Standard Power MOSFETs File Number 1824 IRF150, IRF151, IRF152, IRF153 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 33 A and 40 A, 60 V- 100 V N-CHANNEL ENHANCEMENT MODE ros(on) = 0.055 Q and 0.08 Q o Features: = SOA is power-dissipation limited a Nanosecond switching speeds Linear transfer characteristics 6 = High input impedance = Majority carrier device Ss 92CS -33741 The IRF150, IRF151, IRF 152 and IRF153 are n-channel TERMINAL DIAGRAM enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching TERMINAL DESIGNATION regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching DRAIN transistors requiring high speed and low gate-drive power. SOURCE (FLANGE ) These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AE metal package. GATE 92CS- 37601 JEDEC TO-204AE Absolute Maximum Ratings Parameter IRF150 IRF151 IRF152 IRF153 Units Vos Drain - Source Voltage 100 60 100 60 v VoGr Drain - Gate Voltage (Rag = 20 ka) 100 60 100 60 Vv Ip @ Tc = 25C Continuous Drain Current 40 40 33 33 A Ip @Tc = 100C Continuous Drain Current 25 25 20 20 A IDM Pulsed Drain Current @) 160 160 132 132 A Vos Gate - Source Voltage +20 v Pp @Tc = 28C Max. Power Dissipation 150 (See Fig. 14) Ww Linear Derating Factor 1.2 (See Fig. 14) wc 'LM Inductive Current, Clamped (See Fig. 15 and 16) L = 100uH A 160 | 160 i 132 l 132 Ty Operating Junction and _5 to 150 c Tstq Storage Temperature Range Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s} c 3-69Standard Power MOSFETs IRF150, IRF151, 1RF152, IRF153 Electrical Characteristics @T = 25C (Uniess Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVoss Drain - Source Breakdown Voltage IRF150 _ mpis2 | 100 | - | = v Ves = OV YRF151 IRF153 60 - - v Ip = 250nA Vesith} Gate Threshold Voltage ALL 2.0 = 4.0 v Vos = Ves: Ip = 2502A igss Gate-Source Leakage Forward ALL = _ 100 nA Vgg = 20V less Gate-Source Leakage Reverse ALL _ _ -100 nA Veg = -20V loss Zero Gate Voltage Drain Current ALL = _ 250 BA Vps = Max. Rating, Vgg = OV - ~ [1000 | pA Vos = Max. Rating x 0.8, Vgg = OV, Tc = 125C IDion) On-State Drain Current @ IRF 150 40 _ ~ A IRFY51 Vos?! xR, Veg = 10V DS Dian) * OS{on} max. GS * IRF152 33 _ _ A IRF153 Rosion) Static Drain-Source On- State IRF 150 Resistance 2) IRF151 ~ 19-045] 0.055 a y 1OV, In = 20A GS = ID = IRF152 IRF153 - 0.06 | 0.08 2 Is Forward Transconductance @) ALL 9.0 W - sw) Vos > !oiont * Raion) max.' '[p = 204 Cicg Input Capacitance ALL ~- 2000}. pF Ves = OV. Vpg = 25V,f = 1.0 MHz Coss Output Capacitance ALL - 1000 pF See Fig. 10 Crss Reverse Transfer Capacitance ALL 350 _ pF tdion) _Turn-On Delay Time ALL - ~ 35 as Vop = 24V, Ip = 204A, Z, = 4.72 uY Rise Time ALL - - 4100 ns See Figure 17. tgioft) Turn-Off Delay Time ALL = ~ 125 ns {MOSFET switching times are essentially ty Fail Time ALL _ ~~ 100 as independent of operating temperature.) Q Total Gate Charge Vee = 10V,I5 = 50A, V, = 0.8 Max. Rating. 9g . - GS D DS (Gate-Source Plus Gate-Drain) ALL 63 120 nc See Fig. 18 for test circuit. (Gate charge is essentially Qgs Gate-Source Charge ALL _ 27 4 Ac independent of operating temperature.) Qo Gate-Drain { Milier) Charge ALL - 36 54 nc Lp internal Orain Inductance ALL ~ 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. 0 ls Internal Source Inductance ALL - 12.5 - nH Measured from the source pin, 6 mm (0.25 in.) from header and source bonding pad. . Thermal Resistance Rinuc _ Junction-to-Case ALL - = 0.83 | Cc/w Rincs Case-to-Sink ALL ~ 0.1 ~ cw Mounting surface flat, smooth, and greased. Ringa _ Junction-to-Ambient ALL - - 30 c/w Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF 1509 _ _ 40 A Modified MOSFET symbol (Body Diode) IRF151 showing the integral reverse P-N junction rectifier. IRF 152 _ _ 33 A , IRF153 Ism Pulse Source Current IRF150 _ _ 160 A {Body Diode) @ IRF151 : IRF152 IRF153 | [2 7 4 Vsp _ Diode Forward Voltage @ IRF180 _ _ 25 Vv Te = 25C, Ig = 40A, Vgg = OV IRF152 _ _ _ ORO . =0v IRF153 2.3 Vv Tc = 25C, Ig = 33A, Veg = 01 tr Reverse Recovery Time ALL - 600 | ns Ty = 180C, Ip = 40A, dig/dt = 100A/us Ong Reverse Recovered Charge ALL = 3.3 _ ze Ty = 150C, Ip = 40A, dip/dt = 100A/ps Ton Forward Turn-on Time ALL Intrinsic turn-on time is negligibie. Turn-on speed is substantially controlled by Lg + Lp. Ty = 25C to 150C. 3-70 Pulse Test: Pulse width < 300us, Duty Cycle 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5).ZehacltRengc. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) Standard Power MOSFETs IRF150, IRF151, IRF152, IRF153 80 us PULSE TEST 80 ws PULSE | | Vos > a(n) X Ras(on) max. (p, DRAIN CURRENT (AMPERES) 1p, DRAIN CURRENT {AMPERES} 9 10 20 30 40 50 0 1 2 3 4 5 6 7 8 Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 1000 500 OPERATION IN THIS AREA IS LIMITEO &0 vs PULSE TEST " BY Rosion} 200 R150, 1 @ a 199 LL! RF 152, 3 # & <= z = 50 FIRF180, 1 e z a & RF152, 3 a = zB 20 6 z z z FS 10 S 3 Tr = 25C = 51 Ty = 160C MAX. Rinse = 0.83 KW 2 {__ SINGLE PULSE av 10 (RE151, 3 IRF150, 2 0 04 08 12 16 2.0 10 2 5 10 20 56 100 200 00 Vos, ORAIN-TO-SQURCE VILTAGE (VOLTS) Vg. ORAIN-TU-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area she | 01 [ae ty om kK" 0.05 1, DUTY FACTOR, 0 = ie SINGLE PULSE (TRANSIENT 0.02 THERMAL IMPEDANCE) 2. PER UNIT BASE = Renyc = 0.83 DEG. C/W 3. Tym - Te = Pom Zenit). 0.01 10-5 2- 5 10-4 2 10-3 2 5 10-2 2 5 io-t 2 5 1.0 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-71Standard Power MOSFETs IRF150, IRF151, IRF152, IRF153 20 16 - Ty = -560C y= 250C 2 Ty= +1 dfs. TRANSCONDUCTANCE (SIEMENS) 4 Vos > 'Dion) x RoSton) max. | 8N ws PULSE TEST 0 10 20 30 40 50 Ip, DRAIN CURRENT (AMPERES) Fig. 6 ~ Typical Transconductance Vs. Drain Current 1.25 118 SOURCE BREAKDOWN VOLTAGE S 105 o N 3 << = oa o = 095 2 z 4 3 a 4a 08 o a 0.75 -40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (9C) Fig. 8 Breakdown Voltage Vs. Temperature 4000 Vos=0 i f= 1 MHz 3200 Cisg = Cog + Cog, Cys SHORTED Cres * Cog < Cos Cog o Cece * Coe + Re re 2400 ass * Mds* Coe + Cog =C 2 ds + Cog 5 3 < = <= 1600 Co 800 0 10 20 30 40 50 Vig. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 3-72 S nm an ey Ty = 150C oS ow Ty = 250C Ipp. REVERSE ORAIN CURRENT (AMPERES) N Q } 2 3 4 Vgp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 ~ Typical Source-Drain Diode Forward Voltage 2.2 ws o 2 1.8 < e 2 a a x z Sa l4 w wool aN Sa ot a= oz =o z= 10 =< x a 3 a o 06 = -40 0 40 80 120 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature 20 =20V Vps = 50V | | = 8OV, IRF 150, 152 Vas, GATE-TO-SOURCE VOLTAGE (VOLTS) Ss ig= FOR TEST CIRCUIT SEE FIGURE 18 0 28 56 84 112 140 Q,, TOTAL GATE CHARGE (nC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source VoltageStandard Power MOSFETs IRF150, IRF151, IRF152, IRF153 oe T T T T T 7 g Rosion) MEASURED WITH CURRENT PULSE OF = 2.0 us DURATION. INITIAL Ty = 25C, (HEATING : r EFFECT OF 2.0 us PULSE IS MINIMAL.) 2 B 014 m0. = 3 M4 IRF150, 181 = Ves = 10v w = = IRF152, 153 L e = S 0.10 Fa a oe Oo 2 e o = =z a ) < o ac a a = 0.06 2a 2 4 = eer Vgg = 20V 0.02 0 0 40 80 120 160 25 50 15 100 125 150 Ip. ORAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current NX \ 140 \ \ 120 100 80 60 Pp, POWER DISSIPATION (WATTS) \ 40 \ N 20 20 40 60 80 100 Tc, CASE TEMPERATURE (C) 120 140 Fig. 14 Power Vs. Temperature Derating Curve Yoo ADJUST RTO OBTAIN py SPECIFIED ty Vos Ves [. DUT. PULSE | GENERATOR 1022 SOURCE J \ IMPEDANCE | Fig. 17 Switching Time Test Circuit Tc, CASE TEMPERATURE (C} Fig. 13 Maximum Drain Current Vs. Case Temperature VARY ty TO OBTAIN REQUIRED PEAK I Vgg = 10V be-ty E] = 0.5 BVoss Ec = 0.75 BVpss Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms o *os (ISOLATED SUPPLY) CURRENT, REGULATOR SAME TYPE lav BATTERY | 1.5mA 0 eee CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit 3-73