DATA SH EET
Product specification
Supersedes data of 1995 Mar 22
File under Integrated Circuits, IC02
1996 Mar 20
INTEGRATED CIRCUITS
TDA8766
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
1996 Mar 20 2
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
FEATURES
10-bit resolution
2.7 to 5.25 V operation
Sampling rate up to 20 MHz
DC sampling allowed
High signal-to-noise ratio over a large analog input
frequency range (9.3 effective bits at 1.0 MHz full-scale
input at fclk = 20 MHz)
In range (IR) CMOS output
CMOS/TTL compatible digital inputs and outputs
External reference voltage regulator
Power dissipation only 53 mW (typical)
Low analog input capacitance, no buffer amplifier
required
Standby mode
No sample-and-hold circuit required.
APPLICATIONS
High-speed analog-to-digital conversion for:
Video data digitizing
Camera
Camcorder
Radio communication.
GENERAL DESCRIPTION
The TDA8766 is a 10-bit high-speed analog-to-digital
converter (ADC) for professional video and other
applications. It converts with 2.7 to 5.25 V operation the
analog input signal into 10-bit binary-coded digital words at
a maximum sampling rate of 20 MHz. All digital inputs and
outputs are CMOS compatible. A standby mode allows
reduction of the device power consumption down to 4 mW.
QUICK REFERENCE DATA
ORDERING INFORMATION
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
VDDA analog supply voltage 2.7 3.3 5.25 V
VDDD1 digital supply voltage 1 2.7 3.3 5.25 V
VDDD2 digital supply voltage 2 2.7 3.3 5.25 V
VDDO output stages supply voltage 2.5 3.3 5.25 V
IDDA analog supply current 7.5 10 mA
IDDD digital supply current 7.5 10 mA
IDDO output stages supply current fclk = 20 MHz; CL= 20 pF;
ramp input 12mA
INL integral non-linearity fclk = 20 MHz; ramp input −±1±2 LSB
DNL differential non-linearity fclk = 20 MHz; ramp input −±0.25 ±0.7 LSB
fclk(max) maximum clock frequency 20 −−MHz
Ptot total power dissipation VDDA =V
DDD =V
DDO = 3.3 V 53 73 mW
TYPE
NUMBER PACKAGE
NAME DESCRIPTION VERSION
TDA8766G LQFP32 plastic low profile quad flat package; 32 leads; body 5 ×5×1.4 mm SOT401-1
1996 Mar 20 3
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
BLOCK DIAGRAM
Fig.1 Block diagram.
handbook, full pagewidth
19
10
14
RLAD
11
15
VRB
VSSA VSSD2 VSSO VSSD1
VRM
VRT
VI
18
VDDD2
7
2
VDDA
28
29
30
31
27 D4
D5
D6
D7
D8
26
25
1
6
D3
D2
23 D1
22 D0
D9
IN RANGE LATCH
CMOS
OUTPUTS
LATCHES
ANALOG -TO - DIGITAL
CONVERTER
CLOCK DRIVER
MLC853
CMOS
OUTPUT
5
CLK
16
OE
STDBY
TDA8766
20 VDDO
9
analog
ground digital
ground 2
321
output
ground digital
ground 1
analog
voltage input data outputs
LSB
MSB
4VDDD1
IR
output
1996 Mar 20 4
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
PINNING
SYMBOL PIN DESCRIPTION
D9 1 data output; bit 9 (MSB)
IR 2 in range data output
VSSD1 3 digital ground 1
VDDD1 4 digital supply voltage 1 (2.7 to 5.25 V)
CLK 5 clock input
STDBY 6 standby mode input
VDDA 7 analog supply voltage (2.7 to 5.25 V)
n.c. 8 not connected
VSSA 9 analog ground
VRB 10 reference voltage BOTTOM input
VRM 11 reference voltage MIDDLE
n.c. 12 not connected
n.c. 13 not connected
VI14 analog input voltage
VRT 15 reference voltage TOP input
OE 16 output enable input
n.c. 17 not connected
VDDD2 18 digital supply voltage 2 (2.7 to 5.25 V)
VSSD2 19 digital ground 2
VDDO 20 positive supply voltage for output
stage (2.5 to 5.25 V)
VSSO 21 digital output ground
D0 22 data output; bit 0 (LSB)
D1 23 data output; bit 1
n.c. 24 not connected
D2 25 data output; bit 2
D3 26 data output; bit 3
D4 27 data output; bit 4
D5 28 data output; bit 5
D6 29 data output; bit 6
D7 30 data output; bit 7
D8 31 data output; bit 8
n.c. 32 not connected
SYMBOL PIN DESCRIPTION
Fig.2 Pin configuration.
handbook, full pagewidth
TDA8766
MLC854
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
index
corner
D9
IR
VDDD1
VSSD1
V
CLK
STDBY
DDA VDDD2
VSSD2
VDDO
VSSO
n.c.
n.c.
D1
D0
n.c.
n.c.
D8
D7
D6
D5
D4
D3
D2
SSA
n.c.
n.c.
OE
V
RB
V
RM
V
I
V
RT
V
1996 Mar 20 5
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
Note
1. The supply voltages VDDA, VDDD and VDDO may have any value between 0.3 V and +7.0 V provided that the supply
voltage differences VDD are respected.
HANDLING
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling integrated circuits.
THERMAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
VDDA analog supply voltage note 1 0.3 +7.0 V
VDDD1, VDDD2 digital supply voltages note 1 0.3 +7.0 V
VDDO output stages supply voltage note 1 0.3 +7.0 V
VDD supply voltage difference
VDDA VDDD 1.0 +4.0 V
VDDD VDDO 1.0 +4.0 V
VDDA VDDO 1.0 +4.0 V
VIinput voltage referenced to VSSA 0.3 +7.0 V
Vclk(p-p) AC input voltage for switching
(peak-to-peak value) referenced to VSSD VDDD V
IOoutput current 10 mA
Tstg storage temperature 55 +150 °C
Tamb operating ambient temperature 20 +75 °C
Tjjunction temperature +150 °C
SYMBOL PARAMETER VALUE UNIT
Rth j-a thermal resistance from junction to ambient in free air 90 K/W
1996 Mar 20 6
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
CHARACTERISTICS
VDDA =V
7to V9= 3.3 V; VDDD =V
4to V3=V
18 to V19 = 3.3 V; VDDO =V
20 to V21 = 3.3 V; VSSA,V
SSD and VSSO
short-circuited together; Vi(p-p) = 1.83 V; CL= 20 pF; Tamb =0to+70°C; typical values measured at Tamb =25°C;
unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supply
VDDA analog supply voltage 2.7 3.3 5.25 V
VDDD1 digital supply voltage 1 2.7 3.3 5.25 V
VDDD2 digital supply voltage 2 2.7 3.3 5.25 V
VDDO output stages supply voltage 2.5 3.3 5.25 V
VDD voltage difference
VDDA VDDD 0.2 +0.2 V
VDDA VDDO 0.2 +3.0 V
VDDD VDDO 0.2 +3.0 V
IDDA analog supply current 7.5 10 mA
IDDD digital supply current 7.5 10 mA
IDDO output stages supply current fclk = 20 MHz;
ramp input; CL=20pF 12 mA
Inputs
CLOCK INPUT CLK (REFERENCED TO VSSD); see note 1
VIL LOW level input voltage 0 0.3VDDD V
VIH HIGH level input voltage 0.7VDDD VDDD V
VDDD 3.6 V 0.6VDDD VDDD V
IIL LOW level input current Vclk = 0.3VDDD 10+1µA
I
IH HIGH level input current Vclk = 0.7VDDD −−5µA
Z
Iinput impedance fclk = 20 MHz 4k
CIinput capacitance fclk = 20 MHz 3pF
INPUTS OE AND STDBY (REFERENCED TO VSSD); see Table 3
VIL LOW level input voltage 0 0.3VDDD V
VIH HIGH level input voltage 0.7VDDD VDDD V
VDDD 3.6 V 0.6VDDD VDDD V
IIL LOW level input current VIL = 0.3VDDD 1−− µA
I
IH HIGH level input current VIH = 0.7VDDD −−+1 µA
VI(ANALOG INPUT VOLTAGE REFERENCED TO VSSA)
IIL LOW level input current VI=V
RB 0−µA
I
IH HIGH level input current VI=V
RT 35 −µA
Z
Iinput impedance fi= 1 MHz 5k
CIinput capacitance fi= 1 MHz 8pF
1996 Mar 20 7
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
Reference voltages for the resistor ladder; see Table 1
VRB reference voltage BOTTOM 1.1 1.2 V
VRT reference voltage TOP VTOP VDDA 2.7 3.3 VDDA V
Vdiff differential reference voltage
VRT VRB
1.5 2.1 2.7 V
Iref reference current 7.2 mA
RLAD resistor ladder 290 −Ω
TCRLAD temperature coefficient of the resistor
ladder 1860 ppm
539 m/K
VosB offset voltage BOTTOM note 2 135 mV
VosT offset voltage TOP note 2 135 mV
Vi(p-p) analog input voltage
(peak-to-peak value) note 3 1.4 1.83 2.4 V
Outputs
DIGITAL OUTPUTS D9 TO D0 AND IR (REFERENCED TO VSSD)
VOL LOW level output voltage IO=1mA 0 0.5 V
VOH HIGH level output voltage IO=1mA V
DDO 0.5 VDDO V
IOZ output current in 3-state mode 0.5V<V
O<V
DDO 20 +20 µA
Switching characteristics
CLOCK INPUT CLK; see Fig.4; note 1
fclk(max) maximum clock frequency 20 −− MHz
tCPH clock pulse width HIGH 15 −− ns
tCPL clock pulse width LOW 15 −− ns
Analog signal processing
LINEARITY
INL integral non-linearity fclk = 20 MHz;
ramp input; (see Fig.6) −±1±2 LSB
DNL differential non-linearity fclk = 20 MHz;
ramp input; (see Fig.7) −±0.25 ±0.7 LSB
INPUT SET RESPONSE (fclk = 20 MHz; see Fig.8; note 4)
tSTLH analog input settling time
LOW-to-HIGH full-scale square wave 46 ns
t
STHL analog input settling time
HIGH-to-LOW full-scale square wave 46 ns
HARMONICS;(f
clk =20MHZ; see Fig.9; note 5)
THD total harmonic distortion fi= 1 MHz −−63 dB
SIGNAL-TO-NOISE RATIO; see Fig.9; note 5
S/N signal-to-noise ratio (full scale) without harmonics;
fclk = 20 MHz;
fi= 1 MHz
60 dB
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
1996 Mar 20 8
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
Notes
1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock
must not be less than 1 ns.
2. Analog input voltages producing code 0 up to and including 1023:
a) VosB (voltage offset BOTTOM) is the difference between the analog input which produces data equal to 00 and
the reference voltage BOTTOM (VRB) at Tamb =25°C.
b) VosT (voltage offset TOP) is the difference between VRT (reference voltage TOP) and the analog input which
produces data outputs equal to 1023 at Tamb =25°C.
3. In order to ensure the optimum linearity performance of such converter architecture the lower and upper extremities
of the converter reference resistor ladder (corresponding to output codes 0 and 1023 respectively) are connected to
pins VRB and VRT via offset resistors ROB and ROT as shown in Fig.3.
a) The current flowing into the resistor ladder is IL= and the full-scale input range at the converter,
to cover code 0 to code 1023, is
b) Since RL, ROB and ROT have similar behaviour with respect to process and temperature variation, the ratio
will be kept reasonably constant from part to part. Consequently variation of the output codes
at a given input voltage depends mainly on the difference VRT VRB and its variation with temperature and supply
voltage. When several ADCs are connected in parallel and fed with the same reference source, the matching
between each of them is then optimized.
EFFECTIVE BITS; see Fig.9; note 5
EB effective bits fclk = 20 MHz
fi= 300 kHz 9.5 bits
fi= 1 MHz 9.3 bits
fi= 3.58 MHz 8.0 bits
Timing (fclk = 20 MHz; CL= 20 pF); see Fig.4; note 6
tds sampling delay time −−5ns
t
houtput hold time 5 −− ns
tdoutput delay time VDDO = 4.75 V 8 12 15 ns
VDDO = 3.15 V 8 17 20 ns
VDDO = 2.7 V 8 21 24 ns
3-state output delay times; see Fig.5
tdZH enable HIGH 14 18 ns
tdZL enable LOW 16 20 ns
tdHZ disable HIGH 16 20 ns
tdLZ disable LOW 14 18 ns
Standby mode output delay times
tdSTBLH standby (LOW-to-HIGH transition) −−200 ns
tdSTBHL start-up (HIGH-to-LOW transition) −−500 ns
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
VRT VRB
ROB RLROT
++
------------------------------------------
VIRLIL
×RL
ROB RLROT
++
------------------------------------------ VRT VRB
()0.871 VRT VRB
()×=×==
R
L
R
OB RLROT
++
-----------------------------------------
1996 Mar 20 9
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
4. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale
input (square-wave signal) in order to sample the signal and obtain correct output data.
5. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per equivalent
fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency
(NYQUIST frequency). Conversion to signal-to-noise ratio: S/N = EB ×6.02 + 1.76 dB.
6. Output data acquisition: the output data is available after the maximum delay time of td.
Fig.3 Explanation of note 3.
handbook, halfpage
RLAD
ROT
VRT
VRM
VRB
ROB
code 1023
code 0
MGD281
IL
RL
1996 Mar 20 10
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
Table 1 Output coding and input voltage (typical values; referenced to VSSA)
Table 2 Mode selection
Table 3 Standby selection
STEP VI(p-p)
(V) IR BINARY OUTPUT BITS
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Underflow <1.335 00000000000
0 1.335 10000000000
1 . 10000000001
. . ...........
. . ...........
1022 . 11111111110
1023 3.165 11111111111
Overflow >3.165 01111111111
OE D9 TO D0 IR
1 high impedance high impedance
0 active; binary active
STDBY D9 TO D0 IDDA +I
DDD (typ.)
1 last logic state 1.2 mA
0 active 15 mA
Fig.4 Timing diagram.
handbook, full pagewidth
ds
t
sample N + 1
sample N
CLK
MGD346
sample N + 2
50%
V
l
DATA
D0 to D9
td
th
CPH
tCPL
t
VDDO
0 V
50%
DATA
N + 1
DATA
N
DATA
N - 1
DATA
N - 2
1996 Mar 20 11
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
Fig.5 Timing diagram and test conditions of 3-state output delay time.
fOE = 100 kHz.
handbook, full pagewidth
MLC855
50 %
50 %
HIGH
LOW
dZH
t
dHZ
t
50 %
HIGH
LOW
dZL
t
dLZ
t
10 %
90 %
output
data
VDDD
output
data
3.3 k
20 pF
S1
VDDD
TDA8766
OE
OE
TEST
dLZ
t
dZL
t
dHZ
t
dZH
S1
DDD
V
DDD
V
GND
GND
t
1996 Mar 20 12
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
Fig.6 Typical integral non-linearity (INL) performance.
handbook, full pagewidth
1023
0.6 0 400 600 800 1000 1100200
MLD115
0.4
0.2
0.4
0.2
0
0.6
A
(LSB)
f (codes)
Fig.7 Typical differential non-linearity (DNL) performance.
handbook, full pagewidth
1023
0.25 0 400 600 800 1000 1100200
MLD116
0.25
0.05
0.15
0.15
0.05
A
(LSB)
f (codes)
1996 Mar 20 13
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
Fig.8 Analog input settling-time diagram.
handbook, full pagewidth
MBD875
50 %
STLH
t
5 ns
code 0
code 1023
I
50 %
2 ns
50 %
5 ns
STHL
t
50 %
2 ns
CLK
V
Fig.9 Typical Fast Fourier Transform (fclk = 20 MHz; fi= 1 MHz).
Effective bits: 9.59; THD = 76.60 dB.
Harmonic levels (dB): 2nd = 81.85; 3rd = 87.56; 4th = 88.81; 5th = 88.96; 6th = 79.58.
handbook, full pagewidth
10
0
120 0 2.5 3.76 5.01 7.51 8.761.25 6.26
MLD117
40
80
100
60
20
A
(dB)
f (MHz)
1996 Mar 20 14
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
INTERNAL PIN CONFIGURATIONS
Fig.10 CMOS data and In Range (IR) outputs.
handbook, halfpage
MLC856
VDDO
V
D9 to D0
IR
SSO
Fig.11 Analog inputs.
handbook, halfpage
MLC857
VDDA
VSSA
VI
Fig.12 OE (STDBY) input.
handbook, halfpage
MLC858
VDDO
VSSO
OE
(STDBY)
Fig.13 VRB, VRM and VRT.
handbook, halfpage
R
MLC859
VRB
VRM
VDDA
VSSA
VRT
LAD
1996 Mar 20 15
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
Fig.14 CLK input.
handbook, halfpage
VDDD
VSSD
CLK
MLC860
1/2VDDD
1996 Mar 20 16
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
APPLICATION INFORMATION
Additional application information will be supplied upon request (please quote number
“AN96012”
).
Fig.15 Application diagram.
The analog and digital supplies should be separated and decoupled.
The external voltage reference generator must be built such that a good supply voltage ripple rejection is achieved with respect to the LSB value.
Eventually, the reference ladder voltages can be derived from a well regulated VDDA supply through a resistor bridge and a decoupled capacitor.
(1) VRB, VRM and VRT are decoupled to VSSA.
(2) Pins 8, 12, 13, 17, 24 and 32 should be connected to the closest ground pin in order to prevent noise influence.
(3) When VRM is not used, pin 11 can be left open, avoiding the decoupling capacitor. In any case, pin 11 must not be grounded.
(4) When analog input signal is AC coupled, an input bias or a clamping level must be applied to VI input (pin 14).
handbook, full pagewidth
TDA8766
MLC861
1
2
3
4
24
23
22
21
20
19
18
17
9
D9
IR
VDDD1
VSSD1
V
CLK
STDBY
DDA
VSSA
VSSA
VDDD2
VSSD2
VDDO
VSSO
n.c.
D1
D0
n.c.
5
6
7
8
10
VRB
11
VRM
12 13 14
VI
15
VRT
16
OE
(2)
n.c.(2) n.c.(2)
(1)
(3)
(4)
(1) (1)
(2)
n.c.(2)
100
nF
VSSA
100
nF
VSSA
100
nF
32 31 30 29 28 27 26 25
D5 D4 D3n.c.(2) D2D8 D7 D6
1996 Mar 20 17
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
PACKAGE OUTLINE
0.2
UNIT A
max. A1A2A3bpcE
(1) eH
E
LL
pZywv θ
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC EIAJ
mm 1.60 0.15
0.05 1.5
1.3 0.25 0.27
0.17 0.18
0.12 5.1
4.9 0.5 7.15
6.85 1.0 0.95
0.55 7
0
o
o
0.12 0.1
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.75
0.45
SOT401-1 95-12-19
97-08-04
D(1) (1)(1)
5.1
4.9
HD
7.15
6.85
E
Z
0.95
0.55
D
bp
e
E
B
8
D
H
bp
E
H
vMB
D
ZD
A
ZE
e
vMA
X
1
32
25
24 17
16
9
θ
A1
A
Lp
detail X
L
(A )
3
A2
y
wM
wM
0 2.5 5 mm
scale
LQFP32: plastic low profile quad flat package; 32 leads; body 5 x 5 x 1.4 mm SOT401-1
c
pin 1 index
1996 Mar 20 18
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
SOLDERING
Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our
“IC Package Databook”
(order code 9398 652 90011).
Reflow soldering
Reflow soldering techniques are suitable for all LQFP
packages.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
Wave soldering
Wave soldering is not recommended for LQFP packages.
This is because of the likelihood of solder bridging due to
closely-spaced leads and the possibility of incomplete
solder penetration in multi-lead devices.
If wave soldering cannot be avoided, the following
conditions must be observed:
A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave)
soldering technique should be used.
The footprint must be at an angle of 45° to the board
direction and must incorporate solder thieves
downstream and at the side corners.
Even with these conditions, do not consider wave
soldering LQFP packages LQFP48 (SOT313-2),
LQFP64 (SOT314-2) or LQFP80 (SOT315-1).
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Repairing soldered joints
Fix the component by first soldering two diagonally-
opposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
1996 Mar 20 19
Philips Semiconductors Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter TDA8766
DEFINITIONS
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02) 805 4455, Fax. (02) 805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. (01) 60 101-1256, Fax. (01) 60 101-1250
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211,
Volodarski Str. 6, 220050 MINSK,
Tel. (172) 200 733, Fax. (172) 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. (359) 2 689 211, Fax. (359) 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:
Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: see South America
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. (852) 2319 7888, Fax. (852) 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300
COPENHAGEN S, Tel. (032) 88 2636, Fax. (031) 57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (358) 0-615 800, Fax. (358) 0-61580 920
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex,
Tel. (01) 4099 6161, Fax. (01) 4099 6427
Germany: P.O. Box 10 51 40, 20035 HAMBURG,
Tel. (040) 23 53 60, Fax. (040) 23 53 63 00
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01) 4894 339/4894 911, Fax. (01) 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block,
Dr. Annie Besant Rd. Worli, BOMBAY 400 018
Tel. (022) 4938 541, Fax. (022) 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01) 7640 000, Fax. (01) 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. (03) 645 04 44, Fax. (03) 648 10 07
Italy: PHILIPS SEMICONDUCTORS,
Piazza IV Novembre 3, 20124 MILANO,
Tel. (0039) 2 6752 2531, Fax. (0039) 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108, Tel. (03) 3740 5130, Fax. (03) 3740 5077
Korea: Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02) 709-1412, Fax. (02) 709-1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03) 750 5214, Fax. (03) 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO,
TEXAS 79905, Tel. 9-5(800) 234-7831, Fax. (708) 296-8556
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. (040) 2783749, Fax. (040) 2788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09) 849-4160, Fax. (09) 849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022) 74 8000, Fax. (022) 74 8341
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC,
MAKATI, Metro MANILA,
Tel. (63) 2 816 6380, Fax. (63) 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. (022) 612 2831, Fax. (022) 612 2327
Portugal: see Spain
Romania: see Italy
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65) 350 2000, Fax. (65) 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG,
P.O. Box 7430 Johannesburg 2000,
Tel. (011) 470-5911, Fax. (011) 470-5494
South America: Rua do Rocio 220 - 5th floor, Suite 51,
CEP: 04552-903-SÃO PAULO-SP, Brazil,
P.O. Box 7383 (01064-970),
Tel. (011) 821-2333, Fax. (011) 829-1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03) 301 6312, Fax. (03) 301 4107
Sweden: Kottbygatan 7, Akalla. S-16485 STOCKHOLM,
Tel. (0) 8-632 2000, Fax. (0) 8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01) 488 2211, Fax. (01) 481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0212) 279 2770, Fax. (0212) 282 6707
Ukraine: PHILIPS UKRAINE,
2A Akademika Koroleva str., Office 165, 252148 KIEV,
Tel.380-44-4760297, Fax. 380-44-4766991
United Kingdom: Philips Semiconductors LTD.,
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,
Tel. (0181) 730-5000, Fax. (0181) 754-8421
United States: 811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800) 234-7381, Fax. (708) 296-8556
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. (381) 11 825 344, Fax. (359) 211 635 777
Internet: http://www.semiconductors.philips.com/ps/
For all other countries apply to: Philips Semiconductors,
Marketing & Sales Communications, Building BE-p,
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,
Fax. +31-40-2724825
SCDS48 © Philips Electronics N.V. 1996
All rights are reserved. Reproduction in whole or in part is prohibited without the
prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation
or contract, is believed to be accurate and reliable and may be changed without
notice. No liability will be accepted by the publisher for any consequence of its
use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights.
Printed in The Netherlands
537021/1100/02/pp20 Date of release: 1996 Mar 20
Document order number: 9397 750 00746