX
#[14] VSS DMI_TX[
0] VSS DMI_TX[
2] RSTIN# G
VSS PEG_TX[
14] VSS DMI_TX#
[3]
DMI_RX[
0]
DMI_RX#
[0] VSS RSVD_N
CTF F
VSS VSS VSS VSS VSS RSVD_N
CTF
DC_TES
T_E1 E
P
EG_TX[
7] VSS PEG_TX[
10] VSS PEG_RX
#[7] VSS PEG_RX
#[9] VSS PEG_RX
#[11] VSS PEG_RX
#[13] VSS PEG_RX[
15] VSS PEG_RC
OMPO VSS RSVD VSS D
RSVD_N
CTF
DC_TES
T_C3 C
PEG_TX
#[7]
PEG_TX
#[6]
PEG_TX
#[10]
PEG_TX[
9]
PEG_RX[
7]
PEG_RX
#[8]
PEG_RX[
9]
PEG_RX
#[10]
PEG_RX[
11]
PEG_RX[
12]
PEG_RX[
13]
PEG_RX[
14]
PEG_RX
#[15]
PEG_IC
OMPI
PEG_RBI
AS RSVD RSVD B
VSS PEG_TX[
6] VSS PEG_TX
#[9] VSS PEG_RX[
8] VSS PEG_RX[
10] VSS PEG_RX
#[12] VSS PEG_RX
#[14] VSS PEG_IC
OMPO VSS RSVD VSS RSVD_N
CTF
DC_TES
T_A5 A
363534333231302928272625242322212019181716151413121110987654321
323178-003 32
Processor Ball and Signal Information
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
BCLK AK7 DIFF CLK I
BCLK # AK8 DIFF CLK I
BCLK_ITP K71 DIFF CLK O
BCLK_ITP # J70 DIFF CLK O
BPM#[0] J69 GTL I/O
BPM#[1] J67 GTL I/O
BPM#[2] J62 GTL I/O
BPM#[3] K65 GTL I/O
BPM#[4] K62 GTL I/O
BPM#[5] J64 GTL I/O
BPM#[6] K69 GTL I/O
BPM#[7] M69 GTL I/O
CATERR# N61 GTL I/O
CFG[0] AL4 CMOS I
CFG[1] AM2 CMOS I
CFG[2] AK1 CMOS I
CFG[3] AK2 CMOS I
CFG[4] AK4 CMOS I
CFG[5] AJ2 CMOS I
CFG[6] AT2 CMOS I
CFG[7] AG7 CMOS I
CFG[8] AF4 CMOS I
CFG[9] AG2 CMOS I
CFG[10] AH1 CMOS I
CFG[11] AC2 CMOS I
CFG[12] AC4 CMOS I
CFG[13] AE2 CMOS I
CFG[14] AD1 CMOS I
CFG[15] AF8 CMOS I
CFG[16] AF6 CMOS I
CFG[17] AB7 CMOS I
COMP0 AE66 Analog I
COMP1 AD69 Analog I
COMP2 AC70 Analog I
COMP3 AD71 Analog I
DBR# W71 O
DC_TEST_A5 A5
DC_TEST_A68 A68
DC_TEST_A69 A69
DC_TEST_A71 A71
DC_TEST_BR1 BR1
DC_TEST_BR71 BR71
DC_TEST_BT1 BT1
DC_TEST_BT3 BT3
DC_TEST_BT69 BT69
DC_TEST_BT71 BT71
DC_TEST_BV1 BV1
DC_TEST_BV3 BV3
DC_TEST_BV5 BV5
DC_TEST_BV68 BV68
DC_TEST_BV69 BV69
DC_TEST_BV71 BV71
DC_TEST_C3 C3
DC_TEST_C69 C69
DC_TEST_C71 C71
DC_TEST_E1 E1
DC_TEST_E71 E71
DMI_RX[0] F9 DMI I
DMI_RX[1] J6 DMI I
DMI_RX[2] K9 DMI I
DMI_RX[3] J2 DMI I
DMI_RX#[0] F7 DMI I
DMI_RX#[1] J8 DMI I
DMI_RX#[2] K8 DMI I
DMI_RX#[3] J4 DMI I
DMI_TX[0] G17 DMI O
DMI_TX[1] M15 DMI O
DMI_TX[2] G13 DMI O
DMI_TX[3] J11 DMI O
DMI_TX#[0] H17 DMI O
DMI_TX#[1] K15 DMI O
DMI_TX#[2] J13 DMI O
DMI_TX#[3] F10 DMI O
Table 12. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
33 323178-003
Processor Ball and Signal Information
DPLL_REF_SSCLK Y2 DIFF CLK I
DPLL_REF_SSCLK
#W4 DIFF CLK I
FDI_FSYNC[0] AC7 CMOS I
FDI_FSYNC[1] AC9 CMOS I
FDI_INT AB5 CMOS I
FDI_LSYNC[0] AA1 CMOS I
FDI_LSYNC[1] AB2 CMOS I
FDI_TX[0] K1 FDI O
FDI_TX[1] N5 FDI O
FDI_TX[2] N2 FDI O
FDI_TX[3] R2 FDI O
FDI_TX[4] N9 FDI O
FDI_TX[5] R8 FDI O
FDI_TX[6] U6 FDI O
FDI_TX[7] W10 FDI O
FDI_TX#[0] L2 FDI O
FDI_TX#[1] N7 FDI O
FDI_TX#[2] M4 FDI O
FDI_TX#[3] P1 FDI O
FDI_TX#[4] N10 FDI O
FDI_TX#[5] R7 FDI O
FDI_TX#[6] U7 FDI O
FDI_TX#[7] W8 FDI O
GFX_DPRSLPVR AL71 CMOS O
GFX_IMON AL69 CMOS I
GFX_VID[0] AF71 CMOS O
GFX_VID[1] AG67 CMOS O
GFX_VID[2] AG70 CMOS O
GFX_VID[3] AH71 CMOS O
GFX_VID[4] AN71 CMOS O
GFX_VID[5] AM67 CMOS O
GFX_VID[6] AM70 CMOS O
GFX_VR_EN AH69 CMOS O
ISENSE A41 Analog I
PECI N19 Async I/O
PEG_CLK L21 Diff CLK I
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
PEG_CLK# J21 DIFF CLK I
PEG_ICOMPI B12 Analog I
PEG_ICOMPO A13 Analog I
PEG_RBIAS B11 Analog I
PEG_RCOMPO D12 Analog I
PEG_RX[0] F40 PCIe I
PEG_RX[1] J38 PCIe I
PEG_RX[2] G34 PCIe I
PEG_RX[3] M34 PCIe I
PEG_RX[4] J28 PCIe I
PEG_RX[5] G25 PCIe I
PEG_RX[6] K24 PCIe I
PEG_RX[7] B28 PCIe I
PEG_RX[8] A27 PCIe I
PEG_RX[9] B25 PCIe I
PEG_RX[10] A24 PCIe I
PEG_RX[11] B21 PCIe I
PEG_RX[12] B19 PCIe I
PEG_RX[13] B18 PCIe I
PEG_RX[14] B16 PCIe I
PEG_RX[15] D15 PCIe I
PEG_RX#[0] G40 PCIe I
PEG_RX#[1] G38 PCIe I
PEG_RX#[2] H34 PCIe I
PEG_RX#[3] P34 PCIe I
PEG_RX#[4] G28 PCIe I
PEG_RX#[5] H25 PCIe I
PEG_RX#[6] H24 PCIe I
PEG_RX#[7] D29 PCIe I
PEG_RX#[8] B26 PCIe I
PEG_RX#[9] D26 PCIe I
PEG_RX#[10] B23 PCIe I
PEG_RX#[11] D22 PCIe I
PEG_RX#[12] A20 PCIe I
PEG_RX#[13] D19 PCIe I
PEG_RX#[14] A17 PCIe I
PEG_RX#[15] B14 PCIe I
Table 12. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Name
Pin Name Pin # Buffer
Type Dir
323178-003 34
Processor Ball and Signal Information
PEG_TX[0] L40 PCIe O
PEG_TX[1] N38 PCIe O
PEG_TX[2] N32 PCIe O
PEG_TX[3] B39 PCIe O
PEG_TX[4] B37 PCIe O
PEG_TX[5] H32 PCIe O
PEG_TX[6] A34 PCIe O
PEG_TX[7] D36 PCIe O
PEG_TX[8] J30 PCIe O
PEG_TX[9] B30 PCIe O
PEG_TX[10] D33 PCIe O
PEG_TX[11] N28 PCIe O
PEG_TX[12] M25 PCIe O
PEG_TX[13] N24 PCIe O
PEG_TX[14] F21 PCIe O
PEG_TX[15] L20 PCIe O
PEG_TX#[0] N40 PCIe O
PEG_TX#[1] L38 PCIe O
PEG_TX#[2] M32 PCIe O
PEG_TX#[3] D40 PCIe O
PEG_TX#[4] A38 PCIe O
PEG_TX#[5] G32 PCIe O
PEG_TX#[6] B33 PCIe O
PEG_TX#[7] B35 PCIe O
PEG_TX#[8] L30 PCIe O
PEG_TX#[9] A31 PCIe O
PEG_TX#[10] B32 PCIe O
PEG_TX#[11] L28 PCIe O
PEG_TX#[12] N26 PCIe O
PEG_TX#[13] M24 PCIe O
PEG_TX#[14] G21 PCIe O
PEG_TX#[15] J20 PCIe O
PM_EXT_TS#[0] AV66 CMOS I
PM_EXT_TS#[1] AV64 CMOS I
PM_SYNC M17 CMOS I
PRDY# U71 Async GTL O
PREQ# U69 Async GTL I
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
PROC_DETECT M71
PROC_DPRSLPVR F66 CMOS O
PROCHOT# N67 Async GTL I/O
PSI# F68 Async CMOS O
RESET_OBS# N70 Async CMOS O
RSTIN# G3 CMOS I
RSVD BE71
RSVD BE69
RSVD BB69
RSVD AY69
RSVD AW70
RSVD A10
RSVD AA69
RSVD AA71
RSVD AC69
RSVD AC71
RSVD AH66
RSVD AK66
RSVD AK69
RSVD AK71
RSVD AM66
RSVD AN69
RSVD AP66
RSVD AR69
RSVD AR71
RSVD AT67
RSVD AT70
RSVD AU2
RSVD AU69
RSVD AU71
RSVD AV4
RSVD AV69
RSVD AV71
RSVD B7
RSVD B9
RSVD D8
Table 12. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
35 323178-003
Processor Ball and Signal Information
RSVD R64
RSVD R66
RSVD T2
RSVD T4
RSVD U1
RSVD V2
RSVD W64
RSVD W66
RSVD_NCTF A6
RSVD_NCTF BR5
RSVD_NCTF BT5
RSVD_NCTF BV6
RSVD_NCTF BV8
RSVD_NCTF C5
RSVD_NCTF E3
RSVD_NCTF F1
RSVD_TP AN7
RSVD_TP AP2
RSVD_TP AU1
SA_BS[0] BT38 DDR3 O
SA_BS[1] BH38 DDR3 O
SA_BS[2] BF21 DDR3 O
SA_CAS# BK43 DDR3 O
SA_CK[0] BM34 DDR3 O
SA_CK[1] BH36 DDR3 O
SA_CK#[0] BP35 DDR3 O
SA_CK#[1] BK36 DDR3 O
SA_CKE[0] BF20 DDR3 O
SA_CKE[1] BK24 DDR3 O
SA_CS#[0] BH40 DDR3 O
SA_CS#[1] BJ47 DDR3 O
SA_DM[0] BB10 DDR3 O
SA_DM[1] BK5 DDR3 O
SA_DM[2] BM15 DDR3 O
SA_DM[3] BN24 DDR3 O
SA_DM[4] BG44 DDR3 O
SA_DM[5] BG53 DDR3 O
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
SA_DM[6] BN62 DDR3 O
SA_DM[7] BH59 DDR3 O
SA_DQ[0] AT8 DDR3 I/O
SA_DQ[1] AT6 DDR3 I/O
SA_DQ[2] BB5 DDR3 I/O
SA_DQ[3] BB9 DDR3 I/O
SA_DQ[4] AV7 DDR3 I/O
SA_DQ[5] AV6 DDR3 I/O
SA_DQ[6] BE6 DDR3 I/O
SA_DQ[7] BE8 DDR3 I/O
SA_DQ[8] BE11 DDR3 I/O
SA_DQ[9] BF11 DDR3 I/O
SA_DQ[10] BJ10 DDR3 I/O
SA_DQ[11] BH13 DDR3 I/O
SA_DQ[12] BF9 DDR3 I/O
SA_DQ[13] BF6 DDR3 I/O
SA_DQ[14] BK7 DDR3 I/O
SA_DQ[15] BN8 DDR3 I/O
SA_DQ[16] BN17 DDR3 I/O
SA_DQ[17] BN9 DDR3 I/O
SA_DQ[18] BH17 DDR3 I/O
SA_DQ[19] BG17 DDR3 I/O
SA_DQ[20] BN11 DDR3 I/O
SA_DQ[21] BK9 DDR3 I/O
SA_DQ[22] BK15 DDR3 I/O
SA_DQ[23] BK17 DDR3 I/O
SA_DQ[24] BN20 DDR3 I/O
SA_DQ[25] BG15 DDR3 I/O
SA_DQ[26] BK25 DDR3 I/O
SA_DQ[27] BH25 DDR3 I/O
SA_DQ[28] BJ20 DDR3 I/O
SA_DQ[29] BH21 DDR3 I/O
SA_DQ[30] BG24 DDR3 I/O
SA_DQ[31] BG25 DDR3 I/O
SA_DQ[32] BJ40 DDR3 I/O
SA_DQ[33] BM43 DDR3 I/O
SA_DQ[34] BF47 DDR3 I/O
Table 12. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Name
Pin Name Pin # Buffer
Type Dir
323178-003 36
Processor Ball and Signal Information
SA_DQ[35] BF48 DDR3 I/O
SA_DQ[36] BN40 DDR3 I/O
SA_DQ[37] BH43 DDR3 I/O
SA_DQ[38] BN44 DDR3 I/O
SA_DQ[39] BN47 DDR3 I/O
SA_DQ[40] BN48 DDR3 I/O
SA_DQ[41] BN51 DDR3 I/O
SA_DQ[42] BH53 DDR3 I/O
SA_DQ[43] BJ55 DDR3 I/O
SA_DQ[44] BH48 DDR3 I/O
SA_DQ[45] BJ48 DDR3 I/O
SA_DQ[46] BM53 DDR3 I/O
SA_DQ[47] BN55 DDR3 I/O
SA_DQ[48] BF55 DDR3 I/O
SA_DQ[49] BN57 DDR3 I/O
SA_DQ[50] BN65 DDR3 I/O
SA_DQ[51] BJ61 DDR3 I/O
SA_DQ[52] BF57 DDR3 I/O
SA_DQ[53] BJ57 DDR3 I/O
SA_DQ[54] BK64 DDR3 I/O
SA_DQ[55] BK61 DDR3 I/O
SA_DQ[56] BJ63 DDR3 I/O
SA_DQ[57] BF64 DDR3 I/O
SA_DQ[58] BB64 DDR3 I/O
SA_DQ[59] BB66 DDR3 I/O
SA_DQ[60] BJ66 DDR3 I/O
SA_DQ[61] BF65 DDR3 I/O
SA_DQ[62] AY64 DDR3 I/O
SA_DQ[63] BC70 DDR3 I/O
SA_DQ[64] BD30 DDR3 I/O
SA_DQ[65] BD28 DDR3 I/O
SA_DQ[66] BU40 DDR3 I/O
SA_DQ[67] BU35 DDR3 I/O
SA_DQ[68] BD26 DDR3 I/O
SA_DQ[69] BH28 DDR3 I/O
SA_DQ[70] BG43 DDR3 I/O
SA_DQ[71] BJ38 DDR3 I/O
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
SA_DQS[0] AY7 DDR3 I/O
SA_DQS[1] BJ5 DDR3 I/O
SA_DQS[2] BL13 DDR3 I/O
SA_DQS[3] BN21 DDR3 I/O
SA_DQS[4] BK44 DDR3 I/O
SA_DQS[5] BH51 DDR3 I/O
SA_DQS[6] BM60 DDR3 I/O
SA_DQS[7] BE64 DDR3 I/O
SA_DQS[8] BD33 DDR3 I/O
SA_DQS#[0] AY5 DDR3 I/O
SA_DQS#[1] BJ7 DDR3 I/O
SA_DQS#[2] BN13 DDR3 I/O
SA_DQS#[3] BL21 DDR3 I/O
SA_DQS#[4] BH44 DDR3 I/O
SA_DQS#[5] BK51 DDR3 I/O
SA_DQS#[6] BP58 DDR3 I/O
SA_DQS#[7] BE62 DDR3 I/O
SA_DQS#[8] BD32 DDR3 I/O
SA_MA[0] BT36 DDR3 O
SA_MA[1] BP33 DDR3 O
SA_MA[2] BV36 DDR3 O
SA_MA[3] BG34 DDR3 O
SA_MA[4] BG32 DDR3 O
SA_MA[5] BN32 DDR3 O
SA_MA[6] BK32 DDR3 O
SA_MA[7] BJ30 DDR3 O
SA_MA[8] BN30 DDR3 O
SA_MA[9] BF28 DDR3 O
SA_MA[10] BH34 DDR3 O
SA_MA[11] BH30 DDR3 O
SA_MA[12] BJ28 DDR3 O
SA_MA[13] BF40 DDR3 O
SA_MA[14] BN28 DDR3 O
SA_MA[15] BN25 DDR3 O
SA_ODT[0] BF43 DDR3 O
SA_ODT[1] BL47 DDR3 O
SA_RAS# BL38 DDR3 O
Table 12. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
37 323178-003
Processor Ball and Signal Information
SA_WE# BF38 DDR3 O
SB_BS[0] BV41 DDR3 O
SB_BS[1] BV43 DDR3 O
SB_BS[2] BV24 DDR3 O
SB_CAS# BU46 DDR3 O
SB_CK[0] BU33 DDR3 O
SB_CK[1] BV38 DDR3 O
SB_CK#[0] BV34 DDR3 O
SB_CK#[1] BU39 DDR3 O
SB_CKE[0] BT26 DDR3 O
SB_CKE[1] BT24 DDR3 O
SB_CS#[0] BP46 DDR3 O
SB_CS#[1] BT43 DDR3 O
SB_DM[0] BB4 DDR3 O
SB_DM[1] BL4 DDR3 O
SB_DM[2] BT13 DDR3 O
SB_DM[3] BP22 DDR3 O
SB_DM[4] BV47 DDR3 O
SB_DM[5] BV57 DDR3 O
SB_DM[6] BU65 DDR3 O
SB_DM[7] BF67 DDR3 O
SB_DQ[0] BA2 DDR3 I/O
SB_DQ[1] AW2 DDR3 I/O
SB_DQ[2] BD1 DDR3 I/O
SB_DQ[3] BE4 DDR3 I/O
SB_DQ[4] AY1 DDR3 I/O
SB_DQ[5] BC2 DDR3 I/O
SB_DQ[6] BF2 DDR3 I/O
SB_DQ[7] BH2 DDR3 I/O
SB_DQ[8] BG4 DDR3 I/O
SB_DQ[9] BG1 DDR3 I/O
SB_DQ[10] BR6 DDR3 I/O
SB_DQ[11] BR8 DDR3 I/O
SB_DQ[12] BJ4 DDR3 I/O
SB_DQ[13] BK2 DDR3 I/O
SB_DQ[14] BU9 DDR3 I/O
SB_DQ[15] BV10 DDR3 I/O
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
SB_DQ[16] BR10 DDR3 I/O
SB_DQ[17] BT12 DDR3 I/O
SB_DQ[18] BT15 DDR3 I/O
SB_DQ[19] BV15 DDR3 I/O
SB_DQ[20] BV12 DDR3 I/O
SB_DQ[21] BP12 DDR3 I/O
SB_DQ[22] BV17 DDR3 I/O
SB_DQ[23] BU16 DDR3 I/O
SB_DQ[24] BP15 DDR3 I/O
SB_DQ[25] BU19 DDR3 I/O
SB_DQ[26] BV22 DDR3 I/O
SB_DQ[27] BT22 DDR3 I/O
SB_DQ[28] BP19 DDR3 I/O
SB_DQ[29] BV19 DDR3 I/O
SB_DQ[30] BV20 DDR3 I/O
SB_DQ[31] BT20 DDR3 I/O
SB_DQ[32] BT48 DDR3 I/O
SB_DQ[33] BV48 DDR3 I/O
SB_DQ[34] BV50 DDR3 I/O
SB_DQ[35] BP49 DDR3 I/O
SB_DQ[36] BT47 DDR3 I/O
SB_DQ[37] BV52 DDR3 I/O
SB_DQ[38] BT54 DDR3 I/O
SB_DQ[39] BV54 DDR3 I/O
SB_DQ[40] BP53 DDR3 I/O
SB_DQ[41] BU53 DDR3 I/O
SB_DQ[42] BT59 DDR3 I/O
SB_DQ[43] BT57 DDR3 I/O
SB_DQ[44] BT55 DDR3 I/O
SB_DQ[45] BP56 DDR3 I/O
SB_DQ[46] BU60 DDR3 I/O
SB_DQ[47] BV59 DDR3 I/O
SB_DQ[48] BV61 DDR3 I/O
SB_DQ[49] BP60 DDR3 I/O
SB_DQ[50] BR66 DDR3 I/O
SB_DQ[51] BR64 DDR3 I/O
SB_DQ[52] BR62 DDR3 I/O
Table 12. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Name
Pin Name Pin # Buffer
Type Dir
323178-003 38
Processor Ball and Signal Information
SB_DQ[53] BT61 DDR3 I/O
SB_DQ[54] BN68 DDR3 I/O
SB_DQ[55] BL69 DDR3 I/O
SB_DQ[56] BJ71 DDR3 I/O
SB_DQ[57] BF70 DDR3 I/O
SB_DQ[58] BG71 DDR3 I/O
SB_DQ[59] BC67 DDR3 I/O
SB_DQ[60] BK70 DDR3 I/O
SB_DQ[61] BK67 DDR3 I/O
SB_DQ[62] BD71 DDR3 I/O
SB_DQ[63] BD69 DDR3 I/O
SB_DQ[64] BD21 DDR3 I/O
SB_DQ[65] BD24 DDR3 I/O
SB_DQ[66] BH32 DDR3 I/O
SB_DQ[67] BM25 DDR3 I/O
SB_DQ[68] BN38 DDR3 I/O
SB_DQ[69] BD23 DDR3 I/O
SB_DQ[70] BL30 DDR3 I/O
SB_DQ[71] BU28 DDR3 I/O
SB_DQS[0] BD4 DDR3 I/O
SB_DQS[1] BM3 DDR3 I/O
SB_DQS[2] BV13 DDR3 I/O
SB_DQS[3] BT17 DDR3 I/O
SB_DQS[4] BT52 DDR3 I/O
SB_DQS[5] BU56 DDR3 I/O
SB_DQS[6] BV62 DDR3 I/O
SB_DQS[7] BJ69 DDR3 I/O
SB_DQS[8] BD19 DDR3 I/O
SB_DQS#[0] BE2 DDR3 I/O
SB_DQS#[1] BN4 DDR3 I/O
SB_DQS#[2] BU12 DDR3 I/O
SB_DQS#[3] BT19 DDR3 I/O
SB_DQS#[4] BT50 DDR3 I/O
SB_DQS#[5] BV55 DDR3 I/O
SB_DQS#[6] BU63 DDR3 I/O
SB_DQS#[7] BG69 DDR3 I/O
SB_DQS#[8] BD17 DDR3 I/O
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
SB_MA[0] BT34 DDR3 O
SB_MA[1] BP30 DDR3 O
SB_MA[2] BV29 DDR3 O
SB_MA[3] BU30 DDR3 O
SB_MA[4] BV31 DDR3 O
SB_MA[5] BT33 DDR3 O
SB_MA[6] BT31 DDR3 O
SB_MA[7] BP26 DDR3 O
SB_MA[8] BV27 DDR3 O
SB_MA[9] BT27 DDR3 O
SB_MA[10] BU42 DDR3 O
SB_MA[11] BU26 DDR3 O
SB_MA[12] BT29 DDR3 O
SB_MA[13] BT45 DDR3 O
SB_MA[14] BV26 DDR3 O
SB_MA[15] BU23 DDR3 O
SB_ODT[0] BV45 DDR3 O
SB_ODT[1] BU49 DDR3 O
SB_RAS# BT40 DDR3 O
SB_WE# BT41 DDR3 O
SM_DRAMPWROK AM5 Async CMOS I
SM_DRAMRST# BJ12 DDR3 O
SM_RCOMP[0] BV33 Analog I
SM_RCOMP[1] BP39 Analog
SM_RCOMP[2] BV40 Analog I
T APP WRGOOD Y70 Async CMOS O
TCK T67 CMOS I
TDI T69 CMOS I
TDI_M P71 CMOS I
TDO T71 CMOS O
TDO_M T70 CMOS O
THERMTRIP# N17 Async GTL O
TMS N65 CMOS I
TRST# P69 CMOS I
VAXG AD17 REF
VAXG AD19 REF
VAXG AD21 REF
Table 12. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
39 323178-003
Processor Ball and Signal Information
VAXG AD23 REF
VAXG AD24 REF
VAXG AD26 REF
VAXG AD28 REF
VAXG AF14 REF
VAXG AF15 REF
VAXG AF17 REF
VAXG AF19 REF
VAXG AF21 REF
VAXG AF23 REF
VAXG AF24 REF
VAXG AF26 REF
VAXG AF28 REF
VAXG AH12 REF
VAXG AH14 REF
VAXG AJ10 REF
VAXG AK12 REF
VAXG AK14 REF
VAXG AL19 REF
VAXG AL21 REF
VAXG AL23 REF
VAXG AL24 REF
VAXG AL26 REF
VAXG AL28 REF
VAXG AL30 REF
VAXG AL32 REF
VAXG AN19 REF
VAXG AN21 REF
VAXG AN23 REF
VAXG AN24 REF
VAXG AN26 REF
VAXG AN28 REF
VAXG AN30 REF
VAXG AN32 REF
VAXG_SENSE AF12 Analog O
VCAP0 AK50 PWR
VCAP0 AK53 PWR
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VCAP0 AK57 PWR
VCAP0 AL50 PWR
VCAP0 AL53 PWR
VCAP0 AL57 PWR
VCAP0 AN50 PWR
VCAP0 AN53 PWR
VCAP0 AN57 PWR
VCAP0 AR48 PWR
VCAP0 AR51 PWR
VCAP0 AR55 PWR
VCAP0 AU48 PWR
VCAP0 AU51 PWR
VCAP0 AU55 PWR
VCAP0 AW50 PWR
VCAP0 AW53 PWR
VCAP0 AW57 PWR
VCAP0 AY50 PWR
VCAP0 AY53 PWR
VCAP0 AY57 PWR
VCAP0 BB48 PWR
VCAP0 BB51 PWR
VCAP0 BB55 PWR
VCAP0 BD48 PWR
VCAP0 BD51 PWR
VCAP0 BD55 PWR
VCAP1 AK39 PWR
VCAP1 AK42 PWR
VCAP1 AK46 PWR
VCAP1 AL39 PWR
VCAP1 AL42 PWR
VCAP1 AL46 PWR
VCAP1 AN39 PWR
VCAP1 AN42 PWR
VCAP1 AN46 PWR
VCAP1 AR37 PWR
VCAP1 AR41 PWR
VCAP1 AR44 PWR
Table 12. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Name
Pin Name Pin # Buffer
Type Dir
323178-003 40
Processor Ball and Signal Information
VCAP1 AU37 PWR
VCAP1 AU41 PWR
VCAP1 AU44 PWR
VCAP1 AW39 PWR
VCAP1 AW42 PWR
VCAP1 AW46 PWR
VCAP1 AY39 PWR
VCAP1 AY42 PWR
VCAP1 AY46 PWR
VCAP1 BB37 PWR
VCAP1 BB41 PWR
VCAP1 BB44 PWR
VCAP1 BD37 PWR
VCAP1 BD41 PWR
VCAP1 BD44 PWR
VCAP2 AA59 PWR
VCAP2 AA60 PWR
VCAP2 AB59 PWR
VCAP2 AB60 PWR
VCAP2 AD59 PWR
VCAP2 AD60 PWR
VCAP2 AF59 PWR
VCAP2 AF60 PWR
VCAP2 AH59 PWR
VCAP2 AH60 PWR
VCAP2 AK59 PWR
VCAP2 AK60 PWR
VCAP2 AK62 PWR
VCAP2 R59 PWR
VCAP2 R60 PWR
VCAP2 U59 PWR
VCAP2 U60 PWR
VCAP2 W59 PWR
VCAP2 W60 PWR
VCC A43 REF
VCC A47 REF
VCC A50 REF
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VCC A54 REF
VCC A57 REF
VCC AA41 REF
VCC AA44 REF
VCC AA48 REF
VCC AA51 REF
VCC AA55 REF
VCC AB41 REF
VCC AB44 REF
VCC AB48 REF
VCC AB51 REF
VCC AB55 REF
VCC AD41 REF
VCC AD44 REF
VCC AD48 REF
VCC AD51 REF
VCC AD55 REF
VCC AF41 REF
VCC AF42 REF
VCC AF44 REF
VCC AF46 REF
VCC AF48 REF
VCC AF50 REF
VCC AF51 REF
VCC AF53 REF
VCC AF55 REF
VCC AF57 REF
VCC B42 REF
VCC B46 REF
VCC B49 REF
VCC B53 REF
VCC B56 REF
VCC B60 REF
VCC D43 REF
VCC D45 REF
VCC D47 REF
VCC D48 REF
Table 12. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
41 323178-003
Processor Ball and Signal Information
VCC D50 REF
VCC D52 REF
VCC D54 REF
VCC D55 REF
VCC D57 REF
VCC D59 REF
VCC E42 REF
VCC E46 REF
VCC E50 REF
VCC E53 REF
VCC E57 REF
VCC E60 REF
VCC F55 REF
VCC G44 REF
VCC G51 REF
VCC G55 REF
VCC G60 REF
VCC H44 REF
VCC H51 REF
VCC H60 REF
VCC J55 REF
VCC K44 REF
VCC K51 REF
VCC K60 REF
VCC L55 REF
VCC M44 REF
VCC M51 REF
VCC M60 REF
VCC N42 REF
VCC N44 REF
VCC N48 REF
VCC N51 REF
VCC N55 REF
VCC P60 REF
VCC R41 REF
VCC R44 REF
VCC R48 REF
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VCC R51 REF
VCC R55 REF
VCC U41 REF
VCC U44 REF
VCC U48 REF
VCC U51 REF
VCC U55 REF
VCC W41 REF
VCC W44 REF
VCC W48 REF
VCC W51 REF
VCC W55 REF
VCC_SENSE F64 Analog O
VCCPLL R37 REF
VCCPLL R39 REF
VCCPLL U37 REF
VCCPLL W37 REF
VCCPLL W39 REF
VCCPWRGOOD_0 Y67 Async CMOS I
VCCPWRGOOD_1 AM7 Async CMOS I
VDDQ BB15 REF
VDDQ BB17 REF
VDDQ BB19 REF
VDDQ BB21 REF
VDDQ BB23 REF
VDDQ BB24 REF
VDDQ BB26 REF
VDDQ BB28 REF
VDDQ BB30 REF
VDDQ BB32 REF
VDDQ BB33 REF
VDDQ BB35 REF
VDDQ BD15 REF
VDDQ BD35 REF
VDDQ BF15 REF
VDDQ BF16 REF
VDDQ_CK BB12 REF
Table 12. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Name
Pin Name Pin # Buffer
Type Dir
323178-003 42
Processor Ball and Signal Information
VDDQ_CK BB14 REF
VID[0] A61 CMOS O
VID[1] D61 CMOS O
VID[2] D62 CMOS O
CSC[0]/VID[3] A62 CMOS I/O
CSC[1]VID[4] B63 CMOS I/O
CSC[2]VID[5] D64 CMOS I/O
VID[6] D66 CMOS O
VSS A12 GND
VSS A15 GND
VSS A19 GND
VSS A22 GND
VSS A26 GND
VSS A29 GND
VSS A33 GND
VSS A36 GND
VSS A40 GND
VSS A45 GND
VSS A48 GND
VSS A52 GND
VSS A55 GND
VSS A59 GND
VSS A64 GND
VSS A66 GND
VSS A8 GND
VSS AA14 GND
VSS AA15 GND
VSS AA17 GND
VSS AA19 GND
VSS AA21 GND
VSS AA23 GND
VSS AA24 GND
VSS AA26 GND
VSS AA28 GND
VSS AA30 GND
VSS AA32 GND
VSS AA33 GND
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VSS AA35 GND
VSS AA37 GND
VSS AA39 GND
VSS AA4 GND
VSS AA42 GND
VSS AA46 GND
VSS AA50 GND
VSS AA53 GND
VSS AA57 GND
VSS AA62 GND
VSS AA64 GND
VSS AA66 GND
VSS AB14 GND
VSS AB15 GND
VSS AB17 GND
VSS AB19 GND
VSS AB21 GND
VSS AB23 GND
VSS AB24 GND
VSS AB26 GND
VSS AB28 GND
VSS AB30 GND
VSS AB32 GND
VSS AB33 GND
VSS AB35 GND
VSS AB37 GND
VSS AB39 GND
VSS AB42 GND
VSS AB46 GND
VSS AB50 GND
VSS AB53 GND
VSS AB57 GND
VSS AB62 GND
VSS AB70 GND
VSS AB9 GND
VSS AC1 GND
VSS AC10 GND
Table 12. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
43 323178-003
Processor Ball and Signal Information
VSS AC5 GND
VSS AC64 GND
VSS AC67 GND
VSS AD4 GND
VSS AD42 GND
VSS AD46 GND
VSS AD50 GND
VSS AD53 GND
VSS AD57 GND
VSS AD62 GND
VSS AE64 GND
VSS AE70 GND
VSS AF1 GND
VSS AF62 GND
VSS AF69 GND
VSS AG6 GND
VSS AG64 GND
VSS AG9 GND
VSS AH15 GND
VSS AH17 GND
VSS AH19 GND
VSS AH21 GND
VSS AH23 GND
VSS AH24 GND
VSS AH26 GND
VSS AH28 GND
VSS AH30 GND
VSS AH32 GND
VSS AH33 GND
VSS AH35 GND
VSS AH37 GND
VSS AH39 GND
VSS AH4 GND
VSS AH41 GND
VSS AH42 GND
VSS AH44 GND
VSS AH46 GND
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VSS AH48 GND
VSS AH50 GND
VSS AH51 GND
VSS AH53 GND
VSS AH55 GND
VSS AH57 GND
VSS AH62 GND
VSS AJ70 GND
VSS AK15 GND
VSS AK17 GND
VSS AK19 GND
VSS AK21 GND
VSS AK23 GND
VSS AK24 GND
VSS AK26 GND
VSS AK28 GND
VSS AK30 GND
VSS AK32 GND
VSS AK37 GND
VSS AK41 GND
VSS AK44 GND
VSS AK48 GND
VSS AK51 GND
VSS AK55 GND
VSS AK64 GND
VSS AK70 GND
VSS AL1 GND
VSS AL33 GND
VSS AL35 GND
VSS AL37 GND
VSS AL41 GND
VSS AL44 GND
VSS AL48 GND
VSS AL51 GND
VSS AL55 GND
VSS AL62 GND
VSS AM64 GND
Table 12. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Name
Pin Name Pin # Buffer
Type Dir
323178-003 44
Processor Ball and Signal Information
VSS AM8 GND
VSS AN37 GND
VSS AN4 GND
VSS AN41 GND
VSS AN44 GND
VSS AN48 GND
VSS AN5 GND
VSS AN51 GND
VSS AN55 GND
VSS AN62 GND
VSS AP64 GND
VSS AP70 GND
VSS AR1 GND
VSS AR14 GND
VSS AR15 GND
VSS AR17 GND
VSS AR19 GND
VSS AR21 GND
VSS AR23 GND
VSS AR24 GND
VSS AR26 GND
VSS AR28 GND
VSS AR30 GND
VSS AR32 GND
VSS AR33 GND
VSS AR35 GND
VSS AR39 GND
VSS AR4 GND
VSS AR42 GND
VSS AR46 GND
VSS AR50 GND
VSS AR53 GND
VSS AR57 GND
VSS AR62 GND
VSS AT10 GND
VSS AT64 GND
VSS AU14 GND
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VSS AU15 GND
VSS AU17 GND
VSS AU19 GND
VSS AU21 GND
VSS AU23 GND
VSS AU24 GND
VSS AU26 GND
VSS AU28 GND
VSS AU30 GND
VSS AU32 GND
VSS AU33 GND
VSS AU35 GND
VSS AU39 GND
VSS AU4 GND
VSS AU42 GND
VSS AU46 GND
VSS AU50 GND
VSS AU53 GND
VSS AU57 GND
VSS AU62 GND
VSS AU70 GND
VSS AV1 GND
VSS AV9 GND
VSS AW37 GND
VSS AW41 GND
VSS AW44 GND
VSS AW48 GND
VSS AW51 GND
VSS AW55 GND
VSS AW59 GND
VSS AW62 GND
VSS AW67 GND
VSS AY12 GND
VSS AY14 GND
VSS AY15 GND
VSS AY17 GND
VSS AY19 GND
Table 12. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
45 323178-003
Processor Ball and Signal Information
VSS AY21 GND
VSS AY23 GND
VSS AY24 GND
VSS AY26 GND
VSS AY28 GND
VSS AY30 GND
VSS AY32 GND
VSS AY33 GND
VSS AY35 GND
VSS AY37 GND
VSS AY4 GND
VSS AY41 GND
VSS AY44 GND
VSS AY48 GND
VSS AY51 GND
VSS AY55 GND
VSS AY59 GND
VSS AY62 GND
VSS AY66 GND
VSS AY71 GND
VSS AY8 GND
VSS B40 GND
VSS B44 GND
VSS B48 GND
VSS B51 GND
VSS B55 GND
VSS B58 GND
VSS B62 GND
VSS B65 GND
VSS BA70 GND
VSS BB1 GND
VSS BB39 GND
VSS BB42 GND
VSS BB46 GND
VSS BB50 GND
VSS BB53 GND
VSS BB57 GND
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VSS BB62 GND
VSS BB7 GND
VSS BB71 GND
VSS BD14 GND
VSS BD39 GND
VSS BD42 GND
VSS BD46 GND
VSS BD50 GND
VSS BD53 GND
VSS BD57 GND
VSS BE1 GND
VSS BE65 GND
VSS BE70 GND
VSS BE9 GND
VSS BF13 GND
VSS BF30 GND
VSS BF62 GND
VSS BF8 GND
VSS BG36 GND
VSS BG51 GND
VSS BH15 GND
VSS BH20 GND
VSS BH24 GND
VSS BH47 GND
VSS BH55 GND
VSS BH57 GND
VSS BH70 GND
VSS BJ1 GND
VSS BJ21 GND
VSS BJ64 GND
VSS BJ9 GND
VSS BK10 GND
VSS BK34 GND
VSS BK53 GND
VSS BK60 GND
VSS BK63 GND
VSS BL1 GND
Table 12. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Name
Pin Name Pin # Buffer
Type Dir
323178-003 46
Processor Ball and Signal Information
VSS BL20 GND
VSS BL28 GND
VSS BL40 GND
VSS BL48 GND
VSS BL55 GND
VSS BL57 GND
VSS BL71 GND
VSS BM17 GND
VSS BM24 GND
VSS BM32 GND
VSS BM44 GND
VSS BM51 GND
VSS BM70 GND
VSS BN1 GND
VSS BN6 GND
VSS BN64 GND
VSS BN71 GND
VSS BP42 GND
VSS BR3 GND
VSS BR68 GND
VSS BR69 GND
VSS BT68 GND
VSS BU11 GND
VSS BU14 GND
VSS BU18 GND
VSS BU21 GND
VSS BU25 GND
VSS BU32 GND
VSS BU37 GND
VSS BU44 GND
VSS BU48 GND
VSS BU51 GND
VSS BU55 GND
VSS BU58 GND
VSS BU62 GND
VSS BU7 GND
VSS BV64 GND
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VSS BV66 GND
VSS C68 GND
VSS D10 GND
VSS D13 GND
VSS D17 GND
VSS D20 GND
VSS D24 GND
VSS D27 GND
VSS D31 GND
VSS D34 GND
VSS D38 GND
VSS D41 GND
VSS D6 GND
VSS E12 GND
VSS E16 GND
VSS E30 GND
VSS E33 GND
VSS E37 GND
VSS E5 GND
VSS E68 GND
VSS E69 GND
VSS F20 GND
VSS F28 GND
VSS F4 GND
VSS F47 GND
VSS F48 GND
VSS F61 GND
VSS F71 GND
VSS G15 GND
VSS G20 GND
VSS G24 GND
VSS G30 GND
VSS G43 GND
VSS G47 GND
VSS G48 GND
VSS G53 GND
VSS G57 GND
Table 12. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
47 323178-003
Processor Ball and Signal Information
VSS G70 GND
VSS H1 GND
VSS H36 GND
VSS H43 GND
VSS H53 GND
VSS H71 GND
VSS J40 GND
VSS J47 GND
VSS J48 GND
VSS J57 GND
VSS J65 GND
VSS J9 GND
VSS K11 GND
VSS K17 GND
VSS K25 GND
VSS K32 GND
VSS K34 GND
VSS K36 GND
VSS K4 GND
VSS K43 GND
VSS K53 GND
VSS K6 GND
VSS K64 GND
VSS L13 GND
VSS L47 GND
VSS L48 GND
VSS L57 GND
VSS L70 GND
VSS M1 GND
VSS M36 GND
VSS M42 GND
VSS M53 GND
VSS N15 GND
VSS N21 GND
VSS N30 GND
VSS N46 GND
VSS N50 GND
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VSS N53 GND
VSS N57 GND
VSS N63 GND
VSS P4 GND
VSS R14 GND
VSS R42 GND
VSS R46 GND
VSS R5 GND
VSS R50 GND
VSS R53 GND
VSS R57 GND
VSS R62 GND
VSS R70 GND
VSS T1 GND
VSS U39 GND
VSS U4 GND
VSS U42 GND
VSS U46 GND
VSS U50 GND
VSS U53 GND
VSS U57 GND
VSS U62 GND
VSS U64 GND
VSS U9 GND
VSS V70 GND
VSS W1 GND
VSS W42 GND
VSS W46 GND
VSS W50 GND
VSS W53 GND
VSS W57 GND
VSS W6 GND
VSS W62 GND
VSS W69 GND
VSS_SENSE F63 Analog O
VSS_SENSE_VTT R12 Analog O
VSSAXG_SENSE AF10 Analog O
Table 12. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Name
Pin Name Pin # Buffer
Type Dir
323178-003 48
Processor Ball and Signal Information
VTT_SELECT AN1 CMOS O
VTT_SENSE N13 Analog O
VTT0 AD30 REF
VTT0 AD32 REF
VTT0 AD33 REF
VTT0 AD35 REF
VTT0 AD37 REF
VTT0 AD39 REF
VTT0 AF30 REF
VTT0 AF32 REF
VTT0 AF33 REF
VTT0 AF35 REF
VTT0 AF37 REF
VTT0 AF39 REF
VTT0 AK33 REF
VTT0 AK35 REF
VTT0 AL12 REF
VTT0 AL14 REF
VTT0 AL15 REF
VTT0 AL17 REF
VTT0 AL59 REF
VTT0 AL60 REF
VTT0 AM10 REF
VTT0 AN12 REF
VTT0 AN14 REF
VTT0 AN15 REF
VTT0 AN17 REF
VTT0 AN33 REF
VTT0 AN35 REF
VTT0 AN59 REF
VTT0 AN60 REF
VTT0 AN9 REF
VTT0 AR12 REF
VTT0 AR59 REF
VTT0 AR60 REF
VTT0 AU12 REF
VTT0 AU59 REF
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
VTT0 AU60 REF
VTT0 AW12 REF
VTT0 AW14 REF
VTT0 AW33 REF
VTT0 AW35 REF
VTT0 AW60 REF
VTT0 AY10 REF
VTT0 AY60 REF
VTT0 BB59 REF
VTT0 BB60 REF
VTT0 BD59 REF
VTT0 BD60 REF
VTT0 BF59 REF
VTT0 BF60 REF
VTT0 R23 REF
VTT0 R24 REF
VTT0 R26 REF
VTT0 R28 REF
VTT0 R30 REF
VTT0 R32 REF
VTT0 R33 REF
VTT0 R35 REF
VTT0 U23 REF
VTT0 U24 REF
VTT0 U26 REF
VTT0 U28 REF
VTT0 U30 REF
VTT0 U32 REF
VTT0 U33 REF
VTT0 U35 REF
VTT0 W23 REF
VTT0 W24 REF
VTT0 W26 REF
VTT0 W28 REF
VTT0 W30 REF
VTT0 W32 REF
VTT0 W33 REF
Table 12. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
49 323178-003
Processor Ball and Signal Information
VTT0 W35 REF
VTT0_DDR AW15 REF
VTT0_DDR AW17 REF
VTT0_DDR AW19 REF
VTT0_DDR AW21 REF
VTT0_DDR AW23 REF
VTT0_DDR AW24 REF
VTT0_DDR AW26 REF
VTT0_DDR AW28 REF
VTT0_DDR AW30 REF
VTT0_DDR AW32 REF
VTT1 AA12 REF
VTT1 AB12 REF
VTT1 AD12 REF
VTT1 AD14 REF
VTT1 AD15 REF
VTT1 R15 REF
VTT1 R17 REF
VTT1 R19 REF
VTT1 R21 REF
VTT1 U12 REF
VTT1 U14 REF
VTT1 U15 REF
VTT1 U17 REF
VTT1 U19 REF
VTT1 U21 REF
VTT1 W12 REF
VTT1 W14 REF
VTT1 W15 REF
VTT1 W17 REF
VTT1 W19 REF
VTT1 W21 REF
VT TPWRGOOD H15 Asy nc CMOS I
Table 12. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Name
Pin Name Pin # Buffer
Type Dir
Table 13. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Number
Pin # Pin Name Buffer
Type Dir
A5 DC_TEST_A5
A6 RSVD_NCTF
A8 VSS GND
A10 RSVD
A12 VSS GND
A13 PEG_ICOMPO Analog I
A15 VSS GND
A17 PEG_RX#[14] PCIe I
A19 VSS GND
A20 PEG_RX#[12] PCIe I
A22 VSS GND
A24 PEG_RX[10] PCIe I
A26 VSS GND
A27 PEG_RX[8] PCIe I
A29 VSS GND
A31 PEG_TX#[9] PCIe O
A33 VSS GND
A34 PEG_TX[6] PCIe O
A36 VSS GND
A38 PEG_TX#[4] PCIe O
A40 VSS GND
A41 ISENSE Analog I
A43 VCC REF
A45 VSS GND
A47 VCC REF
A48 VSS GND
A50 VCC REF
A52 VSS GND
A54 VCC REF
A55 VSS GND
A57 VCC REF
A59 VSS GND
A61 VID[0] CMOS O
A62 CSC[0]/VID[3] CMOS I/O
A64 VSS GND
323178-003 50
Processor Ball and Signal Information
A66 VSS GND
A68 DC_TEST_A68
A69 DC_TEST_A69
A71 DC_TEST_A71
AA1 FDI_LSYNC[0] CMOS I
AA4 VSS GND
AA12 VTT1 REF
AA14 VSS GND
AA15 VSS GND
AA17 VSS GND
AA19 VSS GND
AA21 VSS GND
AA23 VSS GND
AA24 VSS GND
AA26 VSS GND
AA28 VSS GND
AA30 VSS GND
AA32 VSS GND
AA33 VSS GND
AA35 VSS GND
AA37 VSS GND
AA39 VSS GND
AA41 VCC REF
AA42 VSS GND
AA44 VCC REF
AA46 VSS GND
AA48 VCC REF
AA50 VSS GND
AA51 VCC REF
AA53 VSS GND
AA55 VCC REF
AA57 VSS GND
AA59 VCAP2 PWR
AA60 VCAP2 PWR
AA62 VSS GND
AA64 VSS GND
AA66 VSS GND
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
AA69 RSVD
AA71 RSVD
AB2 FDI_LSYNC[1] CMOS I
AB5 FDI_INT CMOS I
AB7 CFG[17] CMOS I
AB9 VSS GND
AB12 VTT1 REF
AB14 VSS GND
AB15 VSS GND
AB17 VSS GND
AB19 VSS GND
AB21 VSS GND
AB23 VSS GND
AB24 VSS GND
AB26 VSS GND
AB28 VSS GND
AB30 VSS GND
AB32 VSS GND
AB33 VSS GND
AB35 VSS GND
AB37 VSS GND
AB39 VSS GND
AB41 VCC REF
AB42 VSS GND
AB44 VCC REF
AB46 VSS GND
AB48 VCC REF
AB50 VSS GND
AB51 VCC REF
AB53 VSS GND
AB55 VCC REF
AB57 VSS GND
AB59 VCAP2 PWR
AB60 VCAP2 PWR
AB62 VSS GND
AB70 VSS GND
AC1 VSS GND
Table 13. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
51 323178-003
Processor Ball and Signal Information
AC2 CFG[11] CMOS I
AC4 CFG[12] CMOS I
AC5 VSS GND
AC7 FDI_FSYNC[0] CMOS I
AC9 FDI_FSYNC[1] CMOS I
AC10 VSS GND
AC64 VSS GND
AC67 VSS GND
AC69 RSVD
AC70 COMP2 Analog I
AC71 RSVD
AD1 CFG[14] CMOS I
AD4 VSS GND
AD12 VTT1 REF
AD14 VTT1 REF
AD15 VTT1 REF
AD17 VAXG REF
AD19 VAXG REF
AD21 VAXG REF
AD23 VAXG REF
AD24 VAXG REF
AD26 VAXG REF
AD28 VAXG REF
AD30 VTT0 REF
AD32 VTT0 REF
AD33 VTT0 REF
AD35 VTT0 REF
AD37 VTT0 REF
AD39 VTT0 REF
AD41 VCC REF
AD42 VSS GND
AD44 VCC REF
AD46 VSS GND
AD48 VCC REF
AD50 VSS GND
AD51 VCC REF
AD53 VSS GND
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
AD55 VCC REF
AD57 VSS GND
AD59 VCAP2 PWR
AD60 VCAP2 PWR
AD62 VSS GND
AD69 COMP1 Analog I
AD71 COMP3 Analog I
AE2 CFG[13] CMOS I
AE64 VSS GND
AE66 COMP0 Analog I
AE70 VSS GND
AF1 VSS GND
AF4 CFG[8] CMOS I
AF10 VSSAXG_SENSE Analog O
AF12 VAXG_SENSE Analog O
AF14 VAXG REF
AF15 VAXG REF
AF17 VAXG REF
AF19 VAXG REF
AF21 VAXG REF
AF23 VAXG REF
AF24 VAXG REF
AF26 VAXG REF
AF28 VAXG REF
AF30 VTT0 REF
AF32 VTT0 REF
AF33 VTT0 REF
AF35 VTT0 REF
AF37 VTT0 REF
AF39 VTT0 REF
AF41 VCC REF
AF42 VCC REF
AF44 VCC REF
AF46 VCC REF
AF48 VCC REF
AF50 VCC REF
AF51 VCC REF
Table 13. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Number
Pin # Pi n Na m e Buffer
Type Dir
323178-003 52
Processor Ball and Signal Information
AF53 VCC REF
AF55 VCC REF
AF57 VCC REF
AF59 VCAP2 PWR
AF6 CFG[16] CMOS I
AF60 VCAP2 PWR
AF62 VSS GND
AF69 VSS GND
AF71 GFX_VID[0] CMOS O
AF8 CFG[15] CMOS I
AG2 CFG[9] CMOS I
AG6 VSS GND
AG7 CFG[7] CMOS I
AG9 VSS GND
AG64 VSS GND
AG67 GFX_VID[1] CMOS O
AG70 GFX_VID[2] CMOS O
AH1 CFG[10] CMOS I
AH4 VSS GND
AH12 VAXG REF
AH14 VAXG REF
AH15 VSS GND
AH17 VSS GND
AH19 VSS GND
AH21 VSS GND
AH23 VSS GND
AH24 VSS GND
AH26 VSS GND
AH28 VSS GND
AH30 VSS GND
AH32 VSS GND
AH33 VSS GND
AH35 VSS GND
AH37 VSS GND
AH39 VSS GND
AH41 VSS GND
AH42 VSS GND
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
AH44 VSS GND
AH46 VSS GND
AH48 VSS GND
AH50 VSS GND
AH51 VSS GND
AH53 VSS GND
AH55 VSS GND
AH57 VSS GND
AH59 VCAP2 PWR
AH60 VCAP2 PWR
AH62 VSS GND
AH66 RSVD
AH69 GFX_VR_EN CMOS O
AH71 GFX_VID[3] CMOS O
AJ10 VAXG REF
AJ2 CFG[5] CMOS I
AJ70 VSS GND
AK1 CFG[2] CMOS I
AK2 CFG[3] CMOS I
AK4 CFG[4] CMOS I
AK7 BCLK D IFF CLK I
AK8 BCLK # DIFF CLK I
AK12 VAXG REF
AK14 VAXG REF
AK15 VSS GND
AK17 VSS GND
AK19 VSS GND
AK21 VSS GND
AK23 VSS GND
AK24 VSS GND
AK26 VSS GND
AK28 VSS GND
AK30 VSS GND
AK32 VSS GND
AK33 VTT0 REF
AK35 VTT0 REF
AK37 VSS GND
Table 13. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
53 323178-003
Processor Ball and Signal Information
AK39 VCAP1 PWR
AK41 VSS GND
AK42 VCAP1 PWR
AK44 VSS GND
AK46 VCAP1 PWR
AK48 VSS GND
AK50 VCAP0 PWR
AK51 VSS GND
AK53 VCAP0 PWR
AK55 VSS GND
AK57 VCAP0 PWR
AK59 VCAP2 PWR
AK60 VCAP2 PWR
AK62 VCAP2 PWR
AK64 VSS GND
AK66 RSVD
AK69 RSVD
AK70 VSS GND
AK71 RSVD
AL1 VSS GND
AL4 CFG[0] CMOS I
AL12 VTT0 REF
AL14 VTT0 REF
AL15 VTT0 REF
AL17 VTT0 REF
AL19 VAXG REF
AL21 VAXG REF
AL23 VAXG REF
AL24 VAXG REF
AL26 VAXG REF
AL28 VAXG REF
AL30 VAXG REF
AL32 VAXG REF
AL33 VSS GND
AL35 VSS GND
AL37 VSS GND
AL39 VCAP1 PWR
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
AL41 VSS GND
AL42 VCAP1 PWR
AL44 VSS GND
AL46 VCAP1 PWR
AL48 VSS GND
AL50 VCAP0 PWR
AL51 VSS GND
AL53 VCAP0 PWR
AL55 VSS GND
AL57 VCAP0 PWR
AL59 VTT0 REF
AL60 VTT0 REF
AL62 VSS GND
AL69 GFX_IMON CMOS I
AL71 GFX_DPRSLPVR CMOS O
AM10 VTT0 REF
AM2 CFG[1] CMOS I
AM5 SM_DRAMPWROK Async CMOS I
AM7 VCCPWRGOOD_1 Async CMOS I
AM8 VSS GND
AM64 VSS GND
AM66 RSVD
AM67 GFX_VID[5] CMOS O
AM70 GFX_VID[6] CMOS O
AN1 VTT_SELECT CMOS O
AN4 VSS GND
AN5 VSS GND
AN7 RSVD_TP
AN9 VTT0 REF
AN12 VTT0 REF
AN14 VTT0 REF
AN15 VTT0 REF
AN17 VTT0 REF
AN19 VAXG REF
AN21 VAXG REF
AN23 VAXG REF
AN24 VAXG REF
Table 13. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Number
Pin # Pi n Na m e Buffer
Type Dir
323178-003 54
Processor Ball and Signal Information
AN26 VAXG REF
AN28 VAXG REF
AN30 VAXG REF
AN32 VAXG REF
AN33 VTT0 REF
AN35 VTT0 REF
AN37 VSS GND
AN39 VCAP1 PWR
AN41 VSS GND
AN42 VCAP1 PWR
AN44 VSS GND
AN46 VCAP1 PWR
AN48 VSS GND
AN50 VCAP0 PWR
AN51 VSS GND
AN53 VCAP0 PWR
AN55 VSS GND
AN57 VCAP0 PWR
AN59 VTT0 REF
AN60 VTT0 REF
AN62 VSS GND
AN69 RSVD
AN71 GFX_VID[4] CMOS O
AP2 RSVD_TP
AP64 VSS GND
AP66 RSVD
AP70 VSS GND
AR1 VSS GND
AR4 VSS GND
AR12 VTT0 REF
AR14 VSS GND
AR15 VSS GND
AR17 VSS GND
AR19 VSS GND
AR21 VSS GND
AR23 VSS GND
AR24 VSS GND
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
AR26 VSS GND
AR28 VSS GND
AR30 VSS GND
AR32 VSS GND
AR33 VSS GND
AR35 VSS GND
AR37 VCAP1 PWR
AR39 VSS GND
AR41 VCAP1 PWR
AR42 VSS GND
AR44 VCAP1 PWR
AR46 VSS GND
AR48 VCAP0 PWR
AR50 VSS GND
AR51 VCAP0 PWR
AR53 VSS GND
AR55 VCAP0 PWR
AR57 VSS GND
AR59 VTT0 REF
AR60 VTT0 REF
AR62 VSS GND
AR69 RSVD
AR71 RSVD
AT2 CFG[6] CMOS I
AT6 SA_DQ[1] DDR3 I/O
AT8 SA_DQ[0] DDR3 I/O
AT10 VSS GND
AT64 VSS GND
AT67 RSVD
AT70 RSVD
AU1 RSVD_TP
AU2 RSVD
AU4 VSS GND
AU12 VTT0 REF
AU14 VSS GND
AU15 VSS GND
AU17 VSS GND
Table 13. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
55 323178-003
Processor Ball and Signal Information
AU19 VSS GND
AU21 VSS GND
AU23 VSS GND
AU24 VSS GND
AU26 VSS GND
AU28 VSS GND
AU30 VSS GND
AU32 VSS GND
AU33 VSS GND
AU35 VSS GND
AU37 VCAP1 PWR
AU39 VSS GND
AU41 VCAP1 PWR
AU42 VSS GND
AU44 VCAP1 PWR
AU46 VSS GND
AU48 VCAP0 PWR
AU50 VSS GND
AU51 VCAP0 PWR
AU53 VSS GND
AU55 VCAP0 PWR
AU57 VSS GND
AU59 VTT0 REF
AU60 VTT0 REF
AU62 VSS GND
AU69 RSVD
AU70 VSS GND
AU71 RSVD
AV1 VSS GND
AV4 RSVD
AV6 SA_DQ[5] DDR3 I/O
AV7 SA_DQ[4] DDR3 I/O
AV9 VSS GND
AV64 PM_EXT_TS#[1] CMOS I
AV66 PM_EXT_TS#[0] CMOS I
AV69 RSVD
AV71 RSVD
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
AW12 VTT0 REF
AW14 VTT0 REF
AW15 VTT0_DDR REF
AW17 VTT0_DDR REF
AW19 VTT0_DDR REF
AW2 SB_DQ[1] DDR3 I/O
AW21 VTT0_DDR REF
AW23 VTT0_DDR REF
AW24 VTT0_DDR REF
AW26 VTT0_DDR REF
AW28 VTT0_DDR REF
AW30 VTT0_DDR REF
AW32 VTT0_DDR REF
AW33 VTT0 REF
AW35 VTT0 REF
AW37 VSS GND
AW39 VCAP1 PWR
AW41 VSS GND
AW42 VCAP1 PWR
AW44 VSS GND
AW46 VCAP1 PWR
AW48 VSS GND
AW50 VCAP0 PWR
AW51 VSS GND
AW53 VCAP0 PWR
AW55 VSS GND
AW57 VCAP0 PWR
AW59 VSS GND
AW60 VTT0 REF
AW62 VSS GND
AW67 VSS GND
AW70 RSVD DDR3
AY1 SB_DQ[4] DDR3 I/O
AY4 VSS GND
AY5 SA_DQS#[0] DDR3 I/O
AY7 SA_DQS[0] DDR3 I/O
AY8 VSS GND
Table 13. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Number
Pin # Pi n Na m e Buffer
Type Dir
323178-003 56
Processor Ball and Signal Information
AY10 VTT0 REF
AY12 VSS GND
AY14 VSS GND
AY15 VSS GND
AY17 VSS GND
AY19 VSS GND
AY21 VSS GND
AY23 VSS GND
AY24 VSS GND
AY26 VSS GND
AY28 VSS GND
AY30 VSS GND
AY32 VSS GND
AY33 VSS GND
AY35 VSS GND
AY37 VSS GND
AY39 VCAP1 PWR
AY41 VSS GND
AY42 VCAP1 PWR
AY44 VSS GND
AY46 VCAP1 PWR
AY48 VSS GND
AY50 VCAP0 PWR
AY51 VSS GND
AY53 VCAP0 PWR
AY55 VSS GND
AY57 VCAP0 PWR
AY59 VSS GND
AY60 VTT0 REF
AY62 VSS GND
AY64 SA_DQ[62] DDR3 I/O
AY66 VSS GND
AY69 RSVD
AY71 VSS GND
B7 RSVD
B9 RSVD
B11 PEG_RBIAS Analog I
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
B12 PEG_ICOMPI Analog I
B14 PEG_RX#[15] PCIe I
B16 PEG_RX[14] PCIe I
B18 PEG_RX[13] PCIe I
B19 PEG_RX[12] PCIe I
B21 PEG_RX[11] PCIe I
B23 PEG_RX#[10] PCIe I
B25 PEG_RX[9] PCIe I
B26 PEG_RX#[8] PCIe I
B28 PEG_RX[7] PCIe I
B30 PEG_TX[9] PCIe O
B32 PEG_TX#[10] PCIe O
B33 PEG_TX#[6] PCIe O
B35 PEG_TX#[7] PCIe O
B37 PEG_TX[4] PCIe O
B39 PEG_TX[3] PCIe O
B40 VSS GND
B42 VCC REF
B44 VSS GND
B46 VCC REF
B48 VSS GND
B49 VCC REF
B51 VSS GND
B53 VCC REF
B55 VSS GND
B56 VCC REF
B58 VSS GND
B60 VCC REF
B62 VSS GND
B63 CSC[1]/VID[4] CMOS I/O
B65 VSS GND
BA2 SB_DQ[0] DDR3 I/O
BA70 VSS GND
BB1 VSS GND
BB4 SB_DM[0] DDR3 O
BB5 SA_DQ[2] DDR3 I/O
BB7 VSS GND
Table 13. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
57 323178-003
Processor Ball and Signal Information
BB9 SA_DQ[3] DDR3 I/O
BB10 SA_DM[0] DDR3 O
BB12 VDDQ_CK REF
BB14 VDDQ_CK REF
BB15 VDDQ REF
BB17 VDDQ REF
BB19 VDDQ REF
BB21 VDDQ REF
BB23 VDDQ REF
BB24 VDDQ REF
BB26 VDDQ REF
BB28 VDDQ REF
BB30 VDDQ REF
BB32 VDDQ REF
BB33 VDDQ REF
BB35 VDDQ REF
BB37 VCAP1 PWR
BB39 VSS GND
BB41 VCAP1 PWR
BB42 VSS GND
BB44 VCAP1 PWR
BB46 VSS GND
BB48 VCAP0 PWR
BB50 VSS GND
BB51 VCAP0 PWR
BB53 VSS GND
BB55 VCAP0 PWR
BB57 VSS GND
BB59 VTT0 REF
BB60 VTT0 REF
BB62 VSS GND
BB64 SA_DQ[58] DDR3 I/O
BB66 SA_DQ[59] DDR3 I/O
BB69 RSVD
BB71 VSS GND
BC2 SB_DQ[5] DDR3 I/O
BC67 SB_DQ[59] DDR3 I/O
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
BC70 SA_DQ[63] DDR3 I/O
BD1 SB_DQ[2] DDR3 I/O
BD4 SB_DQS[0] DDR3 I/O
BD14 VSS GND
BD15 VDDQ REF
BD17 SB_DQS#[8] DDR3 I/O
BD19 SB_DQS[8] DDR3 I/O
BD21 SB_DQ[64] DDR3 I/O
BD23 SB_DQ[69] DDR3 I/O
BD24 SB_DQ[65] DDR3 I/O
BD26 SA_DQ[68] DDR3 I/O
BD28 SA_DQ[65] DDR3 I/O
BD30 SA_DQ[64] DDR3 I/O
BD32 SA_DQS#[8] DDR3 I/O
BD33 SA_DQS[8] DDR3 I/O
BD35 VDDQ REF
BD37 VCAP1 PWR
BD39 VSS GND
BD41 VCAP1 PWR
BD42 VSS GND
BD44 VCAP1 PWR
BD46 VSS GND
BD48 VCAP0 PWR
BD50 VSS GND
BD51 VCAP0 PWR
BD53 VSS GND
BD55 VCAP0 PWR
BD57 VSS GND
BD59 VTT0 REF
BD60 VTT0 REF
BD69 SB_DQ[63] DDR3 I/O
BD71 SB_DQ[62] DDR3 I/O
BE1 VSS GND
BE2 SB_DQS#[0] DDR3 I/O
BE4 SB_DQ[3] DDR3 I/O
BE6 SA_DQ[6] DDR3 I/O
BE8 SA_DQ[7] DDR3 I/O
Table 13. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Number
Pin # Pi n Na m e Buffer
Type Dir
323178-003 58
Processor Ball and Signal Information
BE9 VSS GND
BE11 SA_DQ[8] DDR3 I/O
BE62 SA_DQS#[7] DDR3 I/O
BE64 SA_DQS[7] DDR3 I/O
BE65 VSS GND
BE69 RSVD
BE70 VSS GND
BE71 RSVD
BF2 SB_DQ[6] DDR3 I/O
BF6 SA_DQ[13] DDR3 I/O
BF8 VSS GND
BF9 SA_DQ[12] DDR3 I/O
BF11 SA_DQ[9] DDR3 I/O
BF13 VSS GND
BF15 VDDQ REF
BF16 VDDQ REF
BF20 SA_CKE[0] DDR3 O
BF21 SA_BS[2] DDR3 O
BF28 SA_MA[9] DDR3 O
BF30 VSS GND
BF38 SA_WE# DDR3 O
BF40 SA_MA[13] DDR3 O
BF43 SA_ODT[0] DDR3 O
BF47 SA_DQ[34] DDR3 I/O
BF48 SA_DQ[35] DDR3 I/O
BF55 SA_DQ[48] DDR3 I/O
BF57 SA_DQ[52] DDR3 I/O
BF59 VTT0 REF
BF60 VTT0 REF
BF62 VSS GND
BF64 SA_DQ[57] DDR3 I/O
BF65 SA_DQ[61] DDR3 I/O
BF67 SB_DM[7] DDR3 O
BF70 SB_DQ[57] DDR3 I/O
BG1 SB_DQ[9] DDR3 I/O
BG4 SB_DQ[8] DDR3 I/O
BG15 SA_DQ[25] DDR3 I/O
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
BG17 SA_DQ[19] DDR3 I/O
BG24 SA_DQ[30] DDR3 I/O
BG25 SA_DQ[31] DDR3 I/O
BG32 SA_MA[4] DDR3 O
BG34 SA_MA[3] DDR3 O
BG36 VSS GND
BG43 SA_DQ[70] DDR3 I/O
BG44 SA_DM[4] DDR3 O
BG51 VSS GND
BG53 SA_DM[5] DDR3 O
BG69 SB_DQS#[7] DDR3 I/O
BG71 SB_DQ[58] DDR3 I/O
BH2 SB_DQ[7] DDR3 I/O
BH13 SA_DQ[11] DDR3 I/O
BH15 VSS GND
BH17 SA_DQ[18] DDR3 I/O
BH20 VSS GND
BH21 SA_DQ[29] DDR3 I/O
BH24 VSS GND
BH25 SA_DQ[27] DDR3 I/O
BH28 SA_DQ[69] DDR3 I/O
BH30 SA_MA[11] DDR3 O
BH32 SB_DQ[66] DDR3 I/O
BH34 SA_MA[10] DDR3 O
BH36 SA_CK[1] DDR3 O
BH38 SA_BS[1] DDR3 O
BH40 SA_CS#[0] DDR3 O
BH43 SA_DQ[37] DDR3 I/O
BH44 SA_DQS#[4] DDR3 I/O
BH47 VSS GND
BH48 SA_DQ[44] DDR3 I/O
BH51 SA_DQS[5] DDR3 I/O
BH53 SA_DQ[42] DDR3+C28
5I/O
BH55 VSS GND
BH57 VSS GND
BH59 SA_DM[7] DDR3 O
Table 13. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
59 323178-003
Processor Ball and Signal Information
BH70 VSS GND
BJ1 VSS GND
BJ4 SB_DQ[12] DDR3 I/O
BJ5 SA_DQS[1] DDR3 I/O
BJ7 SA_DQS#[1] DDR3 I/O
BJ9 VSS GND
BJ10 SA_DQ[10] DDR3 I/O
BJ12 SM_DRAMRST# DDR3 O
BJ20 SA_DQ[28] DDR3 I/O
BJ21 VSS GND
BJ28 SA_MA[12] DDR3 O
BJ30 SA_MA[7] DDR3 O
BJ38 SA_DQ[71] DDR3 I/O
BJ40 SA_DQ[32] DDR3 I/O
BJ47 SA_CS#[1] DDR3 O
BJ48 SA_DQ[45] DDR3 I/O
BJ55 SA_DQ[43] DDR3 I/O
BJ57 SA_DQ[53] DDR3 I/O
BJ61 SA_DQ[51] DDR3 I/O
BJ63 SA_DQ[56] DDR3 I/O
BJ64 VSS GND
BJ66 SA_DQ[60] DDR3 I/O
BJ69 SB_DQS[7] DDR3 I/O
BJ71 SB_DQ[56] DDR3 I/O
BK2 SB_DQ[13] DDR3 I/O
BK5 SA_DM[1] DDR3 O
BK7 SA_DQ[14] DDR3 I/O
BK9 SA_DQ[21] DDR3 I/O
BK10 VSS GND
BK15 SA_DQ[22] DDR3 I/O
BK17 SA_DQ[23] DDR3 I/O
BK24 SA_CKE[1] DDR3 O
BK25 SA_DQ[26] DDR3 I/O
BK32 SA_MA[6] DDR3 O
BK34 VSS GND
BK36 SA_CK#[1] DDR3 O
BK43 SA_CAS# DDR3 O
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
BK44 SA_DQS[4] DDR3 I/O
BK51 SA_DQS#[5] DDR3 I/O
BK53 VSS GND
BK60 VSS GND
BK61 SA_DQ[55] DDR3 I/O
BK63 VSS GND
BK64 SA_DQ[54] DDR3 I/O
BK67 SB_DQ[61] DDR3 I/O
BK70 SB_DQ[60] DDR3 I/O
BL1 VSS GND
BL4 SB_DM[1] DDR3 O
BL13 SA_DQS[2] DDR3 I/O
BL20 VSS GND
BL21 SA_DQS#[3] DDR3 I/O
BL28 VSS GND
BL30 SB_DQ[70] DDR3 I/O
BL38 SA_RAS# DDR3 O
BL40 VSS GND
BL47 SA_ODT[1] DDR3 O
BL48 VSS GND
BL55 VSS GND
BL57 VSS GND
BL69 SB_DQ[55] DDR3 I/O
BL71 VSS GND
BM3 SB_DQS[1] DDR3 I/O
BM15 SA_DM[2] DDR3 O
BM17 VSS GND
BM24 VSS GND
BM25 SB_DQ[67] DDR3 I/O
BM32 VSS GND
BM34 SA_CK[0] DDR3 O
BM43 SA_DQ[33] DDR3 I/O
BM44 VSS GND
BM51 VSS GND
BM53 SA_DQ[46] DDR3 I/O
BM60 SA_DQS[6] DDR3 I/O
BM70 VSS GND
Table 13. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Number
Pin # Pi n Na m e Buffer
Type Dir
323178-003 60
Processor Ball and Signal Information
BN1 VSS GND
BN4 SB_DQS#[1] DDR3 I/O
BN6 VSS GND
BN8 SA_DQ[15] DDR3 I/O
BN9 SA_DQ[17] DDR3 I/O
BN11 SA_DQ[20] DDR3 I/O
BN13 SA_DQS#[2] DDR3 I/O
BN17 SA_DQ[16] DDR3 I/O
BN20 SA_DQ[24] DDR3 I/O
BN21 SA_DQS[3] DDR3 I/O
BN24 SA_DM[3] DDR3 O
BN25 SA_MA[15] DDR3 O
BN28 SA_MA[14] DDR3 O
BN30 SA_MA[8] DDR3 O
BN32 SA_MA[5] DDR3 O
BN38 SB_DQ[68] DDR3 I/O
BN40 SA_DQ[36] DDR3 I/O
BN44 SA_DQ[38] DDR3 I/O
BN47 SA_DQ[39] DDR3 I/O
BN48 SA_DQ[40] DDR3 I/O
BN51 SA_DQ[41] DDR3 I/O
BN55 SA_DQ[47] DDR3 I/O
BN57 SA_DQ[49] DDR3 I/O
BN62 SA_DM[6] DDR3 O
BN64 VSS GND
BN65 SA_DQ[50] DDR3 I/O
BN68 SB_DQ[54] DDR3 I/O
BN71 VSS GND
BP12 SB_DQ[21] DDR3 I/O
BP15 SB_DQ[24] DDR3 I/O
BP19 SB_DQ[28] DDR3 I/O
BP22 SB_DM[3] DDR3 O
BP26 SB_MA[7] DDR3 O
BP30 SB_MA[1] DDR3 O
BP33 SA_MA[1] DDR3 O
BP35 SA_CK#[0] DDR3 O
BP39 SM_RCOMP[1] Analog
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
BP42 VSS GND
BP46 SB_CS#[0] DDR3 O
BP49 SB_DQ[35] DDR3 I/O
BP53 SB_DQ[40] DDR3 I/O
BP56 SB_DQ[45] DDR3 I/O
BP58 SA_DQS#[6] DDR3 I/O
BP60 SB_DQ[49] DDR3 I/O
BR1 DC_TEST_BR1
BR3 VSS GND
BR5 RSVD_NCTF
BR6 SB_DQ[10] DDR3 I/O
BR8 SB_DQ[11] DDR3 I/O
BR10 SB_DQ[16] DDR3 I/O
BR62 SB_DQ[52] DDR3 I/O
BR64 SB_DQ[51] DDR3 I/O
BR66 SB_DQ[50] DDR3 I/O
BR68 VSS GND
BR69 VSS GND
BR71 DC_TEST_BR71
BT1 DC_TEST_BT1
BT3 DC_TEST_BT3
BT5 RSVD_NCTF
BT12 SB_DQ[17] DDR3 I/O
BT13 SB_DM[2] DDR3 O
BT15 SB_DQ[18] DDR3 I/O
BT17 SB_DQS[3] DDR3 I/O
BT19 SB_DQS#[3] DDR3 I/O
BT20 SB_DQ[31] DDR3 I/O
BT22 SB_DQ[27] DDR3 I/O
BT24 SB_CKE[1] DDR3 O
BT26 SB_CKE[0] DDR3 O
BT27 SB_MA[9] DDR3 O
BT29 SB_MA[12] DDR3 O
BT31 SB_MA[6] DDR3 O
BT33 SB_MA[5] DDR3 O
BT34 SB_MA[0] DDR3 O
BT36 SA_MA[0] DDR3 O
Table 13. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
61 323178-003
Processor Ball and Signal Information
BT38 SA_BS[0] DDR3 O
BT40 SB_RAS# DDR3 O
BT41 SB_WE# DDR3 O
BT43 SB_CS#[1] DDR3 O
BT45 SB_MA[13] DDR3 O
BT47 SB_DQ[36] DDR3 I/O
BT48 SB_DQ[32] DDR3 I/O
BT50 SB_DQS#[4] DDR3 I/O
BT52 SB_DQS[4] DDR3 I/O
BT54 SB_DQ[38] DDR3 I/O
BT55 SB_DQ[44] DDR3 I/O
BT57 SB_DQ[43] DDR3 I/O
BT59 SB_DQ[42] DDR3 I/O
BT61 SB_DQ[53] DDR3 I/O
BT68 VSS GND
BT69 DC_TEST_BT69
BT71 DC_TEST_BT71
BU7 VSS GND
BU9 SB_DQ[14] DDR3 I/O
BU11 VSS GND
BU12 SB_DQS#[2] DDR3 I/O
BU14 VSS GND
BU16 SB_DQ[23] DDR3 I/O
BU18 VSS GND
BU19 SB_DQ[25] DDR3 I/O
BU21 VSS GND
BU23 SB_MA[15] DDR3 O
BU25 VSS GND
BU26 SB_MA[11] DDR3 O
BU28 SB_DQ[71] DDR3 I/O
BU30 SB_MA[3] DDR3 O
BU32 VSS GND
BU33 SB_CK[0] DDR3 O
BU35 SA_DQ[67] DDR3 I/O
BU37 VSS GND
BU39 SB_CK#[1] DDR3 O
BU40 SA_DQ[66] DDR3 I/O
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
BU42 SB_MA[10] DDR3 O
BU44 VSS GND
BU46 SB_CAS# DDR3 O
BU48 VSS GND
BU49 SB_ODT[1] DDR3 O
BU51 VSS GND
BU53 SB_DQ[41] DDR3 I/O
BU55 VSS GND
BU56 SB_DQS[5] DDR3 I/O
BU58 VSS GND
BU60 SB_DQ[46] DDR3 I/O
BU62 VSS GND
BU63 SB_DQS#[6] DDR3 I/O
BU65 SB_DM[6] DDR3 O
BV1 DC_TEST_BV1
BV3 DC_TEST_BV3
BV5 DC_TEST_BV5
BV6 RSVD_NCTF
BV8 RSVD_NCTF
BV10 SB_DQ[15] DDR3 I/O
BV12 SB_DQ[20] DDR3 I/O
BV13 SB_DQS[2] DDR3 I/O
BV15 SB_DQ[19] DDR3 I/O
BV17 SB_DQ[22] DDR3 I/O
BV19 SB_DQ[29] DDR3 I/O
BV20 SB_DQ[30] DDR3 I/O
BV22 SB_DQ[26] DDR3 I/O
BV24 SB_BS[2] DDR3 O
BV26 SB_MA[14] DDR3 O
BV27 SB_MA[8] DDR3 O
BV29 SB_MA[2] DDR3 O
BV31 SB_MA[4] DDR3 O
BV33 SM_RCOMP[0] Analog I
BV34 SB_CK#[0] DDR3 O
BV36 SA_MA[2] DDR3 O
BV38 SB_CK[1] DDR3 O
BV40 SM_RCOMP[2] Analog I
Table 13. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Number
Pin # Pi n Na m e Buffer
Type Dir
323178-003 62
Processor Ball and Signal Information
BV41 SB_BS[0] DDR3 O
BV43 SB_BS[1] DDR3 O
BV45 SB_ODT[0] DDR3 O
BV47 SB_DM[4] DDR3 O
BV48 SB_DQ[33] DDR3 I/O
BV50 SB_DQ[34] DDR3 I/O
BV52 SB_DQ[37] DDR3 I/O
BV54 SB_DQ[39] DDR3 I/O
BV55 SB_DQS#[5] DDR3 I/O
BV57 SB_DM[5] DDR3 O
BV59 SB_DQ[47] DDR3 I/O
BV61 SB_DQ[48] DDR3 I/O
BV62 SB_DQS[6] DDR3 I/O
BV64 VSS GND
BV66 VSS GND
BV68 DC_TEST_BV68
BV69 DC_TEST_BV69
BV71 DC_TEST_BV71
C3 DC_TEST_C3
C5 RSVD_NCTF
C68 VSS GND
C69 DC_TEST_C69
C71 DC_TEST_C71
D6 VSS GND
D8 RSVD
D10 VSS GND
D12 PEG_RCOMPO Analog I
D13 VSS GND
D15 PEG_RX[15] PCIe I
D17 VSS GND
D19 PEG_RX#[13] PCIe I
D20 VSS GND
D22 PEG_RX#[11] PCIe I
D24 VSS GND
D26 PEG_RX#[9] PCIe I
D27 VSS GND
D29 PEG_RX#[7] PCIe I
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
D31 VSS GND
D33 PEG_TX[10] PCIe O
D34 VSS GND
D36 PEG_TX[7] PCIe O
D38 VSS GND
D40 PEG_TX#[3] PCIe O
D41 VSS GND
D43 VCC REF
D45 VCC REF
D47 VCC REF
D48 VCC REF
D50 VCC REF
D52 VCC REF
D54 VCC REF
D55 VCC REF
D57 VCC REF
D59 VCC REF
D61 VID[1] CMOS O
D62 VID[2] CMOS O
D64 CSC[2]/VID[5] CMOS I/O
D66 VID[6] CMOS O
E1 DC_TEST_E1
E3 RSVD_NCTF
E5 VSS GND
E12 VSS GND
E16 VSS GND
E30 VSS GND
E33 VSS GND
E37 VSS GND
E42 VCC REF
E46 VCC REF
E50 VCC REF
E53 VCC REF
E57 VCC REF
E60 VCC REF
E68 VSS GND
E69 VSS GND
Table 13. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
63 323178-003
Processor Ball and Signal Information
E71 DC_TEST_E71
F1 RSVD_NCTF
F4 VSS GND
F7 DMI_RX#[0] DMI I
F9 DMI_RX[0] DMI I
F10 DMI_TX#[3] DMI O
F20 VSS GND
F21 PEG_TX[14] PCIe O
F28 VSS GND
F40 PEG_RX[0] PCIe I
F47 VSS GND
F48 VSS GND
F55 VCC REF
F61 VSS GND
F63 VSS_SENSE Analog O
F64 VCC_SENSE Analog O
F66 PROC_DPRSLPVR CMOS O
F68 PSI# Async CMOS O
F71 VSS GND
G3 RSTIN# CMOS I
G13 DMI_TX[2] DMI O
G15 VSS GND
G17 DMI_TX[0] DMI O
G20 VSS GND
G21 PEG_TX#[14] PCIe O
G24 VSS GND
G25 PEG_RX[5] PCIe I
G28 PEG_RX#[4] PCIe I
G30 VSS GND
G32 PEG_TX#[5] PCIe O
G34 PEG_RX[2] PCIe I
G38 PEG_RX#[1] PCIe I
G40 PEG_RX#[0] PCIe I
G43 VSS GND
G44 VCC REF
G47 VSS GND
G48 VSS GND
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
G51 VCC REF
G53 VSS GND
G55 VCC REF
G57 VSS GND
G60 VCC REF
G70 VSS GND
H1 VSS GND
H15 VT TPWRGOOD Async CMOS I
H17 DMI_TX#[0] DMI O
H24 PEG_RX#[6] PCIe I
H25 PEG_RX#[5] PCIe I
H32 PEG_TX[5] PCIe O
H34 PEG_RX#[2] PCIe I
H36 VSS GND
H43 VSS GND
H44 VCC REF
H51 VCC REF
H53 VSS GND
H60 VCC REF
H71 VSS GND
J11 DMI_TX[3] DMI O
J13 DMI_TX#[2] DMI O
J2 DMI_RX[3] DMI I
J4 DMI_RX#[3] DMI I
J6 DMI_RX[1] DMI I
J8 DMI_RX#[1] DMI I
J9 VSS GND
J20 PEG_TX#[15] PCIe O
J21 PEG_CLK# DIFF CLK I
J28 PEG_RX[4] PCIe I
J30 PEG_TX[8] PCIe O
J38 PEG_RX[1] PCIe I
J40 VSS GND
J47 VSS GND
J48 VSS GND
J55 VCC REF
J57 VSS GND
Table 13. Intel ® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball Li st
by Ball Number
Pin # Pi n Na m e Buffer
Type Dir
323178-003 64
Processor Ball and Signal Information
J62 BPM#[2] GTL I/O
J64 BPM#[5] GTL I/O
J65 VSS GND
J67 BPM#[1] GTL I/O
J69 BPM#[0] GTL I/O
J70 BCLK_ITP # DIFF CLK O
K1 FDI_TX[0] FDI O
K4 VSS GND
K6 VSS GND
K8 DMI_RX#[2] DMI I
K9 DMI_RX[2] DMI I
K11 VSS GND
K15 DMI_TX#[1] DMI O
K17 VSS GND
K24 PEG_RX[6] PCIe I
K25 VSS GND
K32 VSS GND
K34 VSS GND
K36 VSS GND
K43 VSS GND
K44 VCC REF
K51 VCC REF
K53 VSS GND
K60 VCC REF
K62 BPM#[4] GTL I/O
K64 VSS GND
K65 BPM#[3] GTL I/O
K69 BPM#[6] GTL I/O
K71 BCLK_ITP DIFF CLK O
L2 FDI_TX#[0] FDI O
L13 VSS GND
L20 PEG_TX[15] PCIe O
L21 PE G_CLK Diff CLK I
L28 PEG_TX#[11] PCIe O
L30 PEG_TX#[8] PCIe O
L38 PEG_TX#[1] PCIe O
L40 PEG_TX[0] PCIe O
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
L47 VSS GND
L48 VSS GND
L55 VCC REF
L57 VSS GND
L70 VSS GND
M1 VSS GND
M4 FDI_TX#[2] FDI O
M15 DMI_TX[1] DMI O
M17 PM_SYNC CMOS I
M24 PEG_TX#[13] PCIe O
M25 PEG_TX[12] PCIe O
M32 PEG_TX#[2] PCIe O
M34 PEG_RX[3] PCIe I
M36 VSS GND
M42 VSS GND
M44 VCC REF
M51 VCC REF
M53 VSS GND
M60 VCC REF
M69 BPM#[7] GTL I/O
M71 PROC_DETECT
N2 FDI_TX[2] FDI O
N5 FDI_TX[1] FDI O
N7 FDI_TX#[1] FDI O
N9 FDI_TX[4] FDI O
N10 FDI_TX#[4] FDI O
N13 VTT_SENSE Analog O
N15 VSS GND
N17 THERMTRIP# Async GTL O
N19 PECI Async I/O
N21 VSS GND
N24 PEG_TX[13] PCIe O
N26 PEG_TX#[12] PCIe O
N28 PEG_TX[11] PCIe O
N30 VSS GND
N32 PEG_TX[2] PCIe O
Table 13. Intel ® Cor eTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 65
Processor Ball and Signal Information
N38 PEG_TX[1] PCIe O
N40 PEG_TX#[0] PCIe O
N42 VCC REF
N44 VCC REF
N46 VSS GND
N48 VCC REF
N50 VSS GND
N51 VCC REF
N53 VSS GND
N55 VCC REF
N57 VSS GND
N61 CATERR# GTL I/O
N63 VSS GND
N65 TMS CMOS I
N67 PROCHOT# Async GTL I/O
N70 RESET_OBS# Async CMOS O
P1 FDI_TX#[3] FDI O
P4 VSS GND
P34 PEG_RX#[3] PCIe I
P60 VCC REF
P69 TRST# CMOS I
P71 TDI_M CMOS I
R2 FDI_TX[3] FDI O
R5 VSS GND
R7 FDI_TX#[5] FDI O
R8 FDI_TX[5] FDI O
R12 VSS_SENSE_VTT Analog O
R14 VSS GND
R15 VTT1 REF
R17 VTT1 REF
R19 VTT1 REF
R21 VTT1 REF
R23 VTT0 REF
R24 VTT0 REF
R26 VTT0 REF
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
Processor Ball and Signal Information
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
66 Document Number: 323178-003
R28 VTT0 REF
R30 VTT0 REF
R32 VTT0 REF
R33 VTT0 REF
R35 VTT0 REF
R37 VCCPLL REF
R39 VCCPLL REF
R41 VCC REF
R42 VSS GND
R44 VCC REF
R46 VSS GND
R48 VCC REF
R50 VSS GND
R51 VCC REF
R53 VSS GND
R55 VCC REF
R57 VSS GND
R59 VCAP2 PWR
R60 VCAP2 PWR
R62 VSS GND
R64 RSVD
R66 RSVD
R70 VSS GND
T1 VSS GND
T2 RSVD
T4 RSVD
U6 FDI_TX[6] FDI O
U7 FDI_TX#[6] FDI O
U9 VSS GND
T67 TCK CMOS I
T69 TDI CMOS I
T70 TDO_M CMOS O
T71 TDO CMOS O
U1 RSVD
U4 VSS GND
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 67
Processor Ball and Signal Information
U12 VTT1 REF
U14 VTT1 REF
U15 VTT1 REF
U17 VTT1 REF
U19 VTT1 REF
U21 VTT1 REF
U23 VTT0 REF
U24 VTT0 REF
U26 VTT0 REF
U28 VTT0 REF
U30 VTT0 REF
U32 VTT0 REF
U33 VTT0 REF
U35 VTT0 REF
U37 VCCPLL REF
U39 VSS GND
U41 VCC REF
U42 VSS GND
U44 VCC REF
U46 VSS GND
U48 VCC REF
U50 VSS GND
U51 VCC REF
U53 VSS GND
U55 VCC REF
U57 VSS GND
U59 VCAP2 PWR
U60 VCAP2 PWR
U62 VSS GND
U64 VSS GND
U69 PREQ# Async GTL I
U71 PRDY# Async GTL O
V2 RSVD
V70 VSS GND
W1 VSS GND
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
Processor Ball and Signal Information
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
68 Document Number: 323178-003
W4 DPLL_REF_SSCLK# DIFF CLK I
W6 VSS GND
W8 FDI_TX#[7] FDI O
W10 FDI_TX[7] FDI O
W12 VTT1 REF
W14 VTT1 REF
W15 VTT1 REF
W17 VTT1 REF
W19 VTT1 REF
W21 VTT1 REF
W23 VTT0 REF
W24 VTT0 REF
W26 VTT0 REF
W28 VTT0 REF
W30 VTT0 REF
W32 VTT0 REF
W33 VTT0 REF
W35 VTT0 REF
W37 VCCPLL REF
W39 VCCPLL REF
W41 VCC REF
W42 VSS GND
W44 VCC REF
W46 VSS GND
W48 VCC REF
W50 VSS GND
W51 VCC REF
W53 VSS GND
W55 VCC REF
W57 VSS GND
W59 VCAP2 PWR
W60 VCAP2 PWR
W62 VSS GND
W64 RSVD
W66 RSVD
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celero n®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 69
Processor Ball and Signal Information
§ §
W69 VSS GND
W71 DBR# O
Y2 DPLL_REF_SSCLK DIFF CLK I
Y67 VCCPWRGOOD_0 Async CMOS I
Y70 TAPPWRGOOD Async C MOS O
Table 13. Intel® CoreTM i7-660UE,
i7-620LE/UE, i7-610E,
i5-520E, i3-330E and
Intel® Celeron®
Processor P4505,
U3405 Series Ball List
by Ball Number
Pin # Pin Name Buffer
Type Dir
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
70 Document Number: 323178-003
6 Processor Configuration
Registers
This chapter is an Addendum to the Intel® CoreTM i7-600, i5-500 and i3-300 Mobile
Processor Series Datasheet. Contained in this chapter is any register information that is
specific to the Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and
Intel® Celeron® Processor P4505, U3405 Series. For all other register information not
contained in this chapter please refer to the Intel® CoreTM i7-600, i5-500 and i3-300
Mobile Processor Series Datasheet.
6.1 Register Terminology
The following table shows the register-related terminology that is used in this
document.
Table 14. Register Terminology (Shee t 1 of 2 )
Item Description
RO Read Only bit(s). Write s to these bits hav e no effect. These are static v alues
only.
RO-V Read Only/Volatile bit(s). Writes to these bits have no effect. These are
status bits only. The value to be read may change based on internal events.
RO-V-S Read Only/Volatile/Sticky bit(s). Writes to these bits have no effect.
These are status bits only. The value to be read may change based on internal
events. Bits are not returned to their default values by “warm” reset, but is
reset with a cold/complete reset (for PCI Express* related bits a cold reset is
“Power Good Reset” as defined in the PCI Express Base Specification).
AF Atomic Flag bit(s). The first time the bit is read with an enabled byte, it
returns the value 0, but a side-effect of the read is that the value changes to
1. Any subsequent reads with enabled bytes return a 1 until a 1 is written to
the bit. When t he bit is read, but the byte is not enabled, the state of the bit
does not change, and the value returne d is irrelev ant, but will match the stat e
of the bit.
When a 0 is written to the bit, there is no effect. When a 1 is written to the bit,
its value becomes 0, until the next byte-enabled read. When the bit is written,
but the byte is not enabled, there is no effect.
Conceptually, this is “Read to Set, Write 1 to Clear.
RW Read/Write bit(s). These bits can be read and written by software.
Hardware may only change the state of this bit by reset.
RW1C Read/Write 1 to Clear bit(s). These bits can be read. Internal events may
set this bit. A software write of 1 clears (sets to ‘0’) the corresponding bit(s)
and a write of 0 has no effect.
RW1C-L-S Read/Write 1 to Clear/Lockable/Sticky bit(s). These bits can be read.
Internal events may set this bit. A software write of 1 clears (sets to ‘0’) the
corresponding bit(s) and a write of 0 has no effect. Bits are not cleared by
“warm” reset, but is reset with a cold/complete reset (for PCI Express related
bits a cold reset is “Power Good Reset” as defined in the PCI Express Base
spec). Additionally there is a Key bit (which is marked RW-K or RW-L-K) that,
when set, prohibits this bit field from being writable (bit field becomes Read
Only/Volatile).
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 71
Processor Configuration Registers
RW1C-S Read/Write 1 to Clear/Sticky bit(s). These bits can be read. Internal
events may set this bit. A software write of 1 clears (sets to 0) the
corresponding bit(s) and a write of 0 has no effect. Bits are not cleared by
"warm" reset, but is re se t wi th a col d/c ompl ete reset (for PCI Expres s r ela te d
bits a cold reset is “Power Good Reset” as defined in the PCI Express Base
spec).
RW-K Read/Write/Key bit(s). These bits can be read and written by software.
Additionally this bit, when set, prohibits some other target bit field from being
writable (bit fields become Read Only).
RW-L Read/Write/Lockable bit(s). These bits can be read and written by
software. Additionally there is a Key bit (which is marked RW-K or RW-L-K)
that, when set, prohibits this bit field from being writable (bit field becomes
Read Only).
RW-L-K Read/Write/Lockable/Key bit(s). These bits can be read and written by
software. This bit, when set, prohibits some other bit field(s) from being
writable (bit fields become Read Only). Additional ly there is a K ey bit (which is
marked RW-K or RW-L-K) that, when set, prohibits this bit field from being
writable (bit field becomes Read Only).
Conceptually, this may be a cascaded lock, or it may be self-locking when in
its non-default state. When self-locking, it differs from RW-O in that writing
back the default value will not set the lock.
RW-V Write/Volatile bit(s). These bits can be read and written by software.
Hardware may set or clear the bit based on internal events, possibly sooner
than any subsequent software read could retrieve the value written.
RW-V-L Read/Write/Volatile/Lockable bit(s). These bits can be read and written
by software. Hardware may set or clear the bit based upon internal events,
possibly sooner than any subsequent software read could retrieve the value
written Additionally there is a bit (which is marked RW-K or RW-L-K) that,
when set, prohibits this bit field from being writable (bit field becomes Read
Only).
RW-V-L-S Read/Write/Volatile/Lockable/Sticky bit(s). These bits can be read and
written by software. Hardware may set or clear the bit based upon internal
events, poss ibly soone r than an y s ubsequen t soft wa re read could r etrie v e the
value written Additionally there is a bit (which is marked RW-K or RW-L-K)
that, when set, prohibits this bit field from being writable (bit field becomes
Read Only). These bits return to their default values on cold reset.
RW-S Read/Write/Sticky bit(s). These bits can be read and written by software.
Bits are not r eturned to their de fault val ues by “warm” rese t, but will retu rn to
default values with a cold/complete reset (for PCI Express related bits a cold
reset is “Power Good Reset” as defined in the PCI Express spec).
RW-O Read/Write Once bit(s). Reads prior to the first write return the default
value. The first write after warm reset stores any value written. Any
subsequent write to this bit field is ignored. All subsequent reads return the
first value written. The value returns to default on warm reset. If there are
multiple RW -O or RW -O-S fi elds within a DWORD, they should be written all at
once (atomically) to avoid capturing an incorrect value.
RW-O-S Read/Write Once/Sticky bit(s). Reads prior to the first write return the
default value. The first write after cold reset stores any value written. Any
subsequent write to this bit field is ignored. All subsequent reads return the
first value written. The value returns to default on cold reset. If there are
multiple RW -O or RW -O-S fi elds within a DWORD, they should be written all at
once (atomically) to avoid capturing an incorrect value.
WWrite-only. These bits may be written by software, but will always return
zeros when read. They are used for write side-effects. Any data written to
these registers cannot be retrieved.
W1C Write 1 to Clear-only. These bits may be cleared by software by wri ting a 1.
Writing a 0 has no effect. The state of the bits cannot be read directly. The
states of such bits are tracked outside the CPU and all read transactions to the
address of such bits are routed to t he other agent . W rite tr ansacti ons to thes e
bits go to both agents.
Table 14. Register Terminology (Sheet 2 of 2)
Item Description
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
72 Document Number: 323178-003
6.1.1 DEVEN - Device Enable
B/D/F/Type: 0/0/0/PCI
Address Offset: 54-57h
Default Value: 0000010Bh
Access: RW-L; RO; RW
Size: 32 bits
BIOS Optimal Default 000000h
Allows for enabling/disabling of PCI devices and functions that are within the processor.
The table below the bit definitions describes the behavior of all combinations of
transactions to devices controlled by this register. All the bits in this register are Intel
TXT Lockable.
Table 15. DEVEN - Device Enable Register
Bit Access Default
Value RST/
PWR Description
31:15 RO 0h Reserved
14 RW-L 0b Core Reserved
13 RW-L 0b Core PEG1 Enable (D6EN)
0 = Bus 0 Device 6 Function 0 is disabled
and hidden.
1 = Bus 0 Device 6 Function 0 is enabled
and visible.
12:12 RO 0h Reserved
11 RW-L 0b Core Reserved
10 RW-L 0b Core Reserved
9:9 RO 0h Reserved
8RW-L 1b CoreReserved
7:4 RO 0h Reserved
3RW-L 1b CoreInternal Graphics Engine Function 0
(D2F0EN)
0 = Bus 0 Device 2 Function 0 is disabled
and hidden
1 = Bus 0 Device 2 Function 0 is enabled
and visible
2:2 RO 0h Reserved
1RW-L 1b CorePCI Express Port (D1EN)
0 = Bus 0 Device 1 Function 0 is disabled
and hidden.
1 = Bus 0 Device 1 Function 0 is enabled
and visible.
0RO 1bCoreHost Bridge (D0EN)
Bus 0 Device 0 Function 0 may not be
disabled and is therefore hard wired to 1.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 73
Processor Configuration Registers
6.1.2 ERRSTS - Error Status
B/D/F/Type: 0/0/0/PCI
Address Offset: C8-C9h
Default Value: 0000h
Access: RO; RW1C-S;
Size: 16 bits
This register is used to report various error conditions via the SERR DMI messaging
mechanism. An SERR DMI message is generated on a zero to one transition of any of
these flags (if enabled by the ERRCMD and PCICMD registers).
These bits are set regardless of whether or not the SERR is enabled and generated.
After the error processing is complete, the error logging mechanism can be unlocked by
clearing the appropriate status bit by software writing a '1' to it.
Table 16. Error Status Register (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
15:13 RO 000b Core Reserved
12 RW1C-S 0b Core Processor Software Generated Event for
SMI (GSGESMI):
This indicates the source of the SMI was a
Device 2 Software Event.
11 RW1C-S 0b Core Processor Thermal Sensor Event for SMI/
SCI/SERR (GTSE):
Indicates that a Processor Thermal Sensor trip
has occurred and an SMI, SCI or SERR has
been generated. The status bit is set only if a
message is sent base d on thermal event
enables in Error command, SMI command and
SCI command registers. A trip point can
generate one of SMI, SCI, or SERR interrupts
(two or more pe r event is illegal). Multiple trip
points can generate the same interrupt, if
software chooses this mode, subsequent trips
may be lost. If this bit is already set, then an
interrupt message will not be sent on a new
thermal sensor event
10 RO 0b Core Reserved
9RW1C-S 0b CoreLOCK to non-DRAM Memory Flag (LCKF):
When this bit is set to 1, the Processor has
detected a lock operation to memory space that
did not map into DRAM
8RO 0b CoreReserved
7RW1C-S 0b CoreDRAM Throttle Flag (DTF):
1: Indicates tha t a DRAM Throttling
condition occurred.
0: Software has cleared this flag since the
most recent throttling event.
6:2 RO 00h Core Reserved
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
74 Document Number: 323178-003
6.1.3 ERRCMD - Error Command
B/D/F/Type: 0/0/0/PCI
Address Offset: CA-CBh
Default Value: 0000h
Access: RO; RW;
Size: 16 bits
This register controls the Processor responses to various system errors. Since the
Processor does not have an SERRB signal, SERR messages are passed from the
Processor to the PCH over DMI.
When a bit in this register is set, a SERR message will be generated on DMI whenever
the corresponding flag is set in the ERRSTS register. The actual generation of the SERR
message is globally enabled for Device #0 via the PCI Command register.
1RW1C-S 0b CoreMultiple-bit DRAM ECC Error Flag
(DMERR):
If this bit is set to 1, a memory read data
transfer had an uncorrectable multiple-bit error.
When this bit is set, the column, row, bank, and
rank that caused the error, and the error
syndrome, are logged in the ECC Error Log
register in the channel where the error
occurred. Once this bit is set, the
CxECCERRLOG fields are locked until t he CPU
clears this bit by writing a 1. Software uses bits
[1:0] to detect whether the logged error
address is for a Single-bit or a Multiple-bit
error.
This bit is reset on PWROK.
0RW1C-S 0b CoreSingle-bit DRAM ECC Error Flag (DSERR):
If this bit is set to 1, a memory read data
transfer had a single-bit correctable error and
the corrected data was returned to the
requesting agent. When this bit is set the
column, row, bank, and rank where the error
occurred and the syndrome of the error are
logged in the ECC Error Log register in the
channel where the error occurred. Once this bit
is set the CxECCERRLOG fields are locked to
further single-bit error updates until the CPU
clears this bit by writing a 1. A multiple bit error
that occurs after this bit is set will overwrite the
CxECCERRLOG fields with the multiple-bit err or
signature and the DMERR bit will also be set. A
single bit error that occurs after a multibit error
will set this bit but will not overwrite the other
fields.
This bit is reset on PWROK.
Table 16. Error S tatus Register (Sheet 2 of 2)
Bit Access Default
Value RST/
PWR Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 75
Processor Configuration Registers
Table 17. Error Command Registers
Bit Access Default
Value RST/
PWR Description
15:12 RO 000b Core Reserved
11 RW 0b Core SERR on Processor Thermal Sensor Event
(TSESERR):
1: The Pr ocessor gene rat es a DMI SERR s pecial
cycle when bit 11 of the ERRSTS is set. The
SERR must not be enabled at the same time as
the SMI for the same thermal sensor event.
0: Reporting of this condition via SERR
messaging is disabled.
10 RO 0b Core Reserved
9RW 0b CoreSERR on LOCK to non-DRAM Memory
(LCKERR):
1: The Processor will generate a DMI SERR
special cycle whenever a CPU lock cycle is
detected that does not hit DRAM.
0: Reporting of this condition via SERR
messaging is disabled
8RW 0b CoreReserved
7RW 0b Core
SERR on DRAM Throttle Condition (ERR):
0 = Reporting of this conditio n via SERR
messaging is disabled.
1 = The memory controller generates a DMI
SERR special cycle when a DRAM Read or Write
Throttle condition occurs.
6:2 RO 00h Core Reserved
1RW 0b CoreSERR Multiple-Bit DRAM ECC Error
(DMERR):
1: The Processor generates an SERR message
over DMI when it detects a mul tiple-bit error
reported by the DRAM controller.
0: Reporting of this condition via SERR
messaging is disabled.
For systems not supporting ECC this bit must
be disabled.
0RW 0b CoreSERR on Single-bit ECC Error (DSERR):
1: The Processor generates an SERR special
cycle over DMI when the DR A M controller
detects a singl e bit error.
0: Reporting of this condition via SERR
messaging is disabled.
For systems that do not support ECC this bit
must be disabled.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
76 Document Number: 323178-003
6.1.4 SMICMD - SMI Command
B/D/F/Type: 0/0/0/PCI
Address Offset: CC-CDh
Default Value: 0000h
Access: RO, RW;
Size: 16 bits
This register enables various errors to generate an SMI DMI special cycle. When an
error flag is set in the ERRSTS register, it can generate an SERR, SMI, or SCI DMI
special cycle when enabled in the ERRCMD , SMICMD, or SCICMD registers respectively.
Note that one and only one message type can be enabled.
Table 18. SMI Command Registers
Bit Access Default
Value RST/
PWR Description
15:12 RO 0h Core Reserved
11 RW 0b Core SMI on Processor Thermal Sensor Tr ip
(TSTSMI):
1: A SMI DMI special cycle is generated by
Processor when the thermal sensor trip
requires an SMI. A thermal sensor trip point
cannot generate more than one special cycle.
0: Reporting of this cond ition via SMI
messaging is disabled.
10:2 RO 000h Core Reserved
1RW 0b Core
SMI on Multiple-Bit DRAM ECC Error
(DMESMI):
1: The Processor generates an S MI DMI
message when it detects a multiple- bit error
reported by the DRAM controller.
0: Reporting of this cond ition via SMI
messaging is disabled. For systems not
supporting ECC this bit must be disabled.
0RW 0b Core
SMI on Single-bit ECC Error (DSESMI):
1: The Processor generates an SMI DMI special
cycle when the DRAM controller detects a single
bit error.
0: Reporting of this cond ition via SMI
messaging is disabled. For systems that do not
support ECC this bit must be disabled.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 77
Processor Configuration Registers
6.1.5 C0WRDATACTRL - Channel 0 Write Data Control
B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 24D-24Fh
Default Value: 004111h
Access: RW
Size: 24 bits
BIOS Optimal Default 00h
Table 19. Channel 0 Write Data Control Registers
Bit Access Default
Value RST/
PWR Description
23:16 RW 00h Core ECC bit invert vector (C0sd_cr_eccbitinv):
This vector operates individually for every ECC
bit in the selected 64b ECC block, during write
to DRAM. For all k between 0 and 7, when
bit(k) is set to 1, the value for the k ECC bit
(which corresponds with k data byte lane) is
inverted. Otherwise, the value for the k ECC bit
is not affected.
15 RW 0b Core ECC Diagnostic Enable
(C0sd_cr_eccdiagen):
1: The ECC bit invert vector is used to invert
selected ECC bits, during writes to DRAM.
0: The diagnostic feature is turned off.
14:0 RW 4110h Core Reserved
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
78 Document Number: 323178-003
6.1.6 COECCERRLOG - Channel 0 ECC Error Log
B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 280-287h
Default Value: 0000000000000000h
Access: RO-P; RO
Size: 64 bits
This register is used to store the error status information in ECC enabled
configurations, along with the error syndrome and the rank/bank/row/column address
information of the address block of main memory of which an error (single bit or multi-
bit error) has occurred. Note that the address fields represent the add re s s of the first
single or the first multiple bit error occurrence after the error flag bits in the ERRSTS
register have been cleared by software. A multiple bit error will overwrite a single bit
error. Once the error flag bits are set as a result of an error, this bit field is locked and
doesn't change as a result of a new error until the error flag is cleared by software.
Same is the case with error syndrome field, but the following priority needs to be
followed if more than one error occurs on one or more of the 4 QWs. MERR on QW0
MERR on QW1 MERR on QW2 MERR on QW3 CERR on QW0 CERR on QW1 CERR on
QW2 CERR on QW3.
Table 20. Channel 0 ECC Error Registers (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
63:48 RO-P 0000h Core Error Column Address (ERRCOL):
Row address of the address block of main
memory of which an error (single bit or multi-
bit error) has occurred.
47:32 RO-P 0000h Core Error Row Address (ERRROW):
Row address of the address block of main
memory of which an error (single bit or multi-
bit error) has occurred
31:29 RO-P 000b Core Error Bank Address (ERRBANK):
Rank address of the address block of main
memory of which an error (single bit or multi-
bit error) has occurred
28:27 RO-P 00b Core Error Rank Address (ERRRANK):
Rank address of the address block of main
memory of which an error (single bit or multi-
bit error) has occurred.
26:24 RO 000b Core Reserved
23:16 RO-P 00b Core Error Syndrome (ERRSYND):
Syndrome that describes the set of bits
associated with the first failing quadword
15:2 RO 0000h Core PReserved
1RO-P 0b CoreMultiple Bit Error Status (MERRSTS):
This bit is set when an uncorrectable multiple-
bit error occurs on a memory read data
transfer. When this bit is set, the address that
caused the error and the error syndrome are
also logged and they are locked until this bit is
cleared. This bit is cleared when it receives an
indication that the CPU has cleared the
corresponding bit in the ERRSTS register.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 79
Processor Configuration Registers
0RO-P 0b CoreCorrectable Error Status (CERRSTS):
This bit is set when a correctable single-bit
error occurs on a memory read data transfer.
When this bit is set, the address that caused
the error and the error syndrome are also
logged and they are locked to further single bit
errors, until this bit is cleared. But, a multiple
bit error that occurs after this bit is set will
over-write the address/error syndrome info.
This bit is cleared when it receives an indication
that the CPU ha s cl eared the corresponding bit
in the ERRSTS register.
Table 20. Channel 0 ECC Error Registers (Sheet 2 of 2)
Bit Access Default
Value RST/
PWR Description
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
80 Document Number: 323178-003
6.1.7 C1WRDATACTRL - Channel 1 Write Data Control
B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 64D-64Fh
Default Value: 004111h
Access: RW
Size: 24 bits
BIOS Optimal Default 00h
6.1.8 C1ECCERRLOG - Channel 1 ECC Error Log
B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 680 -687h
Default Value: 0000000000000000h
Access: RO; RO-V-S
Size: 64 bits
This register is used to store the error status information in ECC enabled
configurations, along with the error syndrome and the rank/bank/row/column address
information of the address block of main memory of which an error (single bit or multi-
bit error) has occurred. Note that the address fields represent the add re s s of the first
single or the first multiple bit error occurrence after the error flag bits in the ERRSTS
register have been cleared by software. A multiple bit error will overwrite a single bit
error. Once the error flag bits are set as a result of an error, this bit field is locked and
doesn't change as a result of a new error until the error flag is cleared by software.
Same is the case with error syndrome field, but the following priority needs to be
followed if more than one error occurs on one or more of the 4 QWs. MERR on QW0
MERR on QW1 MERR on QW2 MERR on QW3 CERR on QW0 CERR on QW1 CERR on
QW2 CERR on QW3.
Table 21. Channel 1 Write Data Control Registers
Bit Access Default
Value RST/
PWR Description
23:16 RW 00h Core ECC bit invert vector (C1sd_cr_eccbitinv):
This vector operates individually for every ECC
bit in the selected 6 4b ECC block, during write
to DRAM. For all k between 0 and 7, when
bit(k) is set to 1, the value for the k ECC bit
(which corresponds with k data byte lane) is
inverted. Otherwise, the value for the k ECC bit
is not affected.
15 RW 0b Core ECC Diagnostic Enable
(C1sd_cr_eccdiagen):
1: The ECC bit invert vector is used to invert
selected ECC bits, during writes to DRAM.
0: The diagnostic feature is turned off.
14:0 RW 4110h Core Reserved
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 81
Processor Configuration Registers
6.2 PCI Device 6
Device 6 contains the controls associated with the PCI Express x8 port (Port 1) that is
enabled with bifurcation of the PCI Express x16 root port.
Warning: When reading the PCI Express “conceptual” registers such as this, you may not get a
valid value unless the register value is stable.
The PCI Express based specification defines two types of reserved bits.
Table 22. Channel 1 ECC Error Registers
Bit Access Default
Value RST/
PWR Description
63:48 RO-V-S 0000h Core Error Column Address (ERRCOL):
Row address of the address block of main
memory of which an error (single bit or multi-
bit error) has occurred.
47:32 RO-V-S 0000h Core Error Row Address (ERRROW):
Row address of the address block of main
memory of which an error (single bit or multi-
bit error) has occurred
31:29 RO-V-S 000b Core Error Bank Address (ERRBANK):
Rank address of the address block of main
memory of which an error (single bit or multi-
bit error) has occurred
28:27 RO-V-S 00b Core Error Rank Address (ERRRANK):
Rank address of the address block of main
memory of which an error (single bit or multi-
bit error) has occurred.
26:24 RO 000b Core Reserved
23:16 RO-V-S 00b Core Error Syndrome (ERRSYND):
Syndrome that describes the set of bits
associated with the first failing quadword
15:2 RO 0000h Core PReserved
1RO-V-S 0b CoreMult iple Bit Error Statu s (MERRSTS):
This bit is set when an uncorrectable multiple-
bit error occurs on a memory read data
transfer. When this bit is set, the address that
caused the error and the error syndrome are
also logged and they are locked un til this bit is
cleared. This bit is cleared when it receives an
indication that the CPU has cleared the
corresponding bit in the ERRSTS register.
0RO-V-S 0b CoreCorrectable Error Status (CE R RSTS):
This bit is set when a correctable single-bit
error occurs on a memory read data transfer.
When this bit is set, the address that caused
the error and the error syndrome are also
logged and they are locked to further single bit
errors, until this bit is cleared. But, a multiple
bit error that occurs after this bit is set wil l
over-write the address/error syndrome info.
This bit is cleared when it receives an indication
that the CPU has cleared the corresponding bit
in the ERRSTS register.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
82 Document Number: 323178-003
Reserved and Preserved:
1. Reserved for future RW implementations; software must preserve value read for
writes to bits.
2. Reserved and Zero: Reserved for future R/WC/S implementations; softw are must
use 0 for writes to bits.
Unless explicitly documented as Reserved and Zero, all bits marked as reserved are
part of the Reserved and Preserved type, which ha ve historically been the typical
definition for Reserved.
It is important to note that most (if not all) control bits in this device cannot be
modified unless the link is down. Software is required to first Disable the link, then
program the registers, and then re-enable the link (which will cause a full-retrain with
the new settings).
Table 23. PCI Device 6 Register (Sheet 1 of 3)
Register Name Register
Symbol Register Start Register End Default Value Access
Vendor
Identification VID6 0 1 8086h RO
Device
Identification DID6 2 3 0047h RO
PCI Command PCICMD6 4 5 0000h RO; RW
PCI Status PCISTS6 6 7 0010h RO; RWC
Revision
Identification RID6 8 8 10h RO
Class Code CC6 9 B 060400h RO
Cache Line Size CL6 C C 00h RW
Header Type HDR6 E E 01h RO
Primary Bus
Number PBUSN6 18 18 00h RO
Secondary Bus
Number SBUSN6 19 19 00h RW
Subordinate Bus
Number SUBUSN6 1A 1A 00h RW
I/O Base Address IOBASE6 1C 1C F0h RO; RW
I/O Limit Address IOLIMIT6 1D 1D 00h RO; RW
Secondary Status SSTS6 1E 1F 0 000h RWC; RO
Memory Base
Address MBASE6 20 21 FFF0h RO; RW
Memory Limit
Address MLIMIT6 22 23 0000h RO; RW
Prefetchable
Memory Base
Address
PMBASE6 24 25 FFF1h RO; RW
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 83
Processor Configuration Registers
Prefetchable
Memory Limit
Address
PMLIMIT6 26 27 0001h RO; RW
Prefetchable
Memory Base
Address Upper
PMBASEU6 28 2B 00000000h RW
Prefetchable
Memory Limit
Address Upper
PMLIMITU6 2C 2F 00000000h RW
Capabilities Pointer CAPPTR6 34 34 88h RO
Interrupt Line INTRLINE6 3C 3C 00h RW
Interrupt Pin INTRPIN6 3 D 3D 01h RO
Bridge Control BCTRL6 3E 3F 0000h RO; RW
Capabilities List
Control CAPL 7F 7F 02h RO; RW
Power
Management
Capabilities
PM_CAPID6 80 83 C8039001h RO
Power
Management
Control/Status
PM_CS6 84 87 00000008h RO; RW-S; RW
Subsystem ID and
Vendor ID
Capabilities
SS_CAPID 88 8B 0000800Dh RO
Subsystem ID and
Subsystem V endor
ID
SS 8C 8F 00008086h RW-O
Message Signaled
Interrupts
Capability ID
MSI_CAPID 90 91 A005h RO
Message Control MC 9 2 9 3 0000h RO; RW
Message Address MA 94 97 00000000h RO; RW
Message Data MD 98 99 0000h RW
PCI Express-G
Capability List PEG_CAPL A0 A1 0010h RO
PCI Express-G
Capabilities PEG_CAP A2 A3 0142h RO; RW-O
Device Capabilities DCAP A4 A7 00008000h RO
Device Control DCTL A8 A9 0000h RO; RW
Device Status DSTS AA AB 0000h R O; RWC
Link Capabilities LCAP AC AF 03214C81h RO; RW-O
Link Control LCTL B0 B1 0000h RO; RW; RW-
SC
Link Status LSTS B2 B3 1000h RWC; RO
Table 23. P CI Device 6 Register (Sheet 2 of 3)
Register Name Register
Symbol Register Start Register End Default Value Access
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
84 Document Number: 323178-003
Slot Capabilities SLOTCAP B4 B7 00040000h RW-O; RO
Slot Control SLOTCTL B8 B9 0000h RO; RW
Slot Statu s S LO TSTS BA BB 0000h RO; RWC
Root Control RCTL BC BD 0000h RO; RW
Root Status RSTS C0 C3 00000000h RO; RWC
Link Control 2 LCTL2 D0 D1 0001h RO; RW-S; RW
Link Status 2 LSTS2 D2 D3 0000h RO
PCI Express-G
Legacy Control PEGLC EC EF 00000000h RO; RW
Table 23. PCI Device 6 Register (Sheet 3 of 3)
Register Name Register
Symbol Register Start Register End Default Value Access
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 85
Processor Configuration Registers
6.2.1 VID6 - Vendor Identification
B/D/F/Type: 0/6/0/PCI
Address Offset: 0-1h
Default Value: 8086h
Access: RO
Size: 16 bits
This register combined with the Device Identification register uniquely identify any PCI
device.
6.2.2 DID 6 - Devi ce Identification
B/D/F/Type: 0/6/0/PCI
Address Offset: 2-3h
Default Value: 0047h
Access: RO
Size: 16 bits
This register combined with the V endor Identification register uniquely identifies any
PCI device.
Table 24. VID6 - Vendor Identification Register
Bit Access Default
Value RST/
PWR Description
15:0 RO 8086h Core Vendor Identification (VID6)
PCI standard identification for Intel.
Table 25. DID6 - Device Identification Register
Bit Access Default
Value RST/
PWR Description
15:4 RO 004h Core Device Identification Number
(DID6(UB))
Identifier assi gned to the processor Device
6 (virtual PCI-to-PCI bridge, PCI Express
Graphics port).
3:2 RO 00b Core Device Identificatio n Number
(DID6(HW))
Identifier assi gned to the processor Device
6 (virtual PCI-to-PCI bridge, PCI Express
Graphics port).
1:0 RO 01b Core Device Identificatio n Number
(DID6(LB))
Identifier assi gned to the processor Device
6 (virtual PCI-to-PCI bridge, PCI Express
Graphics port).
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
86 Document Number: 323178-003
6.2.3 PCICMD6 - PCI Command
B/D/F/Type: 0/6/0/PCI
Address Offset: 4-5h
Default Value: 0000h
Access: RO; RW
Size: 16 bits
Table 26. PCICMD6 - PCI Command Register (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
15:11 RO 00h Core Reserved
10 RW 0b Core INTA Assertion Disable (INTAAD)
0 = This device is permitted to generate INTA interrupt
messages.
1 = This device is prevented from generating interrupt
messages. Any INT A emulation interrupts already asserted
must be de-asserted when this bit is set.
Only affects interrupts generated by the device (PCI INTA from
a PME or Hot Plug event) controlled by this command register.
It does not affect upstream MSIs, upstream PCI INTA-INTD
assert and deassert messages.
9RO0bCoreFast Back-to-Back Enable (FB2B)
Not Applicable or Implemented. hard wired to 0.
8RW0bCoreSERR# Message Enable (SERRE1)
Controls Device 6 SERR# messaging. The processor
communicates th e SERR# condition by sending an SERR
message to the PCH. This bit, when set, enables reporting of
non-fatal and fatal errors detected by the device to the Root
Complex. Note that errors are reported if enabled either
through this bit or through the PCI-Express specific bits in the
Device Control Register.
In addition, for Type 1 configuration space header devices, this
bit, when set, enables transmission by the primary interface of
ERR_NONFATAL and ERR_FATAL error messages forwarded
from the secondary interface. This bit does not affect the
transmission of forwarded ERR_COR messages.
0 = The SERR message is generated by the processor for
Device 6 only under condit ions enabled ind iv idually
through the Device Control Register.
1 = The processor is enabled to generate SERR messages
which is sent to the PCH for specific Device 6 error
conditions generated/detected on the primary side of the
virtual PCI to PCI bridge (not those received by the
secondary side) . The status of SERRs generated is reporte d
in the PCISTS6 register.
7RO0bCoreReserved
Not Applicable or Implemented. Hard wired to 0.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 87
Processor Configuration Registers
6RW0bCoreParity Error Response Enable (PERRE)
Controls whether or not the Master Data Parity Error bit in the
PCI Status register can bet set.
0 = Master Data Parity Error bit in PCI Status r egister CANNOT
be set.
1 = Master Data Parity Error bit in PCI Status register CAN be
set.
5RO0bCoreVGA Palette Snoop (VGAPS)
Not Applicable or Implemented. Hard wired to 0.
4RO0bCoreMemory Write and Invalidate Enable (MWIE)
Not Applicable or Implemented. Hard wired to 0.
3RO0bCoreSpecial Cycle Enable (SCE)
Not Applicable or Implemented. hard wired to 0.
2RW0bCoreBus Master Enable (BME)
Controls the ability of the PEG port to forward Memory and IO
Read/Write Requests in the upstream direction.
0 = This device is prevented from making memory or IO
requests to its primary bus. Note that according to th e PCI
Local Bus Specification, as MSI interrupt messages are in-
band memory writes, disabling the bus master enable bit
prevents this device from generating MSI interrupt
messages or passing them from its secondary bus to its
primary bus. Upstream memory writes/reads, IO writes/
reads, peer writes/reads, an d MSIs will all be treated as
illegal cycles. Writes are forwarded to memory address
C0000h with byte enables deasserted. Reads is forwarded
to memory address C0000h and will return Unsupported
Request status (or Master abort) in its completion packet.
1 = Thi s device is allowed to issue requests to its primary bus.
Completions for previously issued memory read requests
on the primary bus is issued when the data is available.
This bit does not affect forwarding of Completions from the
primary interface to the secondary interface.
1RW0bCoreMemory Access Enabl e (M AE)
0 = All of Device 6's memory space is disabled.
1 = Enable the Memory and Pre-fetchable memory address
ranges defined in the MBASE6, MLIMIT6, PMBASE6, and
PMLIMIT6 registers.
0 RW 0b Core IO Access Enable (IOAE)
0 = All of Device 6's I/O space is disabled.
1 = Enable the I/O address range defined in the IOBASE6, and
IOLIMIT6 registers.
Table 26. PCICMD6 - PCI Command Register (Sheet 2 of 2)
Bit Access Default
Value RST/
PWR Description
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
88 Document Number: 323178-003
6.2.4 PCISTS6 - PCI Status
B/D/F/Type: 0/6/0/PCI
Address Offset: 6-7h
Default Value: 0010h
Access: RO; RWC
Size: 16 bits
This register reports the occurrence of error conditions associated with primary side of
the “virtual” Host-PCI Express bridge emb edd e d within the pro c essor.
Table 27. PCISTS6 - PCI Status Register (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
15 RO 0b Core Detected Parity Error (DPE)
Not Applicable o r Implemented. Hard wired to 0. Parity
(generating poisoned TLPs) is not supported on the primary side
of this device (we don't do error forwarding).
14 RWC 0b Core Signaled System Error (SSE)
This bit is set when this Device sends an SERR due to detecting
an ERR_FATAL or ERR_NONFATAL condition and the SERR Enable
bit in the Command register is 1. Both received (if enabled by
BCTRL6[1]) and internally detected error messages do not affect
this field.
13 RO 0b Core Re ce iv ed Master Abort Status (RMAS)
Not Applicable or Implemented. Hard wired to 0. The concept of a
master abort does not exist on primary side of this device.
12 RO 0b Core Received Target Abort Status (RTAS)
Not Applicable or Implemented. Hard wired to 0. The concept of a
target abort does not exist on primary side of this device.
11 RO 0b Core Signaled Target Abort Status (STAS)
Not Applicable or Implemented. Hard wired to 0. The concept of a
target abort does not exist on primary side of this device.
10:9 RO 00b Core DEVSELB Timing (DEVT)
This device is not the subtractively decoded device on bus 0. This
bit field is therefore hard wired to 00 to indicate that the device
uses the fastest possible decode.
8RO 0bCoreMaster Data Parity Error (PMDPE)
Because th e primary side of th e PCIe graphic's virtual P2P bridge
is integrated with the PROC ESSOR functionality there is no
scenario where this bit will get set. Because hardware will never
set this bit, it is impossible for software to have an opportunity to
clear this bit or otherwise test that it is implemented. The PCI
Local Bus Specification defines it as a R/WC, but for our
implementation an RO de finition behaves the same way and will
meet all Microsoft testing requirements.
This bit can only be set when the P arity Error Enable bit in the PCI
Command register is set.
7RO 0bCoreFast Back-to-Back (FB2B)
Not Applicable or Implemented. Hard wired to 0.
6RO 0bCoreReserved
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 89
Processor Configuration Registers
5RO 0bCore66-/60-MHz Capability (CAP66)
Not Applicable or Implemented. Hard wired to 0.
4RO 1bCoreCapabilities List (CAPL)
Indicates that a capabilities list is present. Hard wired to 1.
3RO 0bCoreINTA Status (INTAS)
Indicates that an interrupt message is pending internally to the
device. Only PME and Hot Plug sources feed into this status bit
(not PCI INTA-INTD assert and deassert messages). The INTA
Assertion Disable bit, PCICMD6[10], has no effect on this bit.
Note that INTA emulation interrupts received across the link are
not reflected in this bit.
2:0 RO 000b Core Reserved
Table 27. PCISTS6 - PCI Status Register (Sheet 2 of 2)
Bit Access Default
Value RST/
PWR Description
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
90 Document Number: 323178-003
6.2.5 RID6 - Revision Identification
B/D/F/Type: 0/6/0/PCI
Address Offset: 8h
Default Value: 10h
Access: RO
Size: 8 bits
This register contains the revision number of the processor Device 6. These bits are
read only and writes to this register have no effect.
6.2.6 CC6 - Class Code
B/D/F/Type: 0/6/0/PCI
Address Offset: 9-Bh
Default Value: 060400h
Access: RO
Size: 24 bits
This register identifies the basic function of the device, a more specific sub-class, and a
register- specific programming interface.
Table 28. RID6 - Revisio n Identification Register
Bit Access Default
Value RST/
PWR Description
7:0 RO 10h Core Revision Identification Number (RID6)
This is an 8-bit value that indicates the revision identification
number for the processor Device 0. For the C- 0 Stepping, this
value is 10h.
Table 29. CC6 - Class Code Register
Bit Access Default
Value RST/
PWR Description
23:16 RO 06h Core Base Class Code (BCC)
Indicates the base class code for this device. This code has the
value 06h, indicating a Bridge device.
15:8 RO 04h Core Sub-Class Code (SUBCC)
Indicates the sub-class code for this device. The code is 04h
indicating a PCI to PCI Bridge.
7:0 RO 00h Core Programming Interface (PI)
Indicates the programming interface of this device. This value
does not specify a particular register set layout and provides no
practical use for this device.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 91
Processor Configuration Registers
6.2.7 CL6 - Cache Line Size
B/D/F/Type: 0/6/0/PCI
Address Offset: Ch
Default Value: 00h
Access: RW
Size: 8 bits
6.2.8 HDR6 - Header Type
B/D/F/Type: 0/6/0/PCI
Address Offset: Eh
Default Value: 01h
Access: RO
Size: 8 bits
This registe r identi f i es the he ade r la yout of the configuration space. No physical
register exists at this location.
Regos t
Table 30. CL6 - Cache Line Size Register
Bit Access Default
Value RST/
PWR Description
7:0 RW 00h Core Cache Line Size (Scratch pad)
Implemented by PCI Express devices as a read-write field for
legacy compatibility purposes but has no impact on any PCI
Express device functionality.
Table 31. HDR6 - Header Type Register
Bit Access Default
Value RST/
PWR Description
7:0 RO 01h Core Header Type Register (HDR)
Returns 01 to indicate that this is a single function device with
bridge header layout.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
92 Document Number: 323178-003
6.2.9 PBUSN6 - Primary Bus Number
B/D/F/Type: 0/6/0/PCI
Address Offset: 18h
Default Value: 00h
Access: RO
Size: 8 bits
This register identifies that this “virtual” Host-PCI Express bridge is connected to PCI
Bus 0.
6.2.10 SBUSN6 - Secondary Bus Number
B/D/F/Type: 0/6/0/PCI
Address Offset: 19h
Default Value: 00h
Access: RW
Size: 8 bits
This register identifies the bus number assigned to the second bus side of the “virtual”
bridge, i.e., to PCI Express-G. This number is programmed by the PCI configuration
software to allow mapping of configuration cycles to PCI Express-G.
Table 32. PBUSN6 - Primary Bus Number Register
Bit Access Default
Value RST/
PWR Description
7:0 RO 00h Core Primary Bus Number (BUSN)
Configuration software typically programs this field with the
number of the bus on the primary side of the bridge. Since
Device 6 is an internal device and its primary bus is always 0,
these bits are read only and are hard wired to 0.
Table 33. SBUSN6 - Se condary Bus Number Register
Bit Access Default
Value RST/
PWR Description
7:0 RW 00h Core Secondary Bus Number (BUSN)
This field is programmed by configur ation software with the bus
number assigned to PC I Express-G.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 93
Processor Configuration Registers
6.2.11 SUBUSN6 - Subordinate Bus Number
B/D/F/Type: 0/6/0/PCI
Address Offset: 1Ah
Default Value: 00h
Access: RW
Size: 8 bits
This register identifies the subordinate bus (if any) that resides at the level below PCI
Express-G. This number is programmed by the PCI configuration software to allow
mapping of configuration cycles to PCI Express-G.
6.2.12 IOBASE6 - I/O Base Address
B/D/F/Type: 0/6/0/PCI
Address Offset: 1Ch
Default Value: F0h
Access: RO; RW
Size: 8 bits
This register controls the CPU to PCI Express-G I/O access routing based on the
following formula:
IO_BASE=< address =<IO_LIMIT
Only upper 4 bits are programmable. For the purpose of address decode address bits
A[11:0] are treated as 0. Thus the bottom of the defined I/O ad dress range is aligned
to a 4-KB boundary.
Table 34. SUBUSN6 - Subordinate Bus Number Register
Bit Access Default
Value RST/
PWR Description
7:0 RW 00h Core Subordinate Bus Number (BUSN)
This register is programmed by configuration software with the
number of the highes t subordinate bus that lies behind the Device
6 bridge. When only a single PCI device resides on the PCI
Express-G segment, this register will contain the same value as
the SBUSN6 register.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
94 Document Number: 323178-003
6.2.13 IOLIMIT6 - I/O Limit Address
B/D/F/Type: 0/6/0/PCI
Address Offset: 1Dh
Default Value: 00h
Access: RO; RW
Size: 8 bits
This register controls the CPU to PCI Express-G I/O access routing based on the
following formula:
IO_BASE=< address =<IO_LIMIT
Only upper 4 bits are programmable. For the purpose of address decode address bits
A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range is at
the top of a 4-KB aligned address block.
Table 35. IOBASE6 - I/O Base Address Register
Bit Access Default
Value RST/
PWR Description
7:4 RW Fh Core I/O Address Base (IOBASE)
Corresponds to A[15:12] of the I/ O addresses passed by bridge 1
to PCI Express-G.
BIOS must not set this register to 00h otherwise 0CF8h/0CFCh
accesses is forwarded to the PCI Express hierarchy associated
with this device.
3:0 RO 0h Core Reserved
Table 36. IOLIMIT6 - I/O Limi t Address Register
Bit Access Default
Value RST/
PWR Description
7:4 RW 0h Core I/O Address Limit (IOLIMIT)
Corresponds to A[15:12] of the I/O address limit of Device 6.
Devices between this upper limit and IOBASE6 is passed to the
PCI Express hierarchy associated with this device.
3:0 RO 0h Core Reserved
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 95
Processor Configuration Registers
6.2.14 SSTS6 - Secondary Status
B/D/F/Type: 0/6/0/PCI
Address Offset: 1E-1Fh
Default Value: 0000h
Access: RWC; RO
Size: 16 bits
SSTS6 is a 16-bit status register that reports the occurrence of error conditions
associated with secondary side (i.e., PCI Express-G side) of the “virtual” PCI-to-PCI
bridge embedded within processor.
Table 37. SSTS6 - Secondary Status Register
Bit Access Default
Value RST/
PWR Description
15 RWC 0b Core Detected Parity Error (DPE)
This bit is set by the Secondary Side for a Type 1 Configuration
Space header device whenever it receives a Poisoned TLP,
regardless of the state of the Parity Error Response Enable bit in
the Bridge Control Register.
14 RWC 0b Core Received System Error (RSE)
This bit is set wh en the Secondary Side for a Type 1 configur ation
space header device receives an ERR_FATAL or ERR_NONFATAL.
13 RWC 0b Core Received Master Abort (RMA )
This bit is set when the Secondary Side for Type 1 Configuration
Space Header Device (for requests initiated by the Type 1 Header
Device itself) receives a Completion with Unsupported Request
Completion Status.
12 RWC 0b Core Received Target Abort (RTA)
This bit is set when the Secondary Side for Type 1 Configuration
Space Header Device (for requests initiated by the Type 1 Header
Device itself) receives a Comple tion with Completer Abort
Completion Status.
11 RO 0b Core Signaled Target Abort (STA)
Not Applicable or Implemented. Hard wired to 0. The processor
does not generate Target Aborts (the processor will never
complete a request using the Completer Abort Completion
status).
10:9 RO 00b Core DEVSELB Timing (DEVT)
Not Applicable or Implemented. Hard wired to 0.
8RWC 0b CoreMaster Data Parity Error (SMDPE)
When set indicates that the PROCESSOR received across the link
(upstream) a Read Data Completion Poisoned TLP (EP=1). This
bit can only be s et when the Parity Error Enable bit in the Bridge
Control register is set.
7RO 0bCoreFast Back-to-Back (FB2B)
Not Applicable or Implemented. Hard wired to 0.
6RO 0bCoreReserved
5RO 0bCore66-/60-MHz Capability (CAP66)
Not Applicable or Implemented. Hard wired to 0.
4:0 RO 00h Core Reserved
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
96 Document Number: 323178-003
6.2.15 MBASE6 - Memory Base Address
B/D/F/Type: 0/6/0/PCI
Address Offset: 20-21h
Default Value: FFF0h
Access: RO; RW
Size: 16 bits
This register controls the CPU to PCI Express-G non-prefetchable memory access
routing based on the following formula:
MEMORY_BASE=< address =<MEMORY_LIMIT
The upper 12 bits of the register are read/write and correspond to the upper 12
address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-
only and return zeroes when read. This register must be initialized by the configur ation
software. F or the purpose of address decode address bits A[19:0] are assumed to be 0.
Thus, the bottom of the defined memory address range is aligned to a 1-MB boundary.
Table 38. MBASE6 - Memory Base Address Register
Bit Access Default
Value RST/
PWR Description
15:4 RW FFFh Core Memory Address Base (MBASE)
Corresponds to A[31:20] of the lower limit of the memory
range that is passed to PCI Express-G.
3:0 RO 0h Core Reserved
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 97
Processor Configuration Registers
6.2.16 MLIMIT6 - Memory Limit Address
B/D/F/Type: 0/6/0/PCI
Address Offset: 2 2-23h
Default Value: 0000h
Access: RO; RW
Size: 16 bits
This register controls the CPU to PCI Express-G non-prefetchable memory access
routing based on the following formula:
MEMORY_BASE=< address =<MEMORY_LIMIT
The upper 12 bits of the register are read/write and correspond to the upper 12
address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-
only and return z eroes when read. This register must be initialized by the configuration
software. For the purpose of address decode address bits A[19:0] are assumed to be
FFFFFh. Thus, the top of the defined memory address range is at the top of a 1-MB
aligned memory block.
Note: Memory range covered by MBASE and MLIMIT registers are used to map non-
prefetchable PCI Express-G address ranges (typically where control/status memory-
mapped I/O data structures of the graphics controller will reside) and PMBASE and
PMLIMIT are used to map prefetchable address ranges (typically graphics local
memory). This segregation allows application of USWC space attribute to be performed
in a true plug-and-play manner to the prefetchable address r ange for improv ed CPU-
PCI Express memory access performance.
Note also that configuration software is responsible for programming all address range
registers (prefetchable, non-prefetchable) with the values that provide exclusive
address ranges, i.e., prevent overlap with each other and/or with the ranges covered
with the main memory. There is no provision in the processor hardware to enforce
prevention of overlap and operations of the system in the case of overlap are not
guaranteed.
Table 39. MLIMIT6 - Memory Limit Address Regist er
Bit Access Default
Value RST/
PWR Description
15:4 RW 000h Core Memory Address Limit (MLIMIT)
Corresponds to A[31:20] of the upper limit of the address range
passed to PCI Express-G.
3:0 RO 0h Core Reserved
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
98 Document Number: 323178-003
6.2.17 PMBASE6 - Prefetchable Memory Base Address
B/D/F/Type: 0/6/0/PCI
Address Offset: 24-25h
Default Value: FFF1h
Access: RO; RW
Size: 16 bits
This register in conjunction with the corresponding Upper Base Address register
controls the CPU to PCI Express-G prefetchable memory access routing based on the
following formula:
PREFETCHABLE_MEMORY_BASE =< address =< PREF ETCHABLE _MEMORY_LIMIT
The upper 12 bits of this register are read/write and correspond to address bits
A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are
read/write and correspond to address bits A[39:32] of the 40-bit address. This register
must be initialized by the configuration software. For the purpose of address decode
address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory
address range is aligned to a 1-MB boundary.
Table 40. PMBASE6 - Prefetchable Memory Base Address Register
Bit Access Default
Value RST/
PWR Description
15:4 RW FFFh Core Prefetchable Memory Base Address (MBASE)
Corresponds to A[31:20] of the lo wer limit of the memory r ange
that is passed to PCI Express-G.
3:0 RO 1h Core 64-bit Address Support (64-bit Address Support)
Indicates that the upper 32 bits of the prefetchable memory
region base address are contained in the Prefetchable Memory
base Upper Address register at 28h.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 99
Processor Configuration Registers
6.2.18 PMLIMIT6 - Prefetchable Memory Limit Address
B/D/F/Type: 0/6/0/PCI
Address Offset: 2 6-27h
Default Value: 0001h
Access: RO; RW
Size: 16 bits
This register in conjunction with the corresponding Upper Limit Address register
controls the CPU to PCI Express-G prefetchable memory access routing based on the
following formula:
PREFET CH ABLE_MEMOR Y_BASE =< addr ess =< PREFETCHABLE_MEMORY_LIMIT
The upper 12 bits of this register are read/write and correspond to address bits
A[31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are
read/write and correspond to address bits A[39:32] of the 40-bit address. This register
must be initialized by the configuration software. For the purpose of address decode
address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory
address range is at the top of a 1-MB aligned memory block.
Note: Prefetchable memory range is supported to allow segregation by the configuration
software between the memory r anges that must be defined as UC and the ones that
can be designated as a USWC (i.e., prefetchable) from the CPU perspective.
Table 41. PMLIMIT6 - Prefetchable Memory Limit Address Register
Bit Access Default
Value RST/
PWR Description
15:4 RW 000h Core Prefetchable Me mor y Ad d r ess Limit (PMLIMIT)
Corresponds to A[31:20] of the upper limit of the address range
passed to PCI Express-G.
3:0 RO 1h Core 64-bit Address Support (RSVD)
Indicates that the upper 32 bits of the prefetchable memory
region limit address are contained in the Prefetchable Memory
Base Limit Address register at 2Ch
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
100 Document Number: 323178-003
6.2.19 PMBASEU6 - Prefetchable Memory Base Address Upper
B/D/F/Type: 0/6/0/PCI
Address Offset: 28-2Bh
Default Value: 00000000h
Access: RW
Size: 32 bits
The functionality associated with this register is present in the PEG design
implementation.
This register in conjunction with the corresponding Upper Base Address register
controls the CPU to PCI Express-G prefetchable memory access routing based on the
following formula:
PREFETCHABLE_MEMORY_BASE =< address =< PREF ETCHABLE _MEMORY_LIMIT
The upper 12 bits of this register are read/write and correspond to address bits
A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are
read/write and correspond to address bits A[39:32] of the 40-bit address. This register
must be initialized by the configuration software. For the purpose of address decode
address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory
address range is aligned to a 1-MB boundary.
Table 42. PMBASEU6 - Prefetchable Memory Base Address Upper Register
Bit Access Default
Value RST/
PWR Description
31:0 RW 00000000h Core Prefetchable Memory Base Address (MB ASEU)
Corresponds to A[63:32] of the lower limit of the prefetchable
memory range that is passed to PCI Express-G.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 101
Processor Configuration Registers
6.2.20 PMLIMITU6 - Prefetchable Memory Limit Address Upper
B/D/F/Type: 0/6/0/PCI
Address Offset: 2C-2Fh
Default Value: 00000000h
Access: RW
Size: 32 bits
The functionality associated with this register is present in the PEG design
implementation.
This register in conjunction with the corresponding Upper Limit Address register
controls the CPU to PCI Express-G prefetchable memory access routing based on the
following formula:
PREFET CH ABLE_MEMOR Y_BASE =< addr ess =< PREFETCHABLE_MEMORY_LIMIT
The upper 12 bits of this register are read/write and correspond to address bits
A[31:20] of the 40- bit address. The lower 8 bits of the Upper Limit Address register
are read/write and correspond to address bits A[39:32] of the 40-bit address. This
register must be initialized by the configuration software. For the purpose of address
decode address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined
memory address range is at the top of a 1-MB aligned memory block.
Note that prefetchable memory range is supported to allow segregation by the
configuration software between the memory ranges that must be defined as UC and the
ones that can be designated as a USWC (i.e., prefetchable) from the CPU perspective.
Table 43. PMLIMITU6 - Prefetchable Memory Limit Address Upper Register
Bit Access Default
Value RST/
PWR Description
31:0 RW 00000000h Core Pref etchabl e Me mory Address Limit (MLIMITU)
Corresponds to A[63:32] of the upper limit of the prefetchable
Memory range that is passed to PCI Express-G.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
102 Document Number: 323178-003
6.2.21 CAPPTR6 - Capabilities Pointer
B/D/F/Type: 0/6/0/PCI
Address Offset: 34h
Default Value: 88h
Access: RO
Size: 8 bits
The capabilities pointer provides the address offset to the location of the first entry in
this device's linked list of capabilities.
6.2.22 INTRLINE6 - Interrupt Line
B/D/F/Type: 0/6/0/PCI
Address Offset: 3Ch
Default Value: 00h
Access: RW
Size: 8 bits
This register contains interrupt line routing information. The device itself does not use
this value, rather it is used by device drivers and operating systems to determine
priority and vector information.
Table 44. CAPPTR6 - Capabilities Pointer Register
Bit Access Default
Value RST/
PWR Description
7:0 RO 88h Core First Cap a bil it y (CAPPTR6)
The first capability in the list is the Subsystem ID and
Subsystem Vendor ID Capability.
Table 45. INTRLINE6 - Interrupt Line Register
Bit Access Default
Value RST/
PWR Description
7:0 RW 00h Core Interrupt Connection (INTCON)
Used to communicate interrupt line routing information. BIOS
Re quirement: P OST softwa re writes the routing information into
this register as it initialize s and configures the system. The
value indicates to which input of the system interrupt controller
this device's interrupt pin is connected.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 103
Processor Configuration Registers
6.2.23 INTRPIN6 - Interrupt Pin
B/D/F/Type: 0/6/0/PCI
Address Offset: 3Dh
Default Value: 01h
Access: RO
Size: 8 bits
This register specifies which interrupt pin this device uses.
6.2.24 BCTRL6 - Bridge Control
B/D/F/Type: 0/6/0/PCI
Address Offset: 3E-3Fh
Default Value: 0000h
Access: RO; RW
Size: 16 bits
This register provides extensions to the PCICMD6 register that are specific to PCI-PCI
bridges. The BCTRL provides additional control for the secondary interface (i.e., PCI
Express-G) as well as some bits that affect the overall behavior of the “virtual” Host-
PCI Express bridge embedded within processor, e.g., VGA compatible address ranges
mapping.
Table 46. INTRPIN6 - Interrupt Pin Register
Bit Access Default
Value RST/
PWR Description
7:0 RO 01h Core Interrupt Pin (INTPIN)
As a single function device, the PCI Express device specifies INTA
as its interrupt pin. 01h=INTA.
Table 47. BCTRL6 - Bridge Control Register (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
15:12 RO 0h Core Reserved
11 RO 0b Core Discard Timer SERR# Enable (DTSERRE)
Not Applicable or Implemented. Hard wired to 0.
10 RO 0b Core Discard Timer Status (DTSTS)
Not Applicable or Implemented. Hard wired to 0.
9RO 0bCoreSecondary Discard Timer (SDT)
Not Applicable or Implemented. Hard wired to 0.
8RO 0bCorePrimary Discard Timer (PDT)
Not Applicable or Implemented. Hard wired to 0.
7RO 0bCoreFast Back-to-Back Enable (FB2BEN)
Not Applicable or Implemented. Hard wired to 0.
6RW 0bCoreSecondary Bus Reset (SRESET)
Setting this bit triggers a hot reset on the corresponding PCI
Express Port. This will force the LTSSM to transition to the Hot
Reset state (via Recovery) from L0, L0s, or L1 states.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
104 Document Number: 323178-003
5RO 0bCoreMaster Abort Mode (MAMODE)
Does not apply to PCI Express. Hard wired to 0.
4RW 0bCoreVGA 16-bit Decode (VGA16D)
Enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA
I/O address precluding the decoding of alias addresses every 1
KB. This bit only has meaning if Bit 3 (VGA Enable) of this
register is also set to 1, enabling VGA I/O decoding and
forwarding by the bridge.
0 = Execute 10-bit address decodes on VGA I/O accesses.
1 = Execute 16-bit address decodes on VGA I/O accesses.
3RW 0bCoreVGA Enable (VGAEN)
Controls the routing of CPU initiated transactions targeting VGA
compatible I/O and memory address ranges. See the VGAEN/
MDAP table in device 0, offset 97h[0].
2RW 0bCoreISA Enable (ISAEN)
Needed to exclude legacy resource decode to route ISA
resources to legacy decode path. Modifies the response by the
processor to an I/O acce ss issued by the CPU that target ISA I/O
addresses. This applies only to I/O addresses that are enabled by
the IOBASE and IOLIMIT registers.
0 = All addresses defined by the IOBASE and IOLIMIT for CPU I/
O transactions is mapped to PCI Express-G.
1 = Processor will not forward to PCI Express-G any I/O
transa ct ions addre s si ng th e last 768 bytes in each 1-KB
block even if the addresses are within the range defined by
the IOBASE and IOLIMIT registers.
1RW 0bCoreSERR Enable (SERREN)
0 = No forwarding of error messages from secondary side to
primary side that could result in an SERR.
1 = ERR_COR, ERR_NONFA TAL, and ERR_F AT AL mess ages result
in SERR message when individually enabled by the Root
Control register.
0RW 0bCoreParity Error Response Enable (PEREN)
Controls whether or not the Master Data Parity Error bit in the
Secondary Status register is set when the PROCESSOR receives
across the link (u pstream) a Re ad Data Completion P oisoned TLP
0 = Master Data Parity Error bit in Secondary Status register
CANNOT be set.
1 = Master Data Parity Error bit in Secondary Status register
CAN be set.
Table 47. BCTRL6 - Bridge Control Register (Sheet 2 of 2)
Bit Access Default
Value RST/
PWR Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 105
Processor Configuration Registers
6.2.25 PM_CAPID6 - Power Management Capabilities
B/D/F/Type: 0/6/0/PCI
Address Offset: 8 0-83h
Default Value: C8039001h
Access: RO
Size: 32 bits
Table 48. PM_CAPID6 - Power Management Capabilities Register
Bit Access Default
Value RST/
PWR Description
31:27 RO 19h Core PME Support (PMES)
This field indicates the power states in which this device may
indicate PME wake via PCI Express messaging. D0, D3hot &
D3cold. This device is not required to do anything to support
D3hot & D3cold, it simply must report that those states are
supported. Refer to the latest PCI Power Management
Specification for encoding explanation and other power
management details.
26 RO 0b Core D2 Power State Support (D2PSS)
hard wired to 0 to indicate that the D2 power management
state is NOT supported.
25 RO 0b Core D1 Power State Support (D1PSS)
hard wired to 0 to indicate that the D1 power management
state is NOT supported.
24:22 RO 000b Core Auxiliary Current (AUXC)
hard wired to 0 to indicate that there are no 3.3Vaux auxiliary
current requirements.
21 RO 0b Core Device Specific Initialization (DSI)
hard wired to 0 to indicate that special initialization of this
device is NOT required before generic class device driver is to
use it.
20 RO 0b Core Auxiliary Power Source (APS)
hard wired to 0.
19 RO 0b Core PME Clock (PMECLK)
hard wired to 0 to indicate this device does NOT support PMEB
generation.
18:16 RO 011b Core PCI PM CAP Version (PCIPMCV)
Version - A value of 011b indicates that this function complies
with the latest revision of the PCI Power Management Interface
Specification.
15:8 RO 90h Core Pointer to Next Capability (PNC)
This contains a pointer to the next item in the capabilities list. If
MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the
capabilities list is the Message Signaled Interrupts (MSI)
capability at 90h. If MSICH (CAPL[0] @ 7Fh) is 1, the n the next
item in the capabilities list is the PCI Express capability at A0h.
7:0 RO 01h Core Capability ID (CID)
Value of 01h identifies t hi s linked list item (capabil ity struct ure)
as being for PCI Power Management registers.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
106 Document Number: 323178-003
6.2.26 PM_CS6 - Power Management Control/Status
B/D/F/Type: 0/6/0/PCI
Address Offset: 84-87h
Default Value: 00000008h
Access: RO; RW-S; RW
Size: 32 bits
Table 49. PM_CS6 - Power Management Control/Status Register
Bit Access Default
Value RST/
PWR Description
31:16 RO 0000h Core Reserved
Not Applicable or Implemented. Hard wired to 0.
15 RO 0b Core PME Status (PMEST S )
Indicates that this device does not support PMEB generation from
D3cold.
14:13 RO 00b Core Data Scale (DSCALE)
Indicates that this device does not support the power
management data register.
12:9 RO 0h Core Data Select (DSEL)
Indicates that this device does not support the power
management data register.
8RW-S 0b CorePME Enable (PMEE)
Indicates that this device do es not generate PMEB assertion from
any D-state.0:PMEB generation not possible from any D State
1 = PMEB generation enabled from any D State
The setting of this bit has no effect on hardware.See
PM_CAP[15:11]
7:4 RO 0000b Core Reserved
3RO 1bCoreNo Soft Reset (NSR)
When set to 1 this bit indicates that the device is transitioning
from D3hot to D0 because the power state commands do not
perform an internal reset. Config context is preserved. Upon
transition no additional operating sys intervention is required to
preserve configuration context beyond writing the power state
bits.
When clear the devices do not perform an internal reset upon
transitioning from D3hot to D0 via software control of the power
state bits.
Regardless of this bit, the devices that transition from a D3hot to
D0 by a system or bus segment reset will return to the device
state D0 un-initialized with only PME context preserved if PME is
supported and enabled.
2RO 0bCoreReserved
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 107
Processor Configuration Registers
1:0 RW 00b Core Power State (PS)
Indicates the current power state of this device and can be used
to set the device into a new power state. If software attempts to
write an unsupported s tat e to this field, write operation must
complete normally on the bus, but the data is discarded and no
state change occurs.
00: D0
01: D1 (Not supported in this device.)
10: D2 (Not supported in this device.)
11: D3
Support of D3cold does not require any special action. While in
the D3hot state, this device can only act as the target of PCI
configuration transactions (for power management cont rol).
This device also cannot generate interrupts or respond to MMR
cycles in the D3 state. The device must return to the D0 state in
order to be fully-functional.
When the Power State is other than D0, the bridge will Master
Abort (i.e., not claim) any downstream cycles (with exception of
type 0 config cycles).
Consequently, these u nclaimed cy cles will go down DMI and come
back up as Unsupported Requests, which the PROCESSOR logs as
Master Aborts in Device 0 PCISTS[13]
There is no additional hardware functionality required to support
these P owe r St ates.
Table 49. PM_CS6 - Power Management Control/Status Register
Bit Access Default
Value RST/
PWR Description
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
108 Document Number: 323178-003
6.2.27 SS_CAPID - Subsystem ID and Vendor ID Capabilities
B/D/F/Type: 0/6/0/PCI
Address Offset: 88-8Bh
Default Value: 0000800Dh
Access: RO
Size: 32 bits
This capability is used to uniquely identify the subsystem where the PCI device resides.
Because this device is an integrated part of the system and not an add-in device, it is
anticipated that this capability will never be used. However, it is necessary because
Microsoft will test for its presence.
6.2.28 SS - Subsystem ID and Subsystem Vendor ID
B/D/F/Type: 0/6/0/PCI
Address Offset: 8C-8Fh
Default Value: 00008086h
Access: RW-O
Size: 32 bits
System BIOS can be used as the mechanism for loading the SSID/SVID values. These
values must be preserved through power management transitions and a hardware
reset.
Table 50. SS_CAPID - Subsystem ID and Vendor ID Capabilities Register
Bit Access Default
Value RST/
PWR Description
31:16 RO 0000h Core Reserved
15:8 RO 80h Core Pointer to Next Capability (PNC)
This contains a pointer to the next item in the capabilities list
which is the PCI Power Management capability.
7:0 RO 0Dh Core Capability ID (C ID)
Value of 0Dh identifies this linked list item (capability structure)
as being for SSID/SSVID registers in a PCI-to-PCI Bridge.
Table 51. SS - Subsystem ID and Subsystem Vendor ID Register
Bit Access Default
Value RST/
PWR Description
31:16 RW-O 0000h Core Subsystem ID (SSID)
Identifies the parti cular subsystem and is assigned by the vendor.
15:0 RW-O 8086h Core Subsystem Vendor ID (SSVID)
Identifies the manufacturer of the subsystem and is the same as
the vendor ID which is assigned by the PCI Special Intere st
Group.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 109
Processor Configuration Registers
6.2.29 MSI_CAPID - Message Signaled Interrupts Capability ID
B/D/F/Type: 0/6/0/PCI
Address Offset: 9 0-91h
Default Value: A005h
Access: RO
Size: 16 bits
When a device supports MSI it can generate an interrupt request to the processor by
writing a predefined data item (a message) to a predefined memory address.
The reporting of the existence of this capability can be disabled by setting MSICH
(CAPL[0] @ 7Fh). In that case walking this linked list will skip this capability and
instead go directly from the PCI PM capability to the PCI Express capability.
6.2.30 MC - Message Control
B/D/F/Type: 0/6/0/PCI
Address Offset: 9 2-93h
Default Value: 0000h
Access: RO; RW
Size: 16 bits
System softw are can modify bits in this register, but the device is prohibited from doing
so.
If the device writes the same message multiple times, only one of those messages is
guaranteed to be serviced. If all of them must be serviced, the device must not
generate the same message again until the driver services the earlier one.
Table 52. MSI_CAPID - Message Signaled Interrupts Capability ID Register
Bit Access Default
Value RST/
PWR Description
15:8 RO A0h Core Pointer to Next Capability (PNC)
This contains a pointer to the next item in the capabilities list
which is the PCI Express capability.
7:0 RO 05h Core Capability ID (CID)
V alue of 05h identifies this linked list item (capability structure)
as being for MSI registers.
Table 53. MC - Message Control Register (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
15:8 RO 00h Core Reserved
7RO 0bCore64-bit Address Capable (64AC)
hard wired to 0 to indicate that the function does not implement
the upper 32 bits of the Message Address register and is
incapable of generating a 64-bit memory address.
This may need to change in future implementations when
addressable system memory exceeds the 32-b/4-GB limit.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
110 Document Number: 323178-003
6:4 RW 000b Core Multiple Message Enable (MME)
System software progr ams this field to indicate the actual number
of messages allocated to this device. This number is equal to or
less than the num b er actually requested. The encoding is the
same as for the MMC field below.
3:1 RO 000b Core Multiple Message Capable (MMC)
System software reads this field to determine the number of
messages being requested by this device. Value:Number of
Messages Requested
000: 1
All of the following are reserved in this implementation: 001:2
010: 4
011: 8
100: 16
101: 32
110: Reserved
111: Reserved
0RW 0bCoreMSI Enable (MSIEN)
Controls the ability of this dev ice to generate MSIs.
0 = MSI will not be generated.
1 = MSI is generated when we receive PME or HotPlug messages.
INT A will not be generated and INT A Status (PCISTS6[3]) will
not be set.
Table 53. MC - Message Control Register (Sheet 2 of 2)
Bit Access Default
Value RST/
PWR Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 111
Processor Configuration Registers
6.2.31 MA - Message Address
B/D/F/Type: 0/6/0/PCI
Address Offset: 9 4-97h
Default Value: 00000000h
Access: RO; RW
Size: 32 bits
6.2.32 MD - Message Data
B/D/F/Type: 0/6/0/PCI
Address Offset: 9 8-99h
Default Value: 0000h
Access: RW
Size: 16 bits
Table 54. MA - Message Address Register
Bit Access Default
Value RST/
PWR Description
31:2 RW 00000000h Core Message Address (MA)
Used by system software to assign an MSI address to the
device. The device handles an MSI by writing the padded
contents of the MD register to this address.
1:0 RO 00b Core Force DWord Align (FDWA)
hard wired to 0 so that addresses assi gned by syst em softw are
are always aligned on a dword address boundary.
Table 55. MD - Message Data Register
Bit Access Default
Value RST/
PWR Description
15:0 RW 0000h Core Message Data (MD)
Base message data pattern assigned by system software and
used to handle an MSI from the device.
When the device must generate an interrupt request, it writes a
32-bit v alue to the memory address specified i n the MA register.
The upper 16 bits are always set to 0. The lower 16 bits are
supplied by this register.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
112 Document Number: 323178-003
6.2.33 PEG_CAPL - PCI Express-G Capability List
B/D/F/Type: 0/6/0/PCI
Address Offset: A0-A1h
Default Value: 0010h
Access: RO
Size: 16 bits
Enumerates the PCI Express capability structure.
6.2.34 PEG_CAP - PCI Express-G Capabilities
B/D/F/Type: 0/6/0/PCI
Address Offset: A2-A3h
Default Value: 0142h
Access: RO; RW-O
Size: 16 bits
Indicates PCI Express device capabilities.
Table 56. PEG_CAPL - PCI Express-G Capability List Register
Bit Access Default
Value RST/
PWR Description
15:8 RO 00h Core Pointer to Next Capability (PNC)
This value terminates the capabilitie s list. The Virtual Channel
capability and any other PCI Express specifi c capabili ti es that are
reported via this mechanism are in a separate capabilities list
located entirely within PCI Express Extended Configuration
Space.
7:0 RO 10h Core Capability ID (CID)
Identifies this linked list item (capability structure) as being for
PCI Express registers.
Table 57. PEG_CAP - PCI Express-G Capabilities Register
Bit Access Default
Value RST/
PWR Description
15 RO 0b Core Reserved
14 RO 0b Core Reserved
Reserved for TCS Routing Supported.
13:9 RO 00h Core Interrupt Message Number (IMN)
Not Applicable or Implemented. Hard wired to 0.
8RW-O 1b CoreSlot Implemented (SI)
0 = The PCI Express Link associated with this port is connected
to an integrated component or is disab led.
1 = The PCI Express Link associated with this port is connected
to a slot.
BIOS Requirement: This field must be initialized appropriatel y
if a slot conn ection is not implemented.
7:4 RO 4h Core Device/Port Type (DPT)
hard wired to 4h to indicate root port of PCI Express Root
Complex.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 113
Processor Configuration Registers
6.2.35 DCAP - Device Capabilities
B/D/F/Type: 0/6/0/PCI
Address Offset: A4-A7h
Default Value: 00008000h
Access: RO
Size: 32 bits
Indicates PCI Express device capabilities.
3:0 RO 2h Core PCI Express Capability Version (PCIECV)
hard wired to 2h to indicate compliance to the PCI Express
Capabilities Register Expansion ECN.
Table 57. PEG_CAP - PCI Express-G Capabilities Register
Bit Access Default
Value RST/
PWR Description
Table 58. DCAP - Device Capabilities Register
Bit Access Default
Value RST/
PWR Description
31:16 RO 0000h Core Reserved
Not Applicable or Implemented. Hard wired to 0.
15 RO 1b Core Role-Base d Error Reporting (RBER)
Indicates that this device implements the functionality defined
in the Error Reporting ECN as required by the PCI Express Base
spec.
14:6 RO 000h Core Reserved
Not Applicable or Implemented. Hard wired to 0.
5RO 0bCoreExtended Tag Field Supported (ETFS)
hard wired to indicate support for 5-bit Tags as a Requestor.
4:3 RO 00b Core Phantom Functions Supported (PFS)
Not Applicable or Implemented. Hard wired to 0.
2:0 RO 000b Core Max Payload Size (MPS)
hard wired to indicate 128B max supported payload for
Transaction Layer Packets (TLP).
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
114 Document Number: 323178-003
6.2.36 DCTL - Device Control
B/D/F/Type: 0/6/0/PCI
Address Offset: A8-A9h
Default Value: 0000h
Access: RO; RW
Size: 16 bits
Provides control for PCI Express device specific capabilities.
The error reporting enable bits are in reference to errors detected by this device, not
error messages received across the link. The reporting of error messages (ERR_CORR,
ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root
Port Command Register.
Table 59. DCTL - Device Control Register (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
15 RO 0h Core Reserved
14:12 RO 000b Core Reserve d for Max Read Reque st Size (M RRS)
11 RO 0b Core Reserved for Enable No Snoop (RSVD)
10 RO 0b Core Reserved
Reserved for Auxiliary (AUX) PM Enable ()
9RO 0bCoreReserved
Reserved for Phantom Functions Enable ()
8RO 0bCoreReserved
Reserved for Extended Tag Field Enable ()
7:5 RW 000b Core Max Payload Size (MPS)
000:128B max supported payload for Transaction Layer Packets
(TLP). As a receiver, the Device must handle TLPs as large as the
set value; as transmitter, the Device must not generate TLPs
exceeding the set value.
All other encodings are reserved.
Hardware will actually ignore this field. It is writeable only to
support compliance testing.
4RO 0bCoreReserved for Enable Relaxed Ordering (RSVD)
3RW 0bCoreUnsupported Request Reporting Enable (URRE)
When set, allows signaling ERR_NONFATAL, ERR_FATAL, or
ERR_CORR to the Root Control register when detecting an
unmasked Unsu pported Request (UR). An ERR_CORR is signaled
when an unmasked Advisory Non-Fa tal UR is received. An
ERR_FAT AL or ERR_NONFATAL is sent to the Root Control register
when an uncorrectable non-Advisory UR is received with the
severity bit set in the Uncorrectable Error Severity register.
2RW 0bCoreFatal Error Reporting Enable (FERE)
When set, en ables signaling of ERR_FATAL to the Root Control
register due to internally detected errors or error messages
received across the link. Other bits also control the full scope of
related error reporting.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 115
Processor Configuration Registers
6.2.37 DSTS - Device Status
B/D/F/Type: 0/6/0/PCI
Address Offset: AA-ABh
Default Value: 0000h
Access: RO; RWC
Size: 16 bits
Reflects status corresponding to controls in the Device Control register. The error
reporting bits are in reference to errors detected by this device, not errors messages
received across the link.
1RW 0bCoreNon-Fatal Error Reporting Enable (NERE)
When set, enables signaling of ERR_NONFATAL to the Root
Control register due to internally detected errors or error
messages received across the link. Other bits also control the full
scope of related error reporting.
0RW 0bCoreCorrectabl e E rror Reporting Enable (CERE)
When set, enables signaling of ERR_CORR to the Root Control
register due to internally detected errors or error messages
received across the link. Other bits also control the full scope of
related error reporting.
Table 59. DCTL - Device Control Register (Sheet 2 of 2)
Bit Access Default
Value RST/
PWR Description
Table 60. DSTS - Device Status Register
Bit Access Default
Value RST/
PWR Description
15:6 RO 000h Core Reserved and Zero (RSVD)
For future R/WC/S implementations; software must use 0
for writes to bits.
5RO 0bCoreTransactions Pending (TP)
0 = All pending transactions (including completions for
any outstanding non-posted requests on any used
virtual channel) have been co mpleted.
1 = Indicates that the device has transaction(s) pending
(including completions for any outstanding non-
posted requests for all used Traffic Classes).
4RO 0bCore
Reserved
3RWC 0b CoreUnsupported Request Detected (URD)
When set th is bit indicates that the Device received an
Unsupported Request. Errors are logged in this register
regardless of whether error reporting is enabled or not in
the Device Control Register.
Additionally, the Non-Fatal Error Detected bit or the Fatal
Error Detected bit is set according to the s etting of the
Unsupported Request Error Severity bit. In production
systems setting the Fatal Error Detected bit is not an
option as support for AER will not be reported.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
116 Document Number: 323178-003
6.2.38 LCAP - Link Capabilities
B/D/F/Type: 0/6/0/PCI
Address Offset: AC-AFh
Default Value: 03214C81h
Access: RO; RW-O
Size: 32 bits
Indicates PCI Express device specific capabilities.
2RWC 0b CoreFatal Error Detected (FED)
When set this bit indica te s that fatal error(s) were
detected. Errors are logged in this register regardless of
whether error reporting is enabled or not in the Device
Control register. When Advanced Error Handling is
enabled, errors are logged in this register regardless of
the settings o f the uncorrectable error mask register.
1RWC 0b CoreNon-Fatal Error Detected (NFED)
When set this bit indica te s that non-fatal error(s) were
detected. Errors are logged in this register regardless of
whether error reporting is enabled or not in the Device
Control register.
When Advanced Error Handling is enabled, errors are
logged in this register regardless of the settings of the
uncorrectable error mask register.
0RWC 0b CoreCorrectable Error Detected (CED)
When set this bit indica te s that correctable error(s) were
detected. Errors are logged in this register regardless of
whether error reporting is enabled or not in the Device
Control register.
When Advanced Error Handling is enabled, errors are
logged in this register regardless of the settings of the
correctable error mask register.
Table 60. DSTS - Device Status Register
Bit Access Default
Value RST/
PWR Description
Table 61. LCAP - Link Capabilities Register (Sheet 1 of 3)
Bit Access Default
Value RST/
PWR Description
31:24 RO 03h Core Port Number (PN)
Indicates the PCI Express port number for the given PCI Express
link. Matches the value in Element Self Description[31:24].
23:22 RO 00b Core Reserved
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 117
Processor Configuration Registers
21 RO 1b Core Link Bandwidth Notification Capability (LBNC)
A value of 1b indicates support for the Link Bandwidth
Notification status and interrupt mechanisms. This capability is
required for all Root Ports and Switch downstream ports
supporting Links wider than x1 and/or multiple Link speeds.
This field is not applicable and is reserved for Endpoint devices,
PCI Express to PCI/PCI-X bridges, and Upstream Ports of
Switches.
Devices that do not implemen t the Link Bandwidth Notification
capability must hardwire this bit to 0b.
20 RO 0b Core Data Link Layer Link Active Reporting Capable (DLLLARC)
For a Downstream Port, this bit must be set to 1b if the
component supports the optional capability of reporting the
DL_Active state of the Data Link Control and Management State
Machine. For a hot-plug capable Downstream Port (as indicated
by the Hot-Plug Capable field of the Slot Capabilities register),
this bit must be set to 1b.
For Upstream Ports and components that do not support this
optional capability, this bit must be hard wired to 0b.
19 RO 0b Core Surprise Down Error Reporting Capable (SDERC)
For a Downstream Port, this bit must be set to 1b if the
component supports the optional capability of detecting and
reporting a Surprise Down error condition.
For Upstream Ports and components that do not support this
optional capability, this bit must be hard wired to 0b.
18 RO 0b Core Clock Power Management (CPM)
A value of 1b in this bit indicates that the component tolerates
the removal of any reference clock(s) when the link is in the L1
and L2/3 Ready link states. A value of 0b indicates the
component does not have this capability and that reference
clock(s) must not be removed in these link states.
This capability is applicable only in form factors that support
“clock request” (CLKREQ#) capability.
For a multi-function device, each function indicates its capability
independently. Power Management configuration software must
only permit reference clock removal if all functions of the
multifunction device indicate a 1b in this bit.
Table 61. LCAP - Link Capabilities Register (Sheet 2 of 3)
Bit Access Default
Value RST/
PWR Description
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
118 Document Number: 323178-003
17:15 RW-O 010b Core L1 Exit Latency (L1ELAT)
Indicates th e length of time this Port requires to complete the
transition from L1 to L0.
000: Less than 1us
001: 1 us to less than 2 us
010: 2 us to less than 4 us
011: 4 us to less than 8 us
100: 8 us to less than 16 us
101: 16 us to less than 32 us
110: 32 us-64 us
111: More than 64 us
BIOS Requirement: If this field is required to be any value other
than the default, BIOS must initialize it accordingly.
Both bytes of thi s register that contain a portion of this fie ld must
be written simultaneously in order to prevent an intermediate
(and undesired) value from ever existing.
14:12 RO 100b Core L0s Exit Latency (L0SELAT)
Indicates th e length of time this Port requires to complete the
transition from L0s to L0.
000:Less than 64 ns
001:64 ns to less than 128 ns
010:128 ns to less than 256 ns
011:256 ns to less than 512 ns
100:512 ns to less than 1 µs
101:1 µs to less than 2 µs
110:2 µs - 4 µs
111:More than 4 µs
The actual value of this field depends on the common Clock
Configuration bit (LCTL[6]) register.
11:10 RW-O 11b Core Active State Link PM Support (ASLPMS)
ASPM L0s and L1 supported.
9:4 RW-O 08h Core Max Link Width (MLW)
Indicates the maximum number of lanes supported for this link.
3:0 RW-O 1h Core Max Link Speed (MLS)
Supported Link Speed – This field indicates the supported Link
speed(s) of the associated Port.
Defined encodings are:
0001b2.5-GT/s Link speed supported
All other encodings are reserved.
Table 61. LCAP - Link Capabilities Register (Sheet 3 of 3)
Bit Access Default
Value RST/
PWR Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 119
Processor Configuration Registers
6.2.39 LCTL - Link Control
B/D/F/Type: 0/6/0/PCI
Address Offset: B0-B1h
Default Value: 0000h
Access: RO; RW; RW-SC
Size: 16 bits
Allows control of PCI Express link.
Table 62. LCTL - Link Control Register (Sheet 1 of 3)
Bit Access Default
Value RST/
PWR Description
15:12 RO 0000b Core Reserved
11 RW 0b Core Link Autonomous Bandwidth Interrupt Enable (LABIE)
When Set, th is bit enables the gen eration of an interrupt to
indicate that the Link Autonomous Bandwidth Status bit has been
Set.
This bit is not applicable and is reserved for Endpoint devices, PCI
Express to PCI/PCI-X bridges, and Upstream Ports of Switches.
Devices that do not implemen t the Link Bandwidth Notification
capability must hardwire this bit to 0b.
10 RW 0b Core Link Bandwidth Management Interrupt Enable (LBMIE)
When Set, th is bit enables the gen eration of an interrupt to
indicate that the Link Ban dwidth Management Status bit has been
Set.
This bit is not applicable and is reserved for Endpoint devices, PCI
Express to PCI/PCI-X bridges, and Upstream Ports of Switches.
9RW 0bCoreHardware Autonomous Width Disable (HAWD)
When Set, this bit disables hardware from changing the Link
width for reasons other than attempti ng to correct un reliable Link
operation by reducing Link width.
Devices that do not implement the ability autonomously to
change Link width are permitted to hardwire this bit to 0b.
8RO 0bCoreEnable Clock Power Management (ECPM)
Applicable only for form factors that support a “Clock Request”
(CLKREQ#) mechanism, this enable functions as follows:
0b – Clock power management is disabled and device must hold
CLKREQ# signal low.
1b - When this bit is set to 1 the device is permitted to use
CLKREQ# signal to power manage link clock according to protocol
defined in appropriate form factor specification.
Default value of this field is 0b. Components that do not support
Clock Power Management (as indicated by a 0b v alue in the Clock
Power Management bit of the Link Capabilities Register) must
hardwire this bit to 0b.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
120 Document Number: 323178-003
7RW 0bCoreExtended Synch (ES)
0 = Standard Fast Training Sequence (FTS).
1 = Forces the transmission of additional ordered sets when
exiting the L0s state and when in the Recovery state.
This mode provides external devices (e.g., logic analyzers)
monitoring the Link time to achieve bit and symbol lock before
the link enters L0 and resumes communication.This is a test
mode only and may cause other undesired side effects such as
buffer overflows or underruns.
6RW 0bCoreCommon Clock Configuration (CCC)
0 = Indicates that this component and the component at the
opposite end of this Link are operating with asynchronous
reference clock.
1 = Indicates that this component and the component at the
opposite end of this Link are operating with a distributed
common reference clock.The state of this bit affects the L0s
Exit Latency reported in LCAP[14:12] and the N_FTS value
advertised during link training.
5RW-SC 0b CoreRetrain Link (RL)
0 = Normal operation.
1 = Full Link retraining is initiated by directing the Physical Lay e r
LTSSM from L0, L0s, or L1 states to the Recovery state.
This bit always returns 0 when read. This bit is cleared
automatically (no need to write a 0).
4RW 0bCoreLink Disable (LD)
0 = Normal operation
1 = Link is disabled. Forces the LTSSM to transition to the
Disabled state (via Recovery) from L0, L0s, or L1 states. Link
retraining happens automatically on 0 to 1 transition, just like
when coming out of reset.
Writes to this bit are immediately reflected in the value read from
the bit, regardless of actual Link state.
3RO 0bCoreRead Completion Boundary (RCB)
hard wired to 0 to indicate 64 byte.
2RO 0bCoreReserved (FEDLB)
Table 62. LCTL - Link Control Register (Sheet 2 of 3)
Bit Access Default
Value RST/
PWR Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 121
Processor Configuration Registers
6.2.40 LSTS - Link Status
B/D/F/Type: 0/6/0/PCI
Address Offset: B2-B3h
Default Value: 1000h
Access: RWC; RO
Size: 16 bits
Indicates PCI Express link status.
1:0 RW 00b Core Active State PM ( AS P M )
Controls the level of active state power management supported
on the given link.
00: Disabled
01: L0s Entry Supported
10: L1 Entry Enabled
11: L0s and L1 Entry Supported
Note: “L0s Entry Enabled” indicates the Transmitter entering L0s
is supported. The Receiver must be capable of entering L0s even
when the field is disabled (00b).
ASPM L1 must be enabled by software in the Upstream
component on a Link prior to enabling ASPM L1 in the
Downstream component on that Link. When disabling ASPM L1,
software must disable ASPM L1 in the Downstream component on
a Link prior to disabling ASPM L1 in the Upstream component on
that Link. ASPM L1 must only be enabled on the Downstream
component if both components on a Link support ASPM L1.
Table 62. LCTL - Link Control Register (Sheet 3 of 3)
Bit Access Default
Value RST/
PWR Description
Table 63. LSTS - Link Status Register (Sheet 1 of 3)
Bit Access Default
Value RST/
PWR Description
15 RWC 0b Core Link Autonomous Bandwidth Status (LABWS)
This bit is set to 1b by hardware to indicate that hardware has
autonomously changed link speed or width, without the port
transitioning through DL_Down status, for reasons other than to
attempt to correct unreliable link operation.
This bit must be set if the Physical Layer reports a speed or width
change was initiated by the downstream component that was
indicated as an autonomous change.
This bit must be set when the upstream component receives eight
consecutive TS1 or TS2 ordered sets with the Autonomous
Change bit set.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
122 Document Number: 323178-003
14 RWC 0b Core Link Bandwidth Management Status (LBWMS)
This bit is set to 1b by hardware to indicate that either of the
following has occurred without the port transitioning through
DL_Down statu s: A link ret rain ing initi ated by a wri te of 1b to the
Retrain Link bit has completed.
Note: This bit is Set following any write of 1b to the Retrain Link
bit, including when the Link is in the process of retraining for
some other reason.
Hardware has autonomously changed link speed or width to
attempt to correct unreliable link operation, either through an
LTSSM timeout or a higher level process
This bit must be set if the Physical Layer reports a speed or width
change was initiated by the downstream component that was not
indicated as an autonomous change.
13 RO 0b Core Data Link Layer Link Active (Optional) (DLLLA)
This bit indicates the status of the Data Link Control and
Management State Machine. It returns a 1b to indicate the
DL_Active state, 0b othe rwise. This bit must be implemented if
the corresponding Data Link Layer Active Capability bit is
implemented. Otherwise, this bit must be hard wired to 0b.
12 RO 1b Core Slot Clock Conf iguration (SCC)
0 = The device uses an in dependent clock irrespective of the
presence of a reference on the connector.
1 = The devic e us es the same physical reference clock that the
platform provides on the connector.
11 RO 0b Core Link Training (LTRN)
Indicates that the Physical Layer LTSSM is in the Configuration or
Recovery state, or that 1b was written to the Retrain Link bit but
Link training has not yet begun. Hardware clears this bit when the
LTSSM exits the Configuration/Recovery state once Link training
is complete.
10 RO 0b Core Undefined (Undefined)
The value read from this bit is undefined. In previous versions of
this specification, this bit was used to indicate a Link Training
Error. System software must ignore the value read from this bit.
System software is permitted to write any value to this bit.
9:4 RO 00h Core Negotiated Link Width (NLW)
Indicates negotiated link width. This field is valid only when the
link is in the L0, L0s, or L1 states (after link width negotiation is
successfully completed).
00h: Reserved
01h: X1
02h: X2
04h: X4
08h: X8
10h: X16
All other encodings are reserved.
Table 63. LSTS - Link Status Register (Sheet 2 of 3)
Bit Access Default
Value RST/
PWR Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 123
Processor Configuration Registers
6.2.41 SLOTCAP - Slot Capabilities
B/D/F/Type: 0/6/0/PCI
Address Offset: B4-B7h
Default Value: 00040000h
Access: RW-O; RO
Size: 32 bits
PCI Express Slot related registers allow for the support of Hot Plug.
3:0 RO 0h Core Current Link Speed (CLS)
This field indicates the negotiated Link speed of the given PCI
Express Link.Defined encodings are:
0001b 2.5 GT/s PCI Express Link
All other encodings are reserved. The value in this field is
undefined when the Link is not up.
Table 63. LSTS - Link Status Register (Sheet 3 of 3)
Bit Access Default
Value RST/
PWR Description
Table 64. SLOTCAP - Slot Capabilities Register (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
31:19 RW-O 0000h Core Physical Slot Number (PSN)
Indicates the physical slot number attached to this Port.
BIOS Requirement: This field must be initialized by BIOS to a
value that assigns a slot number that is globally unique within
the chassi s.
18 RW-O 1b Core No Command Completed Support (NCCS)
When set to 1b, this bit indicates that this slot does not
generate software notification when an issued command is
completed by the Hot-Plug Controller. This bit is only permitted
to be set to 1b if the hotplug capable port is able to accept
writes to all fields of the Slot Control register without delay
between successive writes.
17 RO 0b Core Reserved fo r Electrome chanica l Interlock Present (EIP )
When set to 1b, this bit indicates that an Electromechanical
Interlock is implemented on the chassis for this slot.
16:15 RW-O 00b Core Slot Power Limit Scale (SPLS)
Specifies the s cal e used for the Slot Power Limit Va lue.
00: 1.0x
01: 0.1x
10: 0.01x
11: 0.001x
If this field is written, the link sends a Set_Slot_Power_Limit
message.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
124 Document Number: 323178-003
6.2.42 SLOTCTL - Slot Control
B/D/F/Type: 0/6/0/PCI
Address Offset: B8-B9h
Default Value: 0000h
Access: RO; RW
Size: 16 bits
PCI Express Slot related registers allow for the support of Hot Plug.
14:7 RW-O 00h Core Slot Power Limit Value (SPLV)
In combination with the Slot P ower Li mit Scale value, specifies
the upper limit on power supplied by slot. Power limit (in
W atts) is calculate d by multiplyin g the value in this field by the
value in the Slot Power Limit Scale field.
If this field is written, the li nk sends a Set_Slot_Power_Limit
message.
6RO 0bCoreReserved for Hot-plug Capable (HPC)
When set to 1b, this bit indicates tha t this slot is capable o f
supporting hot-lug operations.
5RO 0bCoreReserved for Hot-plug Surprise (HPS)
When set to 1b, th is bit indicates that an adapter present in
this slot might be removed from the system without any prior
notification. This is a form factor specific capability. This bit is
an indication to the operating system to allow for such removal
without impacting continued software operation.
4RO 0bCoreReserved for Power Indicator Present (PIP)
When set to 1b, this bit indicates that a Power Indicator is
electrically controlled by the chassis for this slot.
3RO 0bCoreReserved for Attention Indicator Present (AIP)
When set to 1b , this bit indicates that an At tentio n Indicator is
electrically controlled by the chassis.
2RO 0bCoreReserved for MRL Sensor Present (MSP)
When set to 1b, this bit indicates tha t an MRL Sensor is
implemented on the chassis for this slot.
1RO 0bCoreReserved for Power Controller Present (PCP)
When set to 1b, this bit indicates that a software
programmable Power Controller is implemented for this slot/
adapter (depending on form factor).
0RO 0bCoreReserved for Attention Button Present (ABP)
When set to 1b, th is bit indicates that an Attention Button for
this slot is electrically controlled by the chassis.
Table 64. SLOTCAP - Slot Capabilities Register (Sheet 2 of 2)
Bit Access Default
Value RST/
PWR Description
Table 65. SLOTCTL - Slot Control Register (Sheet 1 of 3)
Bit Access Default
Value RST/
PWR Description
15:13 RO 000b Core Reserved
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 125
Processor Configuration Registers
12 RO 0b Core Reserved for Data Link Layer State Changed Enable
(DLLSCE)
If the Data Link Layer Link Active capability is implemented,
when set to 1b, this field enables software notification when Data
Link Layer Link Active field is changed.
If the Data Link Layer Link Active capability is not implemen ted,
this bit is permitted to be read-only with a value of 0b.
11 RO 0b Core Reserved for Electromechanical Interlock Control (E IC)
If an Electromechanical Interlock is implemented, a write of 1b
to this field cau ses t he stat e of th e int erlock to toggl e. A wri te of
0b to this field has no effect. A read to this register always
returns a 0.
10 RO 0b Core Reserved for Power Controller Control (PCC)
If a Power Controller is implemented, this field when written sets
the power state of the slot per the defined encodings. Reads of
this field must reflect the value from the latest write, even if the
corresponding hot-plug command is not complete, un less
software issues a write without waiting for the previous
command to complete in which case the read value is undefined.
Depending on the form factor, the power is turned on/off either
to the slot or within the adapter. Note that in some cases the
power controller may autonomously remove slot power or not
respond to a power-up request based on a detected fault
condition, independent of the Power Controller Control setting.
The defined encodings are:
0b Power On
1b Power Off
If the Power Controller Implemented field in the Slot Capabilities
register is set to 0b, then writes to this field have no effect and
the read value of this field is undefined.
9:8 RO 00b Core Reserved Power Indicator Control (PIC)
If a Power Indicator is implemented, writes to this field set the
Power Indicator to the written state. Reads of this field must
reflect the value from the latest write, even if the corresponding
hot-plug command is not complete, unless software issues a
write without waiting for the previous command to complete in
which case the read value is undefined.
00:Reserved
01:On
10:Blink
11:Off
If the Power Indicator Present bit in the Slot Capabilities register
is 0b, this field is permitted to be read-only with a value of 00b.
Table 65. SLOTCTL - Slot Control Register (Sheet 2 of 3)
Bit Access Default
Value RST/
PWR Description
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
126 Document Number: 323178-003
7:6 RO 00b Core Reserved for Attention Indicator Control (AIC)
If an Attention Indicator is implemented, writes to this field set
the Attention Indicator to the written state. Reads of this field
must reflect the value from the latest write, even if the
corresponding hot-plug command is not complete, unless
software issues a write without waiting for the previous
command to complete in which case the read value is undefi ned.
If the indicator is electrically controlled by chassis, the indicator
is controlled directly by the downstream port through
implementation specific mechanisms.
00:Reserved
01:On
10:Blink
11:Off
If the Attention Indicator Present bit in the Slot Capabilities
register is 0b , this fi eld is permitted to be read only with a value
of 00b.
5RO 0bCoreReserved for Hot-Plug Interrupt Enable (HPIE)
When set to 1b, this bit enables generation of an interrupt on
enabled hot-plug events Default value of this field is 0b. If the
Hot Plug Capable field in the Slot Capabilities register is set to
0b, this bit is permitted to be read-only with a value of 0b.
4RO 0bCoreReserved for Command Completed Inte rrupt Enable (CCI)
If Command Completed notification is supported (as indicated by
No Command Completed Support field of Slot Capabilities
Register), when set to 1b, this bit enables software notification
when a hot-plug command is completed by the Hot-Plug
Controller.
Default value of this field is 0b.
If Command Completed notification is not supported, this bit
must be hard wired to 0b.
3RW 0bCorePresence Detect Changed Enable (PDCE)
When set to 1b, this bit enables software notification on a
presence detect changed event.
2RO 0bCoreReserved for MRL Sensor Changed Enable (MSCE)
When set to 1b, this bit enables software notification on a MRL
sensor changed event .
Default value of this field is 0b. If the MRL Sensor Present field in
the Slot Capabilities register is set to 0b, this bit is perm itted to
be read-only with a value of 0b.
1RO 0bCoreReserved for Power Fault Detected Enable (PFDE)
When set to 1b , this bit enables so ftwa re notifica tion on a power
fault event.
Default value of this field is 0b. If Power Fault detection is not
supported, this bit is permitted to be read-only with a value of 0b
0RO 0bCoreReserved for Attention Button Pressed Enable (ABPE)
When set to 1b, this bit enables software notification on an
attention button pressed event.
Table 65. SLOTCTL - Slot Control Register (Sheet 3 of 3)
Bit Access Default
Value RST/
PWR Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 127
Processor Configuration Registers
6.2.43 SLOTSTS - Slot Status
B/D/F/Type: 0/6/0/PCI
Address Offset: BA-BBh
Default Value: 0000h
Access: RO; RWC
Size: 16 bits
PCI Express Slot related registers allow for the support of Hot Plug.
Table 66. SLOTSTS - Slot Status Register (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
15:9 RO 0000000b Core Reserved and Zero
For future R/WC/S implementations; software must use 0 for
writes to bits.
8RO 0bCoreReserved for Data Link Layer State Changed (DLLSC)
This bit is set when the value reported in the Data Link Layer
Link Active field of the Link Status register is changed. In
response to a Data Link Layer State Changed event, software
must read the Data Link Layer Link Active field of the Link Status
register to determine if the link is active before initiating
configuration cycles to the hot plugged device.
7RO 0bCoreReserved for Electromechanical Interlock Status (EIS)
If an Electromechanical Interlock is implemented, this bit
indicates the cu rrent status of the Electromechanical Inte rlock.
Defined encodings are:
0b Electromechanical Interlock Disengaged
1b Electromechanical Interlock Engaged
6RO 0bCorePresence Det ect St at e (PDS)
In band presence detect state:
0b: Slot Empty
1b: Card present in slot
This bit indicates the presence of an adapter in the slot, reflected
by the logical “OR ” of the Physical Layer in-band presence detect
mechanism and, if present, any out-of-band presen ce detect
mechanism defined for the slot's corresponding form factor. Note
that the in-band presence detect mechanism requires that power
be applied to an adapter for its presence to be detected.
Consequently, form factors that require a power controller for
hot-plug must implement a physical pin presence detect
mechanism.
Defined encodings are:
0b Slot Empty
1b Card Present in slot
This register mu st be implemented on all Downstream Ports that
implement slots. For Downstream Ports not connected to slots
(where the Slot Implemented bit of the PCI Express Capabilities
Register is 0b), this bit must return 1b.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
128 Document Number: 323178-003
5RO 0bCoreReserved for MRL Sensor State (MSS)
This register reports the status of the MRL sensor if it is
implemented.
Defined encodings are:
0b MRL Closed
1b MRL Open
4RO 0bCoreReserved for Command Co mpleted (CC)
If Command Completed notification is supported (as indicated by
No Command Completed Support field of Slot Capabilities
Register), this bit is set when a hot-plug command has
completed and the Hot-Plug Controller is ready to accept a
subsequent command. The Command Completed status bit is
set as an indication to host sof tware that the Hot -Plug Controll er
has processed the previous command and is ready to receive the
next command; it provides no guarantee that the action
corresponding to the command is complete.
If Command Completed notification is not supported, this bit
must be hard wired to 0b.
3RWC 0b CorePresence Detect Changed (PDC)
A pulse indica tion that the inband presence detect state has
changed. This bit is set when the value reported in Presence
Detect State is changed.
2RO 0bCoreReserved for MR L Sensor Changed (MSC)
If an MRL sensor is implemented, this bit is set when a MRL
Sensor state change is detected. If an MRL sensor is not
implemented, this bit must not be set .
1RO 0bCoreReserved for Power Fault Dete cted (PFD)
If a Power Controller that supports power fault detection is
implemented, this bit is set when the Power Controller detects a
power fault at this slot. Note that, depending on hardware
capability, it is possible that a power fault can be detected at any
time, independent of the Power Controller Control setting or the
occupancy of the slot. If power fault detection is not supported,
this bit must not be set.
0RO 0bCoreReserved for Attention Button Pressed (ABP)
If an Attention B utton is implemented, this bit is set when the
attention button is pressed. If an Attention Button is not
supported, this bit must not be set.
Table 66. S LOTSTS - Slot Stat us Register (Sheet 2 of 2)
Bit Access Default
Value RST/
PWR Description
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 129
Processor Configuration Registers
6.2.44 RCTL - Root Control
B/D/F/Type: 0/6/0/PCI
Address Offset: BC-BDh
Default Value: 0000h
Access: RO; RW
Size: 16 bits
Allows control of PCI Express Root Complex specific parameters. The system error
control bits in this register determine if corresponding SERRs are generated when our
device detects an error (reported in this device's Device Status register) or when an
error message is received across the link. Re porting of SERR as controlled by these bits
takes precedence over the SERR Enable in the PCI Command Register.
Table 67. RCTL - Root Control Register
Bit Access Default
Value RST/
PWR Description
15:5 RO 000h Core Reserved
4RO 0bCoreReserved for CRS Software Visibility Enable (CSVE)
This bit, when set, enables the Root Port to return
Configuration Request Retry Status (CRS) Completion Status
to software.
Root P orts that do not implement this capability must hardwire
this bit to 0b.
3RW 0b CorePME Interrupt Enable (PMEIE)
0 = No interrupts are generated as a result of receiving PME
messages.
1 = Enables interrupt generation upon receipt of a PME
message as reflected in the PME Status bit of the Root
Status Register. A PME interrupt is also generated if the
PME Status bit of the Root Status Register is set when this
bit is set from a cleared state.
2RW 0b CoreSystem Error on Fatal Error Enable (SEFEE)
0 = Controls the Root Complex's response to fatal errors.No
SERR generated on receipt of fatal error.
1 = Indicates that an SERR should be generated if a fatal error
is reported by any of the devices in the hierarchy
associated with this Root Port, or by the Root Port itself.
1RW 0b CoreSystem Error on Non-Fatal Uncorrectable Error Enable
(SENFUEE)
Controls the Root Complex's response to non-fatal errors.
0 = No SERR generated on receipt of non-fatal error.
1 = Indicates that an SERR should be generated if a non-fatal
error is reported by any of the devices in the hierarchy
associated with this Root Port, or by the Root Port itself.
0RW 0b CoreSystem Error on Correctable Erro r Enable (SECEE)
Controls the Root Complex's response to correctable errors.
0 = No SERR generated on receipt of correctable error.
1 = Indicates that an SERR should be generated if a
correctable error is reported by any of the devices in the
hierarchy associated with this Root Port, or by the Root
Port itself.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
130 Document Number: 323178-003
6.2.45 RSTS - Root Status
B/D/F/Type: 0/6/0/PCI
Address Offset: C0-C3h
Default Value: 00000000h
Access: RO; RWC
Size: 32 bits
Provides information about PCI Express Root Complex specific parameters.
6.2.46 LCTL2 - Link Control 2
B/D/F/Type: 0/6/0/PCI
Address Offset: D0-D1h
Default Value: 0001h
Access: RO; RW-S; RW;
Size: 16 bits
Table 68. RSTS - Root Status Register
Bit Access Default
Value RST/
PWR Description
31:18 RO 0000h Core Reserved and Zero (RSVD)
For future R/WC/S implementations; software must use 0 for
writes to bits.
17 RO 0b Core PME Pending (PMEP)
Indicates that another PME is pending when the PME Status bit
is set. When the PME Status bit is cleared by software; the PME
is delivered by hardware by setting the PME Status bit again
and updating the Requestor ID appropriately. The PME pending
bit is cleared by hardware if no more PMEs are pending.
16 RWC 0b Core PME Status (PMES)
Indicates that PME was asserted by the requestor ID indicated
in the PME Requestor ID field. Subsequent PMEs are kept
pending until the status register is cleared by writing a 1 to this
field.
15:0 RO 0000h Core PME Requestor ID (PMERID)
Indicates the PCI requestor ID of the last PME requestor.
Table 69. LCTL2 - Link Control 2 Register (Sheet 1 of 3)
Bit Access Default
Value RST/
PWR Description
15:13 RO 000b Core Reserved (RSVD):
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 131
Processor Configuration Registers
12 RW-S 0b Core Compliance De-emphasis (ComplianceDeemphasis):
This bit sets the de-emphasis level in Polling.Compliance
state if the entry occurred due to the Enter Compliance bit
being 1b.
Encodings:
1b -3.5 dB
0b -6 dB
When the Link is oper ating at 2.5 GT /s, the setting of thi s bit
has no effect. Components that support only 2.5 GT/s speed
are permitted to hardwire this bit to 0b. For a Multi-Function
device associated with an Upstream Port, the bit in Function
0 is of type RWS, and only Function 0 controls the
component's Link behavior. In all other Functions of that
device, this bit is of type RsvdP. The default value of this bit
is 0b. This bit is intended for debug, compliance testing
purposes. System firmware and software is allowed to
modify this bit only during debug or compliance testing.
11 RW-S 0b Core Compliance SOS (compsos):
When set to 1b, the LTSSM is required to send SKP Ordered
Sets periodically in between the (modified) compliance
patterns. For a Multi-Function device associated with an
Upstream Port, the bit in Function 0 is of type RWS, and only
Function 0 controls the component's Link behavior. In all
other Functions of that device, this bit is of type RsvdP. The
default value of this bit is 0b. Components that support only
the 2.5 GT/s speed are permitted to hardwire this field to 0b.
10 RW-S 0b Core Enter Modified Compliance (entermodcompliance):
When this bit is set to 1b, the device transmits modified
compliance pattern if the LTSSM enters Polling.Compliance
state. Components that support only the 2.5GT/s spe ed are
permitted to hardwire this bit to 0b. Default value of this field
is 0b.
9:7 RW-S 000b Core Transmit Margin (txmargin):
This field controls the value of the non-de-empha sized
voltage level at the Transmitter pins. This field is reset to
000b on entry to the LTSSM Polling.Configuration substate
(see Chapter 4 for details of how the transmitter voltage
level is determined in various states).
Encodings:
000: Normal operating range
001: 800-1200 mV for full swing and 400-700 mV for half-
swing
010 - (n-1): Values must be monotonic with a non-zero
slope. The value of n must be greater than 3 and less than 7.
At least two of these must be below the normal
operating range 200-400 mV for full-swing and 100-200 mV
for half-swing -
111: reserved
Default value is 000b.
Components that support only the 2.5GT/s speed are
permitted to hardwire this bit to 0b.
Table 69. LCTL2 - Link Control 2 Register (Sheet 2 of 3)
Bit Access Default
Value RST/
PWR Description
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
132 Document Number: 323178-003
6.2.47 LSTS2 - Link Status 2
B/D/F/Type: 0/6/0/PCI
Address Offset: D2-D3h
Default Value: 0000h
Access: RO;
Size: 16 bits
6RW-S 0b CoreSelectable De-emphasis (selectabledeemphasis):
Encodings:
1b) -3.5d B
0b -6 dB
Default value is implementation specific, unless a specific
value is required for a selected form factor or platform. When
the Link is operating at 2.5GT/s speed, the setting of this bit
has no effect. Components that support only the 2.5GT/s
speed are permitted to hardwire this bit to 0b.
5RW 0b CoreHardware Autonomous Speed Disable (HASD):
When set to 1b this bit disables hardware from changing the
link speed for reasons other than attempting to correct
unreliable link operation by reducing link speed.
4RW-S 0b CoreEnter Compliance (EC):
Software is permitted to force a link to enter Compliance
mode at the speed indicated in the Target Link Speed field by
setting this bit to 1b in both components on a link and then
initiating a h ot reset on the link.
3:0 RW 1h Core Target Link Speed (TLS):
For Downstream ports, this field sets an upper limit on link
operational speed by restricting the values advertised by the
upstream component in its training sequences. Defined
encodings are:
0001b 2.5Gb/s Target Link Speed
All other encoding s are reserved.
If a va lue is written to this field that does not correspond to a
speed included in the Supported Link Speeds field, the result
is undefined. The default value of this field i s the highest link
speed supported by the component (as reported in the
Supported Link Speeds field of the Li nk Capabilities Register)
unless the corresponding platform / form factor requires a
different default value. For both Upstream and Downstream
ports, this field is used to set the target compliance m ode
speed when software is using the Enter Compliance bit to
force a link into compliance mode.
Table 69. LCTL2 - Link Control 2 Register (Sheet 3 of 3)
Bit Access Default
Value RST/
PWR Description
Table 70. LSTS2 - Link Status 2 Register (Sheet 1 of 2)
Bit Access Default
Value RST/
PWR Description
15:1 RO 0000h Core Reserved (Rsvd):
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 133
Processor Configuration Registers
6.2.48 PEGLC - PCI Express-G Legacy Control
B/D/F/Type: 0/6/0/PCI
Address Offset: EC-EFh
Default Value: 00000000h
Access: RO; RW
Size: 32 bits
Controls functionality that is needed by Legacy (non-PCI Express aware) OS's during
run time.
0RO 0bCore
Current De-emphasis Level (CURDELVL):
Current De-emphasis Level –
1b -3.5 dB
0b -6 dB
When the Link is operat ing at 2.5 GT/s speed, this bit is
0b.
Table 70. LSTS2 - Link Status 2 Register (Sheet 2 of 2)
Table 71. PEGLC - PCI Express-G Legacy Control Register
Bit Access Default
Value RST/
PWR Description
31:3 RO 00000000h Core Reserved
2RW 0b CorePME GPE Enable (PMEGPE)
0 = Do not generate GPE PME message when PME is received.
1 = Generate a GPE PME message when PME is received. This
enables the processor to support PMEs on the PEG port
under legacy OSs.
1RW 0b CoreHot-Plug GPE Enable (HPGPE)
0 = Do not generate GPE Hot-Plug message when Hot-Plug
event is received.
1 = Generate a GPE Hot-Plug message when Hot-Plug Event is
received. This enables the processor to support Hot-Plug
on the PEG port under legacy OSs
0RW 0b CoreGenera l Message GPE Enable (GENGPE)
0 = Do not forward received GPE assert/deassert messages.
1 = Forward received GPE assert/deassert messages.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
134 Document Number: 323178-003
6.3 PCI Device 6 - Extended Configuration
6.3.1 VCECH - Virtual Channel Enhanced Capability Header
B/D/F/Type: 0/6/0/MMR
Address Offset: 100-103h
Default Value: 00010002h
Access: RW-O; RO;
Size: 32 bits
Indicates PCI Express device Virtual Channel capabilities. Extended capability
structures for PCI Express devices are located in PCI Express extended configuration
space and have different field definitions than standard PCI capability structures.
6.3.2 PVCCAP1 - Port VC Capability Register 1
B/D/F/Type: 0/6/0/MMR
Address Offset: 104-107h
Default Value: 00000000h
Access: RO;
Table 72. PCI Device 6 - Extended Configuration
Register Name Register
Symbol Register
Start Register
End Default Value Access
Virtual Channel Enhanced Capability
Header VCECH 100 103 00010002h RW-O; RO;
Port VC Capability Register 1 PVCCAP1 104 107 00000000h RO;
Port VC Capability Register 2 PVCCAP2 108 10B 00000000h RO;
Port VC Control PVCCTL 10C 10D 0000h RO; RW;
VC0 Resource Capability VC0RCAP 110 113 00000001h RO;
VC0 Resource Control VC0RCTL 114 117 800000FFh RO; RW;
VC0 Resource Status VC0RSTS 11A 11B 0002h RO;
Table 73. VCECH - Virtual Channel Enhanced Capability Header
Bit Access Default
Value RST/
PWR Description
31:20 RW-O 000h Core Pointer to Next Capability (PNC):
The Link Declaration Capability is the next in the PCI
Express extended capabilitie s list.
19:16 RO 1h Core PCI Express Virtual Channel Capability Version
(PCIEVCCV):
hard wired to 1 to indicate compliances with the 1.1
version of the PCI Express specification. Note: This version
does not change for 2.0 compliance
15:0 RO 0002h Core Extended Capability ID (EC ID):
Value of 0002 h identifies this linked list item (capabili ty
structure) as being for PCI Express Virtual Channel
registers.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 135
Processor Configuration Registers
Size: 32 bits
Describes the configuration of PCI Express Virtual Channels associated with this port.
6.3.3 PVCCAP2 - Port VC Capability Register 2
B/D/F/Type: 0/6/0/MMR
Address Offset: 1 08-10Bh
Default Value:000 00000h
Access: RO;
Size:32 bits
Describes the configuration of PCI Express Virtual Channels associated with this port.
Table 74. PVCCAP1 - Port VC Capability Register 1
Bit Access Default
Value RST/
PWR Description
31:12 RO 00000h Core Reserved
11:10 RO 00b Core Reserved
Reserved for Port Arbitration Table Entry Size ():
9:8 RO 00b Core Reserved
Reserved for Reference Clock ():
7 RO 0b Core Reserved
6:4 RO 000b Core Low Priority Extended VC Count (LPEVCC):
Indicates the number of (extended) Virtual Channels in
addition to the default VC belonging to the low-priority VC
(LPVC) group that has the lowest priority with respect to
other VC resources in a strict-priority VC Arbitration. The
value of 0 in this field implies strict VC arbitration.
3RO 0bCoreReserved
2:0 RO 000b Core Extended VC Count (EVCC):
Indicates the number of (extended) Virtual Channels in
addition to the default VC supported by the device.
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
136 Document Number: 323178-003
6.3.4PVCCTL - Port VC Control
B/D/F/Type:0/6/0/MMR
Address Offset:10C-10Dh
Default Value:0000h
Access: RO; RW;
Size:16 bits
6.3.5VC0RCAP - VC0 Resource Capability
B/D/F/Type:0/6/0/MMR
Address Offset:110-113h
Default Value:00000001h
Access: RO;
Size:32 bits
Table 75. PVCCAP2 - Port VC Capability Register 2
Bit Access Default
Value RST/PWR Description
31:24 RO 00h Core VC Arbitration Table Offset (VCA TO):
Indicates the location of the VC Arbitration Table. This
field contains the zero-based offset of the table in
DQWORDS (16 bytes) from the base address of the
Virtual Channel Capability Structure. A value of 0
indicates that the table is not pre sent (due to fixed VC
priority).
23:8 RO 0000h Core Reserved
7:0 RO 00h Core Reserved for VC Arbitration Capability (VCAC)
Table 76. PVCCTL - Port VC Control
Bit Access Default
Value RST/PWR Description
15:4 RO 000h Core Reserved
3:1 RW 000b Core VC Arbitration Select (VCAS)
This field is programmed by software to the only possible
value as indicated in the VC Arbitration Capability field.
Since there is no other VC supported than the default,
this field is reserved.
0RO 0bCoreReserved for Load VC Arbitration Table
Used for software to update the VC Arbitration Table when
VC arbitration uses the VC Arbitration Table. As a VC
Arbitration Table is never used by this component this
field will never be used.
Table 77. VC0RCAP - VC0 Resource Capability (Sheet 1 of 2)
Bit Access Default
Value RST/PWR Description
31:24 RO 00h Core Reserved for Po rt Arbitr atio n Table Offset
23 RO 0b Core Reserved
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 137
Processor Configuration Registers
6.3.6 VC0RCTL - VC0 Resource Control
B/D/F/Type: 0/6/0/MMR
Address Offset: 1 14-117h
Default Value: 800000FFh
Access: RO; RW;
Size: 32 bits
Controls the resources associated with PCI Express Virtual Channel 0.
22:16 RO 00h Core Reserved for Maximum Time Slots
15 RO 0b Core Reject Snoop Transactions (RSNPT):
Reject Snoop Transactions (RSNPT):
0: Transactions with or without the No Snoop bit set within
the TLP header are allowed on this VC.
1: When Set, any transaction for which the No Snoop
attribute is applicable but is not Se t within the TLP Heade r
is rejected as an Unsupported Request
14:8 RO 00h Core Reserved
7:0 RO 01h Core Port Arbitration Capability (PAC)
Port Arbitration Capability – Indicates types of Port
Arbitration supported by the VC resource. This field is valid
for all Switch Ports, Root Ports that support peer-to to-
peer traffic, and RCRBs, but not for PCI Express Endpoint
devices or Root Ports that do not support peer to peer
traffic. Each bit location within this field corresponds to a
Port Arbitr ation Capability defined below. When more than
one bit in this field is Set, it indicates that the VC resource
can be configured to provide different arbitration services.
Software selects among these capabilities by writing to the
Port Arbitration Select field (see below). Defined bit
positions are:
Bit 0 Non-configurable hardware-fixed arbitration scheme,
e.g., Round Robin (RR )
Bit 1 Weighted Round Robin (WRR) arbitration with 32
phases
Bit 2 WRR arbitration with 64 phases
Bit 3 WRR arbitration with 128 phases
Bit 4 Time-based WRR with 128 phases
Bit 5 WRR arbitration with 256 phases
Bits 6-7 Reserved MCH default indicates “Non-configurable
hardware-fixed arbitration scheme”.
Table 77. VC0RCAP - VC0 Resource Capability (Sheet 2 of 2)
Bit Access Default
Value RST/PWR Description
Processor Configuration Registers
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
Datasheet Addendum August 2010
138 Document Number: 323178-003
6.3.7 VC0RSTS - VC0 Resource Status
B/D/F/Type: 0/6/0/MMR
Address Offset: 11A-11Bh
Default Value: 0002h
Access: RO;
Size: 16 bits
Reports the Virtual Channel specific status.
Table 78. VC0RCTL - VC0 Resource Control
Bit Access Default
Value RST/PWR Description
31 RO 1b Core VC0 Enable (VC0E):
For VC0 this is hard wired to 1 and read only as VC0 can
never be disabled.
30:27 RO 0h Core Reserved
26:24 RO 000b Core VC0 ID (VC0ID):
Assigns a VC ID to the VC resource. For VC0 this is hard
wired to 0 and read only.
23:20 RO 0h Core Reserved
19:17 RW 000b Core Port Arbitration Select (PAS):
Port Arbitration Select – This field configures the VC
resource to provide a particular Port Arbitration service.
This field is valid for RCRBs, Root Ports that support peer
to peer traffic, and Switch Ports, but not for PCI Express
Endpoint devices or Root P orts that do not support peer to
peer traffic. The permissible value of this field is a number
corresponding to one of the asserted bits in the Port
Arbitration Capability field of the VC resource.
16 RO 0b Core Reserved
Reserved for Load Port Arbitration Table ():
15:8 RO 00h Core Reserved
7:1 RW 7Fh Core TC/VC0 Map (TCVC0M):
Indicates the TCs (Traffic Classes) that are mapped to the
VC resource. Bit locations within this field correspond to
TC v alues. F or example, when bit 7 is set in this field, T C7
is mapped to this VC resource. When more than one bit in
this field is set, it indicates that multiple TCs are mapped
to the VC resource. In order to remove one or more TCs
from the TC/VC Map of an enabled VC, software must
ensure that no new or outstanding transactions with the
TC labels are targeted at the given Link .
0RO 1bCoreTC0/VC0 Map (TC0VC0M):
Traffic Class 0 is always routed to VC0.
Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series
August 2010 Datasheet Addendum
Document Number: 323178-003 139
Processor Configuration Registers
Table 79. VC0RSTS - VC0 Resource Status
Bit Access Default
Value RST/PWR Description
15:2 RO 0000h Core Reserved and Zero
1RO 1bCoreVC0 Negotiatio n Pending (VC0NP):
0: The VC negotiation is complete.
1: The VC resource is still in the process of negotiation
(initialization or disabling). This bit indicates the stat us of
the process of Flow Control initialization. It is set by
default on Reset, as well as whenever the corresponding
Virtual Channel is Disabled or the Link is in the DL_Down
state. It is cleare d when the link successfully exits the
FC_INIT2 state. Before using a Virtual Channel, software
must check whether the VC Negotiat ion Pending fields for
that Virtual Channel are cleared in both Components on a
Link.
0RO 0bCoreReserved
Reserved for Port Arbitration Table Status ():