1
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
22
23
24
25
26
27
28
29
30
32 34 36 38 40 42 44 46 48
Frequency (GHz)
Pout (dBm)
-25
-20
-15
-10
-5
0
5
10
15
20
25
32 34 36 38 40 42 44 46 48
Frequency (GHz)
S-parameters (dB)
Key Features
Frequency Range: 33 - 47 GHz
27.5 dBm Nominal Psat @ 38GHz
27 dBm P1dB @ 38 GHz
36 dBm OTOI @ Pin = 19 dBm/Tone
18 dB Nominal Gain @ 38GHz
15 dB Nominal Return Loss @ 38GHz
Bias: 6 V @ 400 mA Idq
0.15 um 3MI pHEMT Technology
Chip Dimensions 2.00 x 1.45 x 0.10 mm
(0.079 x 0.057 x 0.004 in)
Primary Applications
Digital Radio
Point-to-Point Radio
Point-to-Multipoint Communications
Military SAT-COM
Measured Fixtured Data
Bias Conditions: Vd = 6 V, Idq = 400 mA
Product Description
The TriQuint TGA4522 is a compact Driver
Amplifier MMIC for Ka-band and Q-band
applications. The part is designed using TriQuint’s
0.15um power pHEMT production process.
The TGA4522 nominally provides 27.5 dBm
saturated output power, and 27 dBm output power
at 1dB Gain compression @ 38 GHz. It also has
typical gain of 18 dB, and return loss of 15 dB.
The part is ideally suited for low cost emerging
markets such as Digital Radio, Point-to-Point
Radio and Point-to-Multi Point Communications.
The TGA4522 is 100% DC and RF tested on-wafer
to ensure performance compliance.
Lead-Free & RoHS compliant.
Gain
IRL
ORL
Psat
P1dB
33 – 47 GHz Wide Band Driver Amplifier
Datasheet subject to change without notice
2
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
TABLE I
MAXIMUM RATINGS 1/
SYMBOL PARAMETER VALUE NOTES
Vd
Drain Voltage 8 V 2/
Vg
Gate Voltage Range -2 TO 0 V
Id
Drain Current 700 mA 2/ 3/
Ig Gate Current 16 mA 3/
P
IN
Input Continuous Wave Power 23 dBm
P
D
Power Dissipation 4.2 W 2/
T
CH
Operating Channel Temperature 200 °C 5/ 6/
Mounting Temperature (30 Seconds) 320 °C
T
STG
Storage Temperature -65 to 150 °C
1/ These ratings represent the maximum operable values for this device.
2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P
D
.
3/ Total current for the entire MMIC.
4/ When operated at this bias condition (with RF applied) at a base plate temperature of 70 °C, the
median life is 7.3E+3 hrs.
5/ Junction operating temperature will directly affect the device median time to failure (Tm). For
maximum life, it is recommended that junction temperatures be maintained at the lowest possible
levels.
6/ These ratings apply to each individual FET.
3
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
TABLE II
ELECTRICAL CHARACTERISTICS
(Ta = 25 0C Nominal)
PARAMETER TYPICAL UNITS
Frequency Range 33 - 47 GHz
Drain Voltage, Vd 6.0 V
Drain Current, Id 400 mA
Gate Voltage, Vg -0.6 V
Small Signal Gain, S21 18 dB
Input Return Loss, S11 15 dB
Output Return Loss, S22 15 dB
Output Power @ 1dB Gain Compression, P1dB 26 dBm
Saturated Power, Psat 27 dBm
OTOI @ 19dBm/Tone 36 dBm
4
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
TABLE III
THERMAL INFORMATION
PARAMETER TEST CONDITIONS
T
CH
(
O
C)
R
θJC
(°C/W)
Tm
(HRS)
R
θJC
Thermal Resistance
(channel to Case)
Vd = 6 V
Idq = 400 mA
Pdiss = 2.4 W
144
30.8
1.7E+6
Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier
at 70
o
C baseplate temperature. Worst case condition with no RF applied, 100% of DC
power is dissipated.
Median Lifetime (Tm) vs. Channel Temperature
5
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
-30
-25
-20
-15
-10
-5
0
5
10
15
20
30 32 34 36 38 40 42 44 46 48 50
Frequency (GHz)
Return Loss (dB)
0
2
4
6
8
10
12
14
16
18
20
30 32 34 36 38 40 42 44 46 48 50
Frequency (GHz)
Gain (dB)
Measured Data
Bias Conditions: Vd = 5-6 V, Idq = 400 mA
IRL
ORL
6V
5V
Bias Conditions: Vd = 6 V, Idq = 400 mA
6
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
20
21
22
23
24
25
26
27
28
29
30
32 34 36 38 40 42 44 46 48
Frequency (GHz)
Saturated Output Power (dBm)
6V
5V
20
21
22
23
24
25
26
27
28
29
30
32 34 36 38 40 42 44 46 48
Frequency (GHz)
Output Power @ 1dB Gain Compression
(dBm)
6V
5V
Measured Data
Bias Conditions: Vd = 6 V, Idq = 400 mA
7
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
32
33
34
35
36
37
38
39
40
34 35 36 37 38 39 40 41 42
Frequency (GHz)
OTOI (dBm)
6
8
10
12
14
16
18
20
22
24
26
28
30
-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18
Pin (dBm)
Output Power (dBm)
300
325
350
375
400
425
450
475
500
525
550
575
600
Ids (mA)
Pout
Gain
Ids
6
8
10
12
14
16
18
20
22
24
26
28
30
-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18
Pin (dBm)
Output Power (dBm)
300
325
350
375
400
425
450
475
500
525
550
575
600
Ids (mA)
Pout
Gain
Ids
Measured Data
Bias Conditions: Vd = 6 V, Idq = 400 mA
Freq = 40 GHz
Freq = 35 GHz
8
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
30
31
32
33
34
35
36
37
38
39
40
35 36 37 38 39 40 41
Frequency (GHz)
OTOI (dBm)
Measured Data
Bias Conditions: Vd = 6 V, Idq = 400 mA, Δf=10MHz @ 19dBm/Tone
30
31
32
33
34
35
36
37
38
39
40
10 12 14 16 18 20 22 24
Output Power / Tone (dBm)
OTOI (dBm)
37GHz
38GHz
39GHz
40GHz
9
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
10 12 14 16 18 20 22 24
Output Power / Tone (dBm)
IMD3 (dBc)
37GHz
38GHz
39GHz
40GHz
-40
-39
-38
-37
-36
-35
-34
-33
-32
-31
-30
35 36 37 38 39 40 41
Frequency (GHz)
IMD3 (dBc)
Measured Data
Bias Conditions: Vd = 6 V, Idq = 400 mA, Δf=10MHz @ 19dBm/Tone
10
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
Mechanical Drawing
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should
be observed during handling, assembly and test.
Units: millimeters (inches)
Thickness: 0.100 (0.004)
Chip edge to bond pad dimensions are shown to center of bond pad
Chip size tolerance: +/- 0.051 (0.002)
GND is back side of MMIC
Bond pad #1
Bond pad #2
Bond pad #3, 13
Bond pad #4, 5, 7, 9, 11, 12
Bond pad #6, 10
(RF In)
(N/C)
(Vg)
(Vd)
(N/C)
0.100 x 0.150
0.100 x 0.108
0.108 x 0.108
0.108 x 0.108
0.091 x 0.084
Bond pad #8 (RF Out) 0.100 x 0.150
(0.004 x 0.006)
(0.004 x 0.004)
(0.004 x 0.004)
(0.004 x 0.004)
(0.004 x 0.003)
(0.004 x 0.006)
1
234567
8
9
10
11
12
13
0
0
0.391
(0.015)
0.530
(0.021) 1.352
(0.053)
1.500
(0.059)
1.670
(0.066)
1.893
(0.075)
2.000
(0.079)
1.351
(0.053)
0.261
(0.010)
0.108
(0.004)
1.450
(0.057)
0.398
(0.016)
0.129
(0.005)
0.099
(0.004)
1.670
(0.066)
1.500
(0.059)
1.352
(0.053)
0.530
(0.021)
0.391
(0.015)
1.071
(0.042)
1.351
(0.053)
RCRC B B
11
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
Recommended Chip Assembly Diagram
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should
be observed during handling, assembly and test.
TFN (10mil Alumina)
TFN (10mil Alumina)
100pF
100pF
Vg
100pF
100pF
Vg
100pF 100pF
15
1.0μF
0.01μF
Vd
15
1.0μF
0.01μF
15
1.0μF
0.01μFVd
15
1.0μF
0.01μF
Bias Conditions: Vd = 6 V
Vg = ~ -0.6 V to get 400mA Id
Wedge bonds or ribbons
To reduce these components (0.01μF, 15, 1.0μF) connect:
Vg @ bottom to Vg @ top
Vd @ bottom to Vd @ top
12
TGA4522
May 2009 © Rev -
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
Assembly Process Notes
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should
be observed during handling, assembly and test.
Reflow process assembly notes:
Use AuSn (80/20) solder with limited exposure to temperatures at or above 3000C (30 seconds max).
An alloy station or conveyor furnace with reducing atmosphere should be used.
No fluxes should be utilized.
Coefficient of thermal expansion matching is critical for long-term reliability.
Devices must be stored in a dry nitrogen atmosphere.
Component placement and adhesive attachment assembly notes:
Vacuum pencils and/or vacuum collets are the preferred method of pick up.
Air bridges must be avoided during placement.
The force impact is critical during auto placement.
Organic attachment can be used in low-power applications.
Curing should be done in a convection oven; proper exhaust is a safety concern.
Microwave or radiant curing should not be used because of differential heating.
Coefficient of thermal expansion matching is critical.
Interconnect process assembly notes:
Thermosonic ball bonding is the preferred interconnect technique.
Force, time, and ultrasonics are critical parameters.
Aluminum wire should not be used.
Maximum stage temperature is 2000C.