ATtiny24A/44A/84A tinyAVR(R) Data Sheet Introduction ATtiny24A/44A/84A are low-power CMOS 8-bit microcontrollers based on the AVR(R) enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny24A/44A/84A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Features * High Performance, Low Power AVR(R) 8-bit Microcontroller * Advanced RISC Architecture - 120 Powerful Instructions - Most Single Clock Cycle Execution - 32 x 8 General Purpose Working Registers - Fully Static Operation * High Endurance, Non-volatile Memory Segments - 2K/4K/8K Bytes of In-System, Self-programmable Flash Program Memory * Endurance: 10,000 Write/Erase Cycles - 128/256/512 Bytes of In-System Programmable EEPROM * Endurance: 100,000 Write/Erase Cycles - 128/256/512 Bytes of Internal SRAM - Data Retention: 20 years at 85C / 100 years at 25C - Programming Lock for Self-programming Flash & EEPROM Data Security * Peripheral Features - One 8-bit and One 16-bit Timer/Counter with Two PWM Channels, Each - 10-bit ADC * 8 Single-ended Channels * 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x) - Programmable Watchdog Timer with Separate On-chip Oscillator - On-chip Analog Comparator - Universal Serial Interface * Special Microcontroller Features - debugWIRE On-chip Debug System 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 1 ATtiny24A/44A/84A - In-System Programmable via SPI Port - Internal and External Interrupt Sources * Pin Change Interrupt on 12 Pins - Low Power Idle, ADC Noise Reduction, Standby and Power-down Modes - Enhanced Power-on Reset Circuit - Programmable Brown-out Detection Circuit with Software Disable Function - Internal Calibrated Oscillator - On-chip Temperature Sensor * I/O and Packages - Available in 20-pin WQFN/VQFN, 14-pin SOIC, 14-pin PDIP and 15-ball UFBGA - Twelve Programmable I/O Lines * Operating Voltage: - 1.8 - 5.5V * Speed Grade: - 0 - 4 MHz @ 1.8 - 5.5V - 0 - 10 MHz @ 2.7 - 5.5V - 0 - 20 MHz @ 4.5 - 5.5V * Industrial Temperature Range: -40C to +85C * Low Power Consumption - Active Mode: * 210 A at 1.8V and 1 MHz - Idle Mode: * 33 A at 1.8V and 1 MHz - Power-down Mode: * 0.1 A at 1.8V and 25C 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 2 ATtiny24A/44A/84A Table of Contents 1 Pin Configurations ................................................................................... 8 1.1 Pin Descriptions................................................................................................. 9 2 Overview ................................................................................................. 10 3 General Information ............................................................................... 12 4 5 6 7 3.1 Resources ....................................................................................................... 12 3.2 Code Examples ............................................................................................... 12 3.3 Capacitive Touch Sensing ............................................................................... 12 3.4 Data Retention................................................................................................. 12 3.5 Disclaimer........................................................................................................ 12 CPU Core ................................................................................................ 13 4.1 Architectural Overview..................................................................................... 13 4.2 ALU - Arithmetic Logic Unit............................................................................. 14 4.3 Status Register ................................................................................................ 14 4.4 General Purpose Register File ........................................................................ 14 4.5 Stack Pointer ................................................................................................... 16 4.6 Instruction Execution Timing ........................................................................... 16 4.7 Reset and Interrupt Handling........................................................................... 17 4.8 Register Description ........................................................................................ 19 Memories ................................................................................................ 21 5.1 In-System Re-programmable Flash Program Memory .................................... 21 5.2 SRAM Data Memory........................................................................................ 21 5.3 EEPROM Data Memory .................................................................................. 22 5.4 I/O Memory...................................................................................................... 26 5.5 Register Description ........................................................................................ 26 Clock System .......................................................................................... 29 6.1 Clock Subsystems ........................................................................................... 29 6.2 Clock Sources ................................................................................................. 30 6.3 System Clock Prescaler .................................................................................. 34 6.4 Clock Output Buffer ......................................................................................... 35 6.5 Register Description ........................................................................................ 36 Power Management and Sleep Modes ................................................. 38 7.1 Sleep Modes.................................................................................................... 38 7.2 Software BOD Disable..................................................................................... 39 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 3 ATtiny24A/44A/84A 8 9 7.3 Power Reduction Register ............................................................................... 39 7.4 Minimizing Power Consumption ...................................................................... 40 7.5 Register Description ........................................................................................ 41 System Control and Reset .................................................................... 43 8.1 Resetting the AVR ........................................................................................... 43 8.2 Reset Sources ................................................................................................. 44 8.3 Internal Voltage Reference.............................................................................. 46 8.4 Watchdog Timer .............................................................................................. 46 8.5 Register Description ........................................................................................ 49 Interrupts ................................................................................................ 52 9.1 Interrupt Vectors .............................................................................................. 52 9.2 External Interrupts ........................................................................................... 53 9.3 Register Description ........................................................................................ 55 10 I/O Ports .................................................................................................. 58 10.1 Ports as General Digital I/O ............................................................................. 58 10.2 Alternate Port Functions .................................................................................. 62 10.3 Register Description ........................................................................................ 71 11 8-bit Timer/Counter0 with PWM ............................................................ 73 11.1 Features .......................................................................................................... 73 11.2 Overview.......................................................................................................... 73 11.3 Clock Sources ................................................................................................. 74 11.4 Counter Unit .................................................................................................... 74 11.5 Output Compare Unit....................................................................................... 75 11.6 Compare Match Output Unit ............................................................................ 77 11.7 Modes of Operation ......................................................................................... 78 11.8 Timer/Counter Timing Diagrams ..................................................................... 82 11.9 Register Description ........................................................................................ 83 12 16-bit Timer/Counter1 ............................................................................ 89 12.1 Features .......................................................................................................... 89 12.2 Overview.......................................................................................................... 89 12.3 Timer/Counter Clock Sources ......................................................................... 91 12.4 Counter Unit .................................................................................................... 91 12.5 Input Capture Unit ........................................................................................... 92 12.6 Output Compare Units..................................................................................... 94 12.7 Compare Match Output Unit ............................................................................ 96 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 4 ATtiny24A/44A/84A 12.8 Modes of Operation ......................................................................................... 97 12.9 Timer/Counter Timing Diagrams ................................................................... 104 12.10 Accessing 16-bit Registers ............................................................................ 105 12.11 Register Description ...................................................................................... 108 13 Timer/Counter Prescaler ..................................................................... 116 13.1 Prescaler Reset ............................................................................................. 116 13.2 External Clock Source ................................................................................... 116 13.3 Register Description ...................................................................................... 117 14 USI - Universal Serial Interface .......................................................... 119 14.1 Features ........................................................................................................ 119 14.2 Overview........................................................................................................ 119 14.3 Functional Descriptions ................................................................................. 120 14.4 Alternative USI Usage ................................................................................... 126 14.5 Register Descriptions .................................................................................... 126 15 Analog Comparator .............................................................................. 131 15.1 Analog Comparator Multiplexed Input ........................................................... 131 15.2 Register Description ...................................................................................... 132 16 Analog to Digital Converter ................................................................. 135 16.1 Features ........................................................................................................ 135 16.2 Overview........................................................................................................ 135 16.3 Operation....................................................................................................... 136 16.4 Starting a Conversion .................................................................................... 137 16.5 Prescaling and Conversion Timing ................................................................ 138 16.6 Changing Channel or Reference Selection ................................................... 141 16.7 ADC Noise Canceler ..................................................................................... 142 16.8 Analog Input Circuitry .................................................................................... 142 16.9 Noise Canceling Techniques......................................................................... 143 16.10 ADC Accuracy Definitions ............................................................................. 143 16.11 ADC Conversion Result................................................................................. 145 16.12 Temperature Measurement ........................................................................... 146 16.13 Register Description ...................................................................................... 146 17 debugWIRE On-chip Debug System .................................................. 153 17.1 Features ........................................................................................................ 153 17.2 Overview........................................................................................................ 153 17.3 Physical Interface .......................................................................................... 153 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 5 ATtiny24A/44A/84A 17.4 Software Break Points ................................................................................... 154 17.5 Limitations of debugWIRE ............................................................................. 154 17.6 Register Description ...................................................................................... 154 18 Self-Programming the Flash ............................................................... 155 18.1 Performing Page Erase by SPM.................................................................... 155 18.2 Filling the Temporary Buffer (Page Loading)................................................. 155 18.3 Performing a Page Write ............................................................................... 156 18.4 Addressing the Flash During Self-Programming ........................................... 156 18.5 EEPROM Write Prevents Writing to SPMCSR .............................................. 156 18.6 Reading Lock, Fuse and Signature Data from Software ............................... 157 18.7 Preventing Flash Corruption .......................................................................... 158 18.8 Programming Time for Flash when Using SPM ............................................ 159 18.9 Register Description ...................................................................................... 159 19 Memory Programming ......................................................................... 161 19.1 Program And Data Memory Lock Bits ........................................................... 161 19.2 Fuse Bytes..................................................................................................... 162 19.3 Device Signature Imprint Table ..................................................................... 163 19.4 Page Size ...................................................................................................... 164 19.5 Serial Programming ....................................................................................... 165 19.6 High-voltage Serial Programming.................................................................. 168 19.7 High-Voltage Serial Programming Algorithm ................................................. 169 20 Electrical Characteristics .................................................................... 176 20.1 Absolute Maximum Ratings* ......................................................................... 176 20.2 DC Characteristics......................................................................................... 176 20.3 Speed ............................................................................................................ 177 20.4 Clock Characteristics..................................................................................... 178 20.5 System and Reset Characteristics ................................................................ 179 20.6 ADC Characteristics ...................................................................................... 180 20.7 Analog Comparator Characteristics............................................................... 182 20.8 Serial Programming Characteristics .............................................................. 183 20.9 High-Voltage Serial Programming Characteristics ........................................ 184 21 Typical Characteristics ........................................................................ 185 21.1 Supply Current of I/O Modules ...................................................................... 185 21.2 ATtiny24A ...................................................................................................... 186 21.3 ATtiny44A ...................................................................................................... 214 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 6 ATtiny24A/44A/84A 21.4 ATtiny84A ...................................................................................................... 242 22 Register Summary ............................................................................... 269 23 Instruction Set Summary ..................................................................... 271 24 Ordering Information ........................................................................... 273 24.1 ATtiny24A ...................................................................................................... 273 24.2 ATtiny44A ...................................................................................................... 274 24.3 ATtiny84A ...................................................................................................... 275 25 Packaging Information ........................................................................ 276 25.1 14S1 .............................................................................................................. 276 25.2 14P3 .............................................................................................................. 279 25.3 15CC1 ........................................................................................................... 280 25.4 20M1.............................................................................................................. 283 25.5 20M2.............................................................................................................. 286 26 Errata ..................................................................................................... 289 27 Datasheet Revision History ................................................................. 290 27.1 Rev. A - 10/20............................................................................................... 290 27.2 Rev. 8183F - 06/12 ....................................................................................... 290 27.3 Rev. 8183E - 01/12....................................................................................... 290 27.4 Rev. 8183D - 04/11....................................................................................... 290 27.5 Rev. 8183C - 03/11....................................................................................... 290 27.6 Rev. 8183B - 03/10....................................................................................... 291 27.7 Rev. 8183A - 12/08....................................................................................... 291 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 7 ATtiny24A/44A/84A 1. Pin Configurations Figure 1-1. Pinout of ATtiny24A/44A/84A PDIP/SOIC VCC (PCINT8/XTAL1/CLKI) PB0 (PCINT9/XTAL2) PB1 (PCINT11/RESET/dW) PB3 (PCINT10/INT0/OC0A/CKOUT) PB2 (PCINT7/ICP/OC0B/ADC7) PA7 (PCINT6/OC1A/SDA/MOSI/DI/ADC6) PA6 1 2 3 4 5 6 7 14 13 12 11 10 9 8 GND PA0 (ADC0/AREF/PCINT0) PA1 (ADC1/AIN0/PCINT1) PA2 (ADC2/AIN1/PCINT2) PA3 (ADC3/T0/PCINT3) PA4 (ADC4/USCK/SCL/T1/PCINT4) PA5 (ADC5/DO/MISO/OC1B/PCINT5) Pin 16: PA6 (PCINT6/OC1A/SDA/MOSI/DI/ADC6) Pin 20: PA5 (ADC5/DO/MISO/OC1B/PCINT5) PA7 (PCINT7/ICP/OC0B/ADC7) PB2 (PCINT10/INT0/OC0A/CKOUT) PB3 (PCINT11/RESET/dW) PB1 (PCINT9/XTAL2) PB0 (PCINT8/XTAL1/CLKI) DNC DNC GND VCC DNC NOTE Bottom pad should be soldered to ground. DNC: Do Not Connect Table 1-1. 15 14 13 12 11 6 7 8 9 10 1 2 3 4 5 (ADC4/USCK/SCL/T1/PCINT4) PA4 (ADC3/T0/PCINT3) PA3 (ADC2/AIN1/PCINT2) PA2 (ADC1/AIN0/PCINT1) PA1 (ADC0/AREF/PCINT0) PA0 20 19 18 17 16 PA5 DNC DNC DNC PA6 WQFN/VQFN UFBGA - Pinout ATtiny24A/44A/84A (top view) 1 A 2 3 4 PA5 PA6 PB2 B PA4 PA7 PB1 PB3 C PA3 PA2 PA1 PB0 D PA0 GND GND VCC 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 8 ATtiny24A/44A/84A 1.1 1.1.1 Pin Descriptions VCC Supply voltage. 1.1.2 GND Ground. 1.1.3 Port B (PB3:PB0) Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of RESET pin, program (`0') RSTDISBL fuse. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the ATtiny24A/44A/84A as listed in Section 10.2 "Alternate Port Functions" on page 64. 1.1.4 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 20-4 on page 182. Shorter pulses are not guaranteed to generate a reset. The reset pin can also be used as a (weak) I/O pin. 1.1.5 Port A (PA7:PA0) Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A has alternate functions as analog inputs for the ADC, analog comparator, timer/counter, SPI and pin change interrupt as described in "Alternate Port Functions" on page 64. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 9 ATtiny24A/44A/84A 2. Overview ATtiny24A/44A/84A are low-power CMOS 8-bit microcontrollers based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny24A/44A/84A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Figure 2-1. Block Diagram VCC 8-BIT DATABUS INTERNAL OSCILLATOR INTERNAL CALIBRATED OSCILLATOR TIMING AND CONTROL GND PROGRAM COUNTER STACK POINTER WATCHDOG TIMER PROGRAM FLASH SRAM MCU CONTROL REGISTER INSTRUCTION REGISTER MCU STATUS REGISTER GENERAL PURPOSE REGISTERS TIMER/ COUNTER0 X Y Z INSTRUCTION DECODER TIMER/ COUNTER1 CONTROL LINES ALU STATUS REGISTER INTERRUPT UNIT ANALOG COMPARATOR + _ PROGRAMMING LOGIC EEPROM ISP INTERFACE DATA REGISTER PORT A DATA DIR. REG.PORT A ADC OSCILLATORS DATA REGISTER PORT B DATA DIR. REG.PORT B PORT A DRIVERS PORT B DRIVERS PA[7:0] PB[3:0] The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 10 ATtiny24A/44A/84A The ATtiny24A/44A/84A provides the following features: 2K/4K/8K byte of In-System Programmable Flash, 128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 12 general purpose I/O lines, 32 general purpose working registers, an 8-bit Timer/Counter with two PWM channels, a 16-bit timer/counter with two PWM channels, Internal and External Interrupts, a 8-channel 10-bit ADC, programmable gain stage (1x, 20x) for 12 differential ADC channel pairs, a programmable Watchdog Timer with internal oscillator, internal calibrated oscillator, and four software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. ADC Noise Reduction mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC. In Power-down mode registers keep their contents and all chip functions are disbaled until the next interrupt or hardware reset. In Standby mode, the crystal/resonator oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption. The device is manufactured using Microchip's high density non-volatile memory technology. The on-chip ISP Flash allows the Program memory to be re-programmed in-system through an SPI serial interface, by a conventional non-volatile memory programmer or by an on-chip boot code running on the AVR core. The ATtiny24A/44A/84A AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 11 ATtiny24A/44A/84A 3. General Information 3.1 Resources A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.microchip.com. 3.2 Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. For I/O Registers located in the extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically, this means "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR". Note that not all AVR devices include an extended I/O map. 3.3 Capacitive Touch Sensing Microchip QTouch(R) Library provides a simple to use solution for touch sensitive interfaces on Microchip AVR microcontrollers. The QTouch Library includes support for QTouch(R) and QMatrix(R) acquisition methods. Touch sensing is easily added to any application by linking the QTouch Library and using the Application Programming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to retrieve channel information and determine the state of the touch sensor. The QTouch Library is free and can be downloaded from the Microchip website. For more information and details of implementation, refer to the QTouch Library User Guide - also available from the Microchip website. 3.4 Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85C or 100 years at 25C. 3.5 Disclaimer Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device has been characterized. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 12 ATtiny24A/44A/84A 4. CPU Core This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. Architectural Overview Figure 4-1. Block Diagram of the AVR(R) Architecture Data Bus 8-bit Flash Program Memory Program Counter Status and Control 32 x 8 General Purpose Registrers Instruction Decoder Control Lines Indirect Addressing Instruction Register Direct Addressing 4.1 Interrupt Unit Watchdog Timer ADC ALU Analog Comparator Timer/Counter 0 Data SRAM Timer/Counter 1 Universal Serial Interface EEPROM I/O Lines In order to maximize performance and parallelism, the AVR uses a Harvard architecture - with separate memories and buses for program and data. Instructions in the Program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the Program memory. This concept enables instructions to be executed in every clock cycle. The Program memory is In-System Reprogrammable Flash memory. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 13 ATtiny24A/44A/84A The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File - in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing - enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in Flash Program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, capable of directly addressing the whole address space. Most AVR instructions have a single 16-bit word format but 32-bit wide instructions also exist. The actual instruction set varies, as some devices only implement a part of the instruction set. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. 4.2 ALU - Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories - arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the "Instruction Set" section for a detailed description. 4.3 Status Register The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 14 ATtiny24A/44A/84A The Status Register is neither automatically stored when entering an interrupt routine, nor restored when returning from an interrupt. This must be handled by software. 4.4 General Purpose Register File The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File: * One 8-bit output operand and one 8-bit result input * Two 8-bit output operands and one 8-bit result input * Two 8-bit output operands and one 16-bit result input * One 16-bit output operand and one 16-bit result input Figure 4-2 below shows the structure of the 32 general purpose working registers in the CPU. Figure 4-2. AVR(R) CPU General Purpose Working Registers 7 0 Addr. R0 0x00 R1 0x01 R2 0x02 ... R13 0x0D General R14 0x0E Purpose R15 0x0F Working R16 0x10 Registers R17 0x11 ... R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte R31 0x1F Z-register High Byte Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions. As shown in Figure 4-2, each register is also assigned a Data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file. 4.4.1 The X-register, Y-register, and Z-register The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 4-3 below. Figure 4-3. The X-, Y-, and Z-registers 15 2020 Microchip Technology Inc. XH Data Sheet Complete XL 0 DS40002269A-page 15 ATtiny24A/44A/84A X-register 7 0 R27 (0x1B) 15 Y-register 0 R26 (0x1A) YH 7 YL 0 R29 (0x1D) Z-register 7 0 7 0 R28 (0x1C) 15 ZH 7 0 R31 (0x1F) ZL 7 0 0 R30 (0x1E) In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the instruction set reference for details). 4.5 Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the Stack Pointer. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the return address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is incremented by two when data is popped from the Stack with return from subroutine RET or return from interrupt RETI. The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present. 4.6 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 4-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 16 ATtiny24A/44A/84A Figure 4-4. The Parallel Instruction Fetches and Instruction Executions T1 T2 T3 T4 clkCPU 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch Figure 4-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Figure 4-5. Single Cycle ALU Operation T1 T2 T3 T4 clkCPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back 4.7 Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate Program Vector in the Program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. The lowest addresses in the Program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in "Interrupts" on page 53. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 - the External Interrupt Request 0. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction - RETI - is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 17 ATtiny24A/44A/84A to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence. Assembly Code Example in r16, SREG cli ; store SREG value ; disable interrupts during timed sequence sbi EECR, EEMPE ; start EEPROM write sbi EECR, EEPE out SREG, r16 ; restore SREG value (I-bit) C Code Example char cSREG; cSREG = SREG; /* store SREG value */ /* disable interrupts during timed sequence */ _CLI(); EECR |= (1< ... ... ; Set Stack Pointer to top of RAM ; Enable interrupts External Interrupts External Interrupts are triggered by the INT0 pin or any of the PCINT[11:0] pins. Observe that, if enabled, the interrupts will trigger even if the INT0 or PCINT[11:0] pins are configured as outputs. This feature provides a way of generating a software interrupt. Pin change 0 interrupts PCI0 will trigger if any enabled PCINT[7:0] pin toggles. Pin change 1 interrupts PCI1 will trigger if any enabled PCINT[11:8] pin toggles. The PCMSK0 and PCMSK1 Registers control which pins contribute to the pin change interrupts. Pin change interrupts on PCINT[11:0] are detected asynchronously, which means that these interrupts can be used for waking the part also from sleep modes other than Idle mode. The INT0 interrupt can be triggered by a falling or rising edge or a low level. This is set up as shown in "MCUCR - MCU Control Register" on page 56. When the INT0 interrupt is enabled and configured as level triggered, the interrupt will trigger as long as the pin is held low. Note that recognition of falling or rising edge interrupts on INT0 requires the presence of an I/O clock, as described in "Clock Sources" on page 31. 9.2.1 Low Level Interrupt A low level interrupt on INT0 is detected asynchronously. This means that the interrupt source can be used for waking the part also from sleep modes other than Idle (the I/O clock is halted in all sleep modes except Idle). 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 54 ATtiny24A/44A/84A Note that if a level triggered interrupt is used for wake-up from Power-down, the required level must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If the level disappears before the end of the Start-up Time, the MCU will still wake up, but no interrupt will be generated. The start-up time is defined by the SUT and CKSEL fuses, as described in "Clock System" on page 30. If the low level on the interrupt pin is removed before the device has woken up then program execution will not be diverted to the interrupt service routine but continue from the instruction following the SLEEP command. 9.2.2 Pin Change Interrupt Timing A timing example of a pin change interrupt is shown in Figure 9-1. Figure 9-1. Timing of pin change interrupts pin_lat PCINT(0) LE clk D pcint_in_(0) Q pin_sync 0 pcint_syn PCINT(0) in PCMSK(x) pcint_setflag PCIF x clk clk PCINT(0) pin_lat pin_sync pcint_in_(0) pcint_syn pcint_setflag PCIF 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 55 ATtiny24A/44A/84A 9.3 9.3.1 Register Description MCUCR - MCU Control Register The External Interrupt Control Register A contains control bits for interrupt sense control. Bit 7 6 5 4 3 2 1 0 0x35 (0x55) BODS PUD SE SM1 SM0 BODSE ISC01 ISC00 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 MCUCR * Bits 1:0 - ISC0[1:0]: Interrupt Sense Control 0 Bit 1 and Bit 0 The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask are set. The level and edges on the external INT0 pin that activate the interrupt are defined in Table 9-2. The value on the INT0 pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt. Table 9-2. 9.3.2 Interrupt 0 Sense Control ISC01 ISC00 Description 0 0 The low level of INT0 generates an interrupt request. 0 1 Any logical change on INT0 generates an interrupt request. 1 0 The falling edge of INT0 generates an interrupt request. 1 1 The rising edge of INT0 generates an interrupt request. GIMSK - General Interrupt Mask Register Bit 7 6 5 4 3 2 1 0 0x3B (0x5B) - INT0 PCIE1 PCIE0 - - - - Read/Write R R/W R/W R/W1 R R R R Initial Value 0 0 0 0 0 0 0 0 GIMSK * Bits 7, 3:0 - Res: Reserved Bits These bits are reserved in the ATtiny24A/44A and will always read as zero. * Bit 6 - INT0: External Interrupt Request 0 Enable When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control bits (ISC01 and ISC00) in the External Interrupt Control Register A (EICRA) define whether the external interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is executed from the INT0 Interrupt Vector. * Bit 5 - PCIE1: Pin Change Interrupt Enable 1 When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 1 is enabled. Any change on any enabled PCINT[11:8] pin will cause an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1 Interrupt Vector. PCINT[11:8] pins are enabled individually by the PCMSK1 Register. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 56 ATtiny24A/44A/84A * Bit 4 - PCIE0: Pin Change Interrupt Enable 0 When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 0 is enabled. Any change on any enabled PCINT[7:0] pin will cause an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Interrupt Vector. PCINT[7:0] pins are enabled individually by the PCMSK0 Register. 9.3.3 GIFR - General Interrupt Flag Register Bit 7 6 5 4 3 2 1 0 0x3A (0x5A) - INTF0 PCIF1 PCIF0 - - - - Read/Write R R/W R/W R/W R R R R Initial Value 0 0 0 0 0 0 0 0 GIFR * Bits 7, 3:0 - Res: Reserved Bits These bits are reserved in the ATtiny24A/44A and will always read as zero. * Bit 6 - INTF0: External Interrupt Flag 0 When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG and the INT0 bit in GIMSK are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared when INT0 is configured as a level interrupt. * Bit 5 - PCIF1: Pin Change Interrupt Flag 1 When a logic change on any PCINT[11:8] pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG and the PCIE1 bit in GIMSK are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. * Bit 4 - PCIF0: Pin Change Interrupt Flag 0 When a logic change on any PCINT[7:0] pin triggers an interrupt request, PCIF becomes set (one). If the I-bit in SREG and the PCIE0 bit in GIMSK are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. 9.3.4 PCMSK1 - Pin Change Mask Register 1 Bit 7 6 5 4 3 2 1 0 0x20 (0x40) - - - - PCINT11 PCINT10 PCINT9 PCINT8 Read/Write R R R R R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 PCMSK1 * Bits 7:4 - Res: Reserved Bits These bits are reserved in the ATtiny24A/44A and will always read as zero. * Bits 3:0 - PCINT[11:8]: Pin Change Enable Mask 11:8 Each PCINT[11:8] bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT[11:8] is set and the PCIE1 bit in GIMSK is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT[11:8] is cleared, pin change interrupt on the corresponding I/O pin is disabled. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 57 ATtiny24A/44A/84A 9.3.5 PCMSK0 - Pin Change Mask Register 0 Bit 7 6 5 4 3 2 1 0 0x12 (0x32) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 PCMSK0 * Bits 7:0 - PCINT[7:0]: Pin Change Enable Mask 7:0 Each PCINT[7:0] bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT[7:0] is set and the PCIE0 bit in GIMSK is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT[7:0] is cleared, pin change interrupt on the corresponding I/O pin is disabled. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 58 ATtiny24A/44A/84A 10. I/O Ports All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI instructions. The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as input). Each output buffer has symmetrical drive characteristics with both high sink and source capability. The pin driver is strong enough to drive LED displays directly. All port pins have individually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have protection diodes to both VCC and Ground as indicated in Figure 10-1 on page 59. See "Electrical Characteristics" on page 179 for a complete list of parameters. Figure 10-1. I/O Pin Equivalent Schematic Rpu Logic Pxn Cpin See Figure "General Digital I/O" for Details All registers and bit references in this section are written in general form. A lower case "x" represents the numbering letter for the port, and a lower case "n" represents the bit number. However, when using the register or bit defines in a program, the precise form must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Registers and bit locations are listed in "Register Description" on page 72. Three I/O memory address locations are allocated for each port, one each for the Data Register - PORTx, Data Direction Register - DDRx, and the Port Input Pins - PINx. The Port Input Pins I/O location is read only, while the Data Register and the Data Direction Register are read/write. However, writing a logic one to a bit in the PINx Register, will result in a toggle in the corresponding bit in the Data Register. In addition, the Pull-up Disable - PUD bit in MCUCR disables the pull-up function for all pins in all ports when set. Using the I/O port as General Digital I/O is described in "Ports as General Digital I/O" on page 60. Most port pins are multiplexed with alternate functions for the peripheral features on the device. How each alternate function interferes with the port pin is described in "Alternate Port Functions" on page 64. Refer to the individual module sections for a full description of the alternate functions. Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port as general digital I/O. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 59 ATtiny24A/44A/84A 10.1 Ports as General Digital I/O The ports are bi-directional I/O ports with optional internal pull-ups. Figure 10-2 shows a functional description of one I/O-port pin, here generically called Pxn. Figure 10-2. General Digital I/O(1) PUD Q D DDxn Q CLR WDx RESET DATA BUS RDx 1 Q Pxn D 0 PORTxn Q CLR RESET WRx WPx RRx SLEEP SYNCHRONIZER D Q L Q D RPx Q PINxn Q clk I/O PUD: SLEEP: clkI/O: Note: 10.1.1 PULLUP DISABLE SLEEP CONTROL I/O CLOCK WDx: RDx: WRx: RRx: RPx: WPx: WRITE DDRx READ DDRx WRITE PORTx READ PORTx REGISTER READ PORTx PIN WRITE PINx REGISTER 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP, and PUD are common to all ports. Configuring the Pin Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in "Register Description" on page 72, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address. The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input pin. If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output pin. The port pins are tri-stated when reset condition becomes active, even if no clocks are running. If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port pin is driven low (zero). 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 60 ATtiny24A/44A/84A 10.1.2 Toggling the Pin Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction can be used to toggle one single bit in a port. 10.1.3 Switching Between Input and Output When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully acceptable, as a high-impedant environment will not notice the difference between a strong high driver and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-ups in all ports. Switching between input with pull-up and output low generates the same problem. The user must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b10) as an intermediate step. Table 10-1 summarizes the control signals for the pin value. Table 10-1. 10.1.4 Port Pin Configurations DDxn PORTxn PUD (in MCUCR) I/O Pull-up 0 0 X Input No Tri-state (Hi-Z) 0 1 0 Input Yes Pxn will source current if ext. pulled low 0 1 1 Input No Tri-state (Hi-Z) 1 0 X Output No Output Low (Sink) 1 1 X Output No Output High (Source) Comment Reading the Pin Value Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit. As shown in Figure 10-2 on page 60, the PINxn Register bit and the preceding latch constitute a synchronizer. This is needed to avoid metastability if the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 10-3 shows a timing diagram of the synchronization when reading an externally applied pin value. The maximum and minimum propagation delays are denoted tpd,max and tpd,min respectively. Figure 10-3. Synchronization when Reading an Externally Applied Pin value SYSTEM CLK INSTRUCTIONS XXX XXX in r17, PINx SYNC LATCH PINxn r17 0x00 0xFF t pd, max t pd, min 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 61 ATtiny24A/44A/84A Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is low, and goes transparent when the clock is high, as indicated by the shaded region of the "SYNC LATCH" signal. The signal value is latched when the system clock goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between 1/2 and 11/2 system clock period depending upon the time of assertion. When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 10-4 on page 62. The out instruction sets the "SYNC LATCH" signal at the positive edge of the clock. In this case, the delay tpd through the synchronizer is one system clock period. Figure 10-4. Synchronization when Reading a Software Assigned Pin Value SYSTEM CLK r16 INSTRUCTIONS 0xFF out PORTx, r16 nop in r17, PINx SYNC LATCH PINxn r17 0x00 0xFF t pd 10.1.5 Digital Input Enable and Sleep Modes As shown in Figure 10-2 on page 60, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-down and Standby modes to avoid high power consumption if some input signals are left floating, or have an analog signal level close to VCC/2. SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various other alternate functions as described in "Alternate Port Functions" on page 64. If a logic high level ("one") is present on an asynchronous external interrupt pin configured as "Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin" while the external interrupt is not enabled, the corresponding External Interrupt Flag will be set when resuming from the above mentioned Sleep mode, as the clamping in these sleep mode produces the requested logic change. 10.1.6 Unconnected Pins If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of the digital inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to reduce current consumption in all other modes where the digital inputs are enabled (Reset, Active mode and Idle mode). The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this case, the pull-up will be disabled during reset. If low power consumption during reset is 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 62 ATtiny24A/44A/84A important, it is recommended to use an external pull-up or pulldown. Connecting unused pins directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is accidentally configured as an output. 10.1.7 Program Examples The following code example shows how to set port A pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 5 as input with a pull-up assigned to port pin 4. The resulting pin values are read back again, but as previously discussed, a nop instruction is included to be able to read back the value recently assigned to some of the pins. Assembly Code Example ... ; Define pull-ups and set outputs high ; Define directions for port pins ldi r16,(1< 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 124 ATtiny24A/44A/84A SPITransfer_loop: out USICR,r17 in r16, USISR sbrs r16, USIOIF rjmp SPITransfer_loop in r16,USIDR ret The code is size optimized using only eight instructions (plus return). The code example assumes that the DO and USCK pins have been enabled as outputs in DDRA. The value stored in register r16 prior to the function is called is transferred to the slave device, and when the transfer is completed the data received from the slave is stored back into the register r16. The second and third instructions clear the USI Counter Overflow Flag and the USI counter value. The fourth and fifth instructions set three-wire mode, positive edge clock, count at USITC strobe, and toggle USCK. The loop is repeated 16 times. The following code demonstrates how to use the USI as an SPI master with maximum speed (fSCK = fCK/2): SPITransfer_Fast: out USIDR,r16 ldi r16,(1< 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz * High:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz 19.5.1 Serial Programming Algorithm When writing serial data to the ATtiny24A/44A/84A, data is clocked on the rising edge of SCK. When reading, data is clocked on the falling edge of SCK. See Figure 20-3 and Figure 20-4 for timing details. To program and verify the ATtiny24A/44A/84A in the Serial Programming mode, the following sequence is recommended (see four byte instruction formats in Table 19-12): 1. Power-up sequence: Apply power between VCC and GND while RESET and SCK are set to "0". In some systems, the programmer can not guarantee that SCK is held low during power-up. In this case, RESET must be given a positive pulse after SCK has been set to '0'. The duration of the pulse must be at least tRST (the minimum pulse width on RESET pin, see Table 20-4 on page 182) plus two CPU clock cycles. 2. Wait for at least 20 ms and enable serial programming by sending the Programming Enable serial instruction to pin MOSI. 3. The serial programming instructions will not work if the communication is out of synchronization. When in sync. the second byte (0x53), will echo back when issuing the third byte of the Programming Enable instruction. Whether the echo is correct or not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a positive pulse and issue a new Programming Enable command. 4. The Flash is programmed one page at a time. The memory page is loaded one byte at a time by supplying the 5 LSB of the address and data together with the Load Program memory Page instruction. To ensure correct loading of the page, the data low byte must be loaded before data high byte is applied for a given address. The Program memory Page is stored by loading the Write Program memory Page instruction with the 3 MSB of the address. If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH before issuing the next page. (See Table 19-11 on page 170.) Accessing the serial programming interface before the Flash write operation completes can result in incorrect programming. 5. A: The EEPROM array is programmed one byte at a time by supplying the address and data together with the appropriate Write instruction. An EEPROM memory location is first automatically erased before new data is written. If polling (RDY/BSY) is not used, the user must wait at least tWD_EEPROM before issuing the next byte. (See Table 19-11 on page 170.) In a chip erased device, no 0xFFs in the data file(s) need to be programmed. B: The EEPROM array is programmed one page at a time. The Memory page is loaded one byte at a time by supplying the 2 LSB of the address and data together with the Load EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading the Write EEPROM Memory Page Instruction with the 4 MSB of the address. When using EEPROM page access only byte locations loaded with the Load EEPROM Memory Page instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is not used, the used must wait at least tWD_EEPROM before issuing the next page (See Table 19-11 on page 170). In a chip erased device, no 0xFF in the data file(s) need to be programmed. 6. Any memory location can be verified by using the Read instruction which returns the content at the selected address at serial output MISO. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 169 ATtiny24A/44A/84A 7. At the end of the programming session, RESET can be set high to commence normal operation. 8. Power-off sequence (if needed): Set RESET to "1". Turn VCC power off. Table 19-11. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location 19.5.2 Symbol Minimum Wait Delay tWD_FLASH 4.5 ms tWD_EEPROM 4.0 ms tWD_ERASE 9.0 ms tWD_FUSE 4.5 ms Serial Programming Instruction set The instruction set is described in Table 19-12 and Figure 19-2 on page 171. Table 19-12. Serial Programming Instruction Set Instruction Format Instruction/Operation(1) Byte 1 Byte 2 Byte 3 Byte4 Programming Enable $AC $53 $00 $00 Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00 Poll RDY/BSY $F0 $00 $00 data byte out Load Extended Address byte $4D $00 Extended adr $00 Load Program Memory Page, High byte $48 adr MSB adr LSB high data byte in Load Program Memory Page, Low byte $40 adr MSB adr LSB low data byte in Load EEPROM Memory Page (page access) $C1 $00 adr LSB data byte in Read Program Memory, High byte $28 adr MSB adr LSB high data byte out Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out Read EEPROM Memory $A0 $00 adr LSB data byte out Read Lock bits $58 $00 $00 data byte out Read Signature Byte $30 $00 adr LSB data byte out Read Fuse bits $50 $00 $00 data byte out Read Fuse High bits $58 $08 $00 data byte out Read Extended Fuse Bits $50 $08 $00 data byte out Read Calibration Byte $38 $00 $00 data byte out Write Program Memory Page $4C adr MSB adr LSB $00 Write EEPROM Memory $C0 $00 adr LSB data byte in Write EEPROM Memory Page (page access) $C2 $00 adr LSB $00 Load Instructions Read Instructions (6) Write Instructions 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 170 ATtiny24A/44A/84A Table 19-12. Serial Programming Instruction Set (Continued) Instruction Format Instruction/Operation (1) Byte 1 Byte 2 Byte 3 Byte4 Write Lock bits $AC $E0 $00 data byte in Write Fuse bits $AC $A0 $00 data byte in Write Fuse High bits $AC $A8 $00 data byte in Write Extended Fuse Bits $AC $A4 $00 data byte in Notes: 1. Not all instructions are applicable for all parts. 2. a = address 3. Bits are programmed `0', unprogrammed `1'. 4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (`1') . 5. Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature bytes and Page size. 6. Instructions accessing program memory use a word address. This address may be random within the page range. 7. See http://www.microchip.com for Application Notes regarding programming and programmers. Figure 19-2. Serial Programming Instruction example Serial Programming Instruction Load Program Memory Page (High/Low Byte)/ Load EEPROM Memory Page (page access) Byte 1 Byte 2 Byte 3 Adr MSB A Write Program Memory Page/ Write EEPROM Memory Page Byte 1 Byte 4 Byte 2 Adr LSB Bit 15 B Adr MSB Bit 15 B 0 Byte 3 Byte 4 Adrr LSB B 0 Page Buffer Page Offset Page 0 Page 1 Page 2 Page Number Page N-1 Program Memory/ EEPROM Memory If the LSB in RDY/BSY data byte out is `1', a programming operation is still pending. Wait until this bit returns `0' before the next instruction is carried out. Within the same page, the low data byte must be loaded prior to the high data byte. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 171 ATtiny24A/44A/84A After data is loaded to the page buffer, program the EEPROM page, see Figure 19-2 on page 171. 19.6 High-voltage Serial Programming This section describes how to program and verify Flash Program memory, EEPROM Data memory, Lock bits and Fuse bits in the ATtiny24A/44A/84A. Figure 19-3. High-voltage Serial Programming +11.5 - 12.5V +4.5 - 5.5V SCI PB3 (RESET) VCC PB0 PA4 SDO PA2:0 PA5 SII GND PA6 SDI Table 19-13. Pin Name Mapping Signal Name in High-voltage Serial Programming Mode Pin Name SDI PA6 I Serial Data Input SII PA5 I Serial Instruction Input SDO PA4 O Serial Data Output SCI PB0 I Serial Clock Input (min. 220ns period) I/O Function The minimum period for the Serial Clock Input (SCI) during High-voltage Serial Programming is 220 ns. Table 19-14. Pin Values Used to Enter Programming Mode 19.7 Pin Symbol Value PA0 Prog_enable[0] 0 PA1 Prog_enable[1] 0 PA2 Prog_enable[2] 0 High-Voltage Serial Programming Algorithm To program and verify the ATtiny24A/44A/84A in the High-voltage Serial Programming mode, the following sequence is recommended (See instruction formats in Table 19-16 on page 176): 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 172 ATtiny24A/44A/84A 19.7.1 Enter High-voltage Serial Programming Mode The following algorithm puts the device in High-voltage Serial Programming mode: 1. Set Prog_enable pins listed in Table 19-14 on page 172 to "000", RESET pin and VCC to 0V. 2. Apply 4.5 - 5.5V between VCC and GND. Ensure that VCC reaches at least 1.8V within the next 20 s. 3. Wait 20 - 60 s, and apply 11.5 - 12.5V to RESET. 4. Keep the Prog_enable pins unchanged for at least 10 s after the High-voltage has been applied to ensure the Prog_enable Signature has been latched. 5. Release the Prog_enable[2] pin after tHVRST has elapsed. 6. Wait at least 300 s before giving any serial instructions on SDI/SII. 7. Exit Programming mode by power the device down or by bringing RESET pin to 0V. If the rise time of the VCC is unable to fulfill the requirements listed above, the following alternative algorithm can be used: 1. Set Prog_enable pins listed in Table 19-14 on page 172 to "000", RESET pin and VCC to 0V. 2. Apply 4.5 - 5.5V between VCC and GND. 3. Monitor VCC, and as soon as VCC reaches 0.9 - 1.1V, apply 11.5 - 12.5V to RESET. 4. Keep the Prog_enable pins unchanged for at least 10 s after the High-voltage has been applied to ensure the Prog_enable Signature has been latched. 5. Release the Prog_enable[2] pin to avoid drive contention on the Prog_enable[2]/SDO pin. 6. Wait until VCC actually reaches 4.5 - 5.5V before giving any serial instructions on SDI/SII. 7. Exit Programming mode by power the device down or by bringing RESET pin to 0V. Table 19-15. High-voltage Reset Characteristics RESET Pin High-voltage Threshold Minimum High-voltage Period for Latching Prog_enable VCC VHVRST tHVRST 4.5V 11.5V 100 ns 5.5V 11.5V 100 ns Supply Voltage 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 173 ATtiny24A/44A/84A 19.7.2 Considerations for Efficient Programming The loaded command and address are retained in the device during programming. For efficient programming, the following should be considered. * The command needs only be loaded once when writing or reading multiple memory locations. * Skip writing the data value 0xFF that is the contents of the entire EEPROM (unless the EESAVE Fuse is programmed) and Flash after a Chip Erase. * Address High byte needs only be loaded before programming or reading a new 256 word window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes reading. 19.7.3 Chip Erase The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are not reset until the Program memory has been completely erased. The Fuse bits are not changed. A Chip Erase must be performed before the Flash and/or EEPROM are reprogrammed. 1. Load command "Chip Erase" (see Table 19-16 on page 176). 2. Wait after Instr. 3 until SDO goes high for the "Chip Erase" cycle to finish. 3. Load Command "No Operation". Note: 19.7.4 1. The EEPROM memory is preserved during Chip Erase if the EESAVE Fuse is programmed. Programming the Flash The Flash is organized in pages, see "Page Size" on page 167. When programming the Flash, the program data is latched into a page buffer. This allows one page of program data to be programmed simultaneously. The following procedure describes how to program the entire Flash memory: 1. Load Command "Write Flash" (see Table 19-16 on page 176). 2. Load Flash Page Buffer. 3. Load Flash High Address and Program Page. Wait after Instr. 3 until SDO goes high for the "Page Programming" cycle to finish. 4. Repeat 2 through 3 until the entire Flash is programmed or until all data has been programmed. 5. End Page Programming by Loading Command "No Operation". When writing or reading serial data to the ATtiny24A/44A/84A, data is clocked on the rising edge of the serial clock, see Figure 20-5 on page 187, Figure 19-3 on page 172 and Table 20-12 on page 187 for details. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 174 ATtiny24A/44A/84A Figure 19-4. Addressing the Flash which is Organized in Pages PCMSB PROGRAM COUNTER PAGEMSB PCPAGE PCWORD PAGE ADDRESS WITHIN THE FLASH WORD ADDRESS WITHIN A PAGE PROGRAM MEMORY PAGE PAGE PCWORD[PAGEMSB:0]: 00 INSTRUCTION WORD 01 02 PAGEEND Figure 19-5. High-voltage Serial Programming Waveforms SDI PA6 MSB LSB SII PA5 MSB LSB SDO PA4 SCI PB0 19.7.5 MSB 0 LSB 1 2 3 4 5 6 7 8 9 10 Programming the EEPROM The EEPROM is organized in pages, see Table 20-11 on page 187. When programming the EEPROM, the data is latched into a page buffer. This allows one page of data to be programmed simultaneously. The programming algorithm for the EEPROM Data memory is as follows (refer to Table 19-16 on page 176): 1. Load Command "Write EEPROM". 2. Load EEPROM Page Buffer. 3. Program EEPROM Page. Wait after Instr. 2 until SDO goes high for the "Page Programming" cycle to finish. 4. Repeat 2 through 3 until the entire EEPROM is programmed or until all data has been programmed. 5. End Page Programming by Loading Command "No Operation". 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 175 ATtiny24A/44A/84A 19.7.6 Reading the Flash The algorithm for reading the Flash memory is as follows (refer to Table 19-16 on page 176): 1. Load Command "Read Flash". 2. Read Flash Low and High Bytes. The contents at the selected address are available at serial output SDO. 19.7.7 Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to Table 19-16 on page 176): 1. Load Command "Read EEPROM". 2. Read EEPROM Byte. The contents at the selected address are available at serial output SDO. 19.7.8 Programming and Reading the Fuse and Lock Bits The algorithms for programming and reading the Fuse Low/High bits and Lock bits are shown in Table 19-16 on page 176. 19.7.9 Reading the Signature Bytes and Calibration Byte The algorithms for reading the Signature bytes and Calibration byte are shown in Table 19-16 on page 176. 19.7.10 Power-off sequence Set SCI to "0". Set RESET to "1". Turn VCC power off. Table 19-16. High-voltage Serial Programming Instruction Set for ATtiny24A/44A/84A Instruction Format Instruction Chip Erase Load "Write Flash" Command Load Flash Page Buffer Load Flash High Address and Program Page Instr.1/5 Instr.2/6 Instr.3/7 Instr.4 SDI 0_1000_0000_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0110_0100_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx SDI 0_0001_0000_00 SII 0_0100_1100_00 SDO x_xxxx_xxxx_xx SDI 0_ bbbb_bbbb _00 0_eeee_eeee_00 0_0000_0000_00 0_0000_0000_00 SII 0_0000_1100_00 0_0010_1100_00 0_0110_1101_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx SDI 0_dddd_dddd_00 0_0000_0000_00 0_0000_0000_00 SII 0_0011_1100_00 0_0111_1101_00 0_0111_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx Wait after Instr.3 until SDO goes high for the Chip Erase cycle to finish. Enter Flash Programming code. SDI 0_0000_000a_00 0_0000_0000_00 0_0000_0000_00 SII 0_0001_1100_00 0_0110_0100_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx 2020 Microchip Technology Inc. Operation Remarks Data Sheet Complete Repeat after Instr. 1 - 7until the entire page buffer is filled or until all data within the page is filled.(2) Instr 5-7. Wait after Instr 3 until SDO goes high. Repeat Instr. 2 - 3 for each loaded Flash Page until the entire Flash or all data is programmed. Repeat Instr. 1 for a new 256 byte page.(2) DS40002269A-page 176 ATtiny24A/44A/84A Table 19-16. High-voltage Serial Programming Instruction Set for ATtiny24A/44A/84A (Continued) Instruction Format Instruction Instr.1/5 Instr.2/6 Instr.3/7 Instr.4 SDI 0_0000_0010_00 SII 0_0100_1100_00 SDO x_xxxx_xxxx_xx SDI 0_bbbb_bbbb_00 0_0000_000a_00 0_0000_0000_00 0_0000_0000_00 SII 0_0000_1100_00 0_0001_1100_00 0_0110_1000_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx q_qqqq_qqqx_xx SDI 0_0000_0000_00 0_0000_0000_00 SII 0_0111_1000_00 0_0111_1100_00 SDO x_xxxx_xxxx_xx p_pppp_pppx_xx SDI 0_0001_0001_00 SII 0_0100_1100_00 SDO x_xxxx_xxxx_xx SDI 0_bbbb_bbbb_00 0_aaaa_aaaa_00 SII 0_0000_1100_00 0_0001_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx SDI 0_0000_0000_00 SII 0_0110_1100_00 SDO x_xxxx_xxxx_xx SDI 0_0000_0000_00 0_0000_0000_00 SII 0_0110_0100_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx SDI 0_bbbb_bbbb_00 0_aaaa_aaaa_00 0_eeee_eeee_00 0_0000_0000_00 SII 0_0000_1100_00 0_0001_1100_00 0_0010_1100_00 0_0110_1101_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx SDI 0_0000_0000_00 0_0000_0000_00 SII 0_0110_0100_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx Load "Read EEPROM" Command SDI 0_0000_0011_00 SII 0_0100_1100_00 SDO x_xxxx_xxxx_xx Read EEPROM Byte SDI 0_bbbb_bbbb_00 0_aaaa_aaaa_00 0_0000_0000_00 0_0000_0000_00 SII 0_0000_1100_00 0_0001_1100_00 0_0110_1000_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx q_qqqq_qqq0_00 SDI 0_0100_0000_00 0_A987_6543_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0010_1100_00 0_0110_0100_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx SDI 0_0100_0000_00 0_IHGF_EDCB_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0010_1100_00 0_0111_0100_00 0_0111_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx Load "Read Flash" Command Read Flash Low and High Bytes Load "Write EEPROM" Command Load EEPROM Page Buffer Program EEPROM Page Write EEPROM Byte Write Fuse Low Bits Write Fuse High Bits Write Fuse Extended Bits Enter Flash Read mode. Enter EEPROM Programming mode. 0_eeee_eeee_00 0_0010_1100_00 x_xxxx_xxxx_xx 0_0000_0000_00 0_0110_1101_00 x_xxxx_xxxx_xx Repeat Instr. 1 - 5 until the entire page buffer is filled or until all data within the page is filled.(3) Wait after Instr. 2 until SDO goes high. Repeat Instr. 1 - 2 for each loaded EEPROM page until the entire EEPROM or all data is programmed. Repeat Instr. 1 - 6 for each new address. Wait after Instr. 6 until SDO goes high.(4) Instr. 5-6 Enter EEPROM Read mode. 0_0100_0000_00 0_0000_000J_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0010_1100_00 0_0110_0110_00 0_0110_1110_00 x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx 2020 Microchip Technology Inc. Repeat Instr. 1, 3 - 6 for each new address. Repeat Instr. 2 for a new 256 byte page. Instr 5 - 6. SDI SDO Operation Remarks Data Sheet Complete Repeat Instr. 1, 3 - 4 for each new address. Repeat Instr. 2 for a new 256 byte page. Wait after Instr. 4 until SDO goes high. Write A - 3 = "0" to program the Fuse bit. Wait after Instr. 4 until SDO goes high. Write F - B = "0" to program the Fuse bit. Wait after Instr. 4 until SDO goes high. Write J = "0" to program the Fuse bit. DS40002269A-page 177 ATtiny24A/44A/84A Table 19-16. High-voltage Serial Programming Instruction Set for ATtiny24A/44A/84A (Continued) Instruction Format Instruction Write Lock Bits Read Fuse Low Bits Read Fuse High Bits Instr.1/5 Instr.2/6 Instr.3/7 Instr.4 SDI 0_0010_0000_00 0_0000_0021_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0010_1100_00 0_0110_0100_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx SDI 0_0000_0100_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0110_1000_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx A_9876_543x_xx SDI 0_0000_0100_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0111_1010_00 0_0111_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx I_HGFE_DCBx_xx Reading F - B = "0" means the Fuse bit is programmed. 0_0000_0100_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0110_1010_00 0_0110_1110_00 x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxJx_xx SDI 0_0000_0100_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0111_1000_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_x21x_xx Read Signature Bytes SDI 0_0000_1000_00 0_0000_00bb_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0000_1100_00 0_0110_1000_00 0_0110_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx q_qqqq_qqqx_xx Read Calibration Byte SDI 0_0000_1000_00 0_0000_0000_00 0_0000_0000_00 0_0000_0000_00 SII 0_0100_1100_00 0_0000_1100_00 0_0111_1000_00 0_0111_1100_00 SDO x_xxxx_xxxx_xx x_xxxx_xxxx_xx x_xxxx_xxxx_xx p_pppp_pppx_xx Load "No Operation" Command SDI 0_0000_0000_00 SII 0_0100_1100_00 SDO x_xxxx_xxxx_xx Read Lock Bits Notes: SDO Wait after Instr. 4 until SDO goes high. Write 2 - 1 = "0" to program the Lock Bit. Reading A - 3 = "0" means the Fuse bit is programmed. SDI Read Fuse Extended Bits Operation Remarks Reading J = "0" means the Fuse bit is programmed. Reading 2, 1 = "0" means the Lock bit is programmed. Repeats Instr 2 4 for each signature byte address. 1. a = address high bits, b = address low bits, d = data in high bits, e = data in low bits, p = data out high bits, q = data out low bits, x = don't care, 1 = Lock Bit1, 2 = Lock Bit2, 3 = CKSEL0 Fuse, 4 = CKSEL1 Fuse, 5 = CKSEL2 Fuse, 6 = CKSEL3 Fuse, 7 = SUT0 Fuse, 8 = SUT1 Fuse, 9 = CKOUT Fuse, A = CKDIV8 Fuse, B = BODLEVEL0 Fuse, C = BODLEVEL1 Fuse, D= BODLEVEL2 Fuse, E = EESAVE Fuse, F = WDTON Fuse, G = SPIEN Fuse, H = DWEN Fuse, I = RSTDISBL Fuse, J = SELFPRGEN Fuse 2. For page sizes less than 256 words, parts of the address (bbbb_bbbb) will be parts of the page address. 3. For page sizes less than 256 bytes, parts of the address (bbbb_bbbb) will be parts of the page address. 4. The EEPROM is written page-wise. But only the bytes that are loaded into the page are actually written to the EEPROM. Page-wise EEPROM access is more efficient when multiple bytes are to be written to the same page. Note that auto-erase of EEPROM is not available in High-voltage Serial Programming, only in SPI Programming. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 178 ATtiny24A/44A/84A 20. Electrical Characteristics 20.1 Absolute Maximum Ratings* *NOTICE: Operating Temperature ................................. -55C to +125C Storage Temperature..................................... -65C to +150C Voltage on any Pin except RESET with respect to Ground.................................-0.5V to VCC+0.5V Voltage on RESET with respect to Ground .....-0.5V to +13.0V Maximum Operating Voltage ............................................ 6.0V Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Current per I/O Pin ............................................... 40.0 mA DC Current VCC and GND Pins ................................ 200.0 mA 20.2 DC Characteristics Table 20-1. Symbol DC Characteristics. TA = -40C to +85C Parameter Input Low Voltage VIL VIH Input Low Voltage, RESET Pin as Reset (4) Input High-voltage Except RESET pin Input High-voltage RESET pin as Reset (4) Condition Typ(1) Min Max Units (3) V V VCC = 1.8V - 2.4V -0.5 0.2VCC VCC = 2.4V - 5.5V -0.5 0.3VCC(3) VCC = 1.8V - 5.5 -0.5 0.2VCC(3) VCC = 1.8V - 2.4V 0.7VCC(2) VCC +0.5 V VCC = 2.4V - 5.5V 0.6VCC (2) VCC +0.5 V VCC = 1.8V to 5.5V 0.9VCC(2) VCC +0.5 V IOL = 10 mA, VCC = 5V 0.6 V IOL = 5 mA, VCC = 3V 0.5 V VOL Output Low Voltage (5) Except RESET pin (7) VOH Output High-voltage (6) Except RESET pin (7) IOH = -10 mA, VCC = 5V 4.3 V IOH = -5 mA, VCC = 3V 2.5 V ILIL Input Leakage Current I/O Pin VCC = 5.5V, pin low (absolute value) < 0.05 1(8) A ILIH Input Leakage Current I/O Pin VCC = 5.5V, pin high (absolute value) < 0.05 1(8) A Pull-up Resistor, I/O Pin VCC = 5.5V, input low 20 50 k Pull-up Resistor, Reset Pin VCC = 5.5V, input low 30 60 k RPU 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 179 ATtiny24A/44A/84A Table 20-1. Symbol DC Characteristics. TA = -40C to +85C (Continued) Parameter Supply Current, Active Mode (9) ICC Supply Current, Idle Mode (9) Supply Current, Power-Down Mode (10) Notes: Typ(1) Max Units f = 1 MHz, VCC = 2V 0.25 0.5 mA f = 4 MHz, VCC = 3V 1.2 2 mA f = 8 MHz, VCC = 5V 4.4 7 mA f = 1 MHz, VCC = 2V 0.04 0.2 mA f = 4 MHz, VCC = 3V 0.25 0.6 mA f = 8 MHz, VCC = 5V 1.3 2 mA WDT enabled, VCC = 3V 4 10 A WDT disabled, VCC = 3V 0.13 2 A Condition Min 1. Typical values at 25C. 2. "Min" means the lowest value where the pin is guaranteed to be read as high. 3. "Max" means the highest value where the pin is guaranteed to be read as low. 4. Not tested in production. 5. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 6. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 7. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. See Figure 21-87, Figure 21-88, Figure 21-89, and Figure 21-90 (starting on page 232). 8. These are test limits, which account for leakage currents of the test environment. Actual device leakage currents are lower. 9. Values are with external clock using methods described in "Minimizing Power Consumption" on page 41. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive. 10. BOD Disabled. 20.3 Speed The maximum operating frequency of the device depends on VCC. As shown in Figure 20-1, the relationship between maximum frequency and VCC is linear in the region 1.8V < VCC < 4.5V. Figure 20-1. Maximum Frequency vs. VCC 20 MHz 4 MHz 1.8V 2020 Microchip Technology Inc. 4.5V Data Sheet Complete 5.5V DS40002269A-page 180 ATtiny24A/44A/84A 20.4 Clock Characteristics 20.4.1 Accuracy of Calibrated Internal Oscillator It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 21-109 on page 243 and Figure 21-110 on page 244. Table 20-2. Calibration Accuracy of Internal RC Oscillator Target Frequency VCC Temperature Accuracy at given voltage & temperature (1) 8.0 MHz 3V 25C 10% Fixed frequency within: 7.3 - 8.1 MHz Fixed voltage within: 1.8V - 5.5V Fixed temperature within: -40C to +85C 1% Calibration Method Factory Calibration User Calibration Notes: 20.4.2 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage). External Clock Drive Figure 20-2. External Clock Drive Waveform V IH1 V IL1 Table 20-3. External Clock Drive Characteristics VCC = 1.8 - 5.5V VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V Min. Max. Min. Max. Min. Max. Units 0 4 0 10 0 20 MHz Symbol Parameter 1/tCLCL Clock Frequency tCLCL Clock Period 250 100 50 ns tCHCX High Time 100 40 20 ns tCLCX Low Time 100 40 20 ns tCLCH Rise Time 2.0 1.6 0.5 s tCHCL Fall Time 2.0 1.6 0.5 s tCLCL Change in period from one clock cycle to the next 2 2 2 % 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 181 ATtiny24A/44A/84A 20.5 System and Reset Characteristics Table 20-4. Symbol Parameter Condition VRST RESET pin threshold voltage tRST Minimum pulse width on RESET pin Min(1) Typ(1) 0.2 VCC Max(1) Units 0.9VCC V 2000 700 400 ns Brown-out Detector hysteresis 50 mV tBOD Minimum pulse width on Brown-out Reset 2 s VBG Internal bandgap reference voltage VCC = 5V TA = 25C tBG Internal bandgap reference start-up time IBG Internal bandgap reference current consumption VHYST Note: 20.5.1 Reset, Brown-out, and Internal Voltage Characteristics VCC = 1.8V VCC = 3V VCC = 5V 1.0 1.1 1.2 V VCC = 5V TA = 25C 40 70 s VCC = 5V TA = 25C 15 A 1. Values are guidelines, only Power-On Reset Table 20-5. Symbol Characteristics of Enhanced Power-On Reset. TA = = -40C to +85C Parameter Typ(1) Max(1) Units 1.1 1.4 1.6 V 0.6 1.3 1.6 V Release threshold of power-on reset (2) VPOR VPOA Activation threshold of power-on reset SRON Power-On Slope Rate Note: Min(1) (3) 0.01 V/ms 1. Values are guidelines, only 2. Threshold where device is released from reset when voltage is rising 3. The Power-on Reset will not work unless the supply voltage has been below VPOA 20.5.2 Brown-Out Detection Table 20-6. VBOT vs. BODLEVEL Fuse Coding BODLEVEL[2:0] Fuses Min(1) 111 Max(1) Units BOD Disabled 110 1.7 1.8 2.0 101 2.5 2.7 2.9 100 4.1 4.3 4.5 0XX Note: Typ(1) V Reserved 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is tested down to VCC = VBOT during the production test. This guarantees that a Brown-out Reset will occur before VCC drops to a voltage where correct operation of the microcontroller is no longer guaranteed. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 182 ATtiny24A/44A/84A 20.6 ADC Characteristics Table 20-7. Symbol ADC Characteristics, Single Ended Channels. T = -40C to +85C Parameter Condition Min Typ Resolution Units 10 Bits VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2.0 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz 2.5 LSB VREF = 4V, VCC = 4V, ADC clock = 200 kHz Noise Reduction Mode 1.5 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz Noise Reduction Mode 2.0 LSB Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1.0 LSB Differential Non-linearity (DNL) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 0.5 LSB Gain Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2.0 LSB Offset Error (Absolute) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1.5 LSB Conversion Time Free Running Conversion Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Clock Frequency VIN Max Input Voltage 14 280 s 50 1000 kHz GND VREF V Input Bandwidth 38.5 kHz AREF External Voltage Reference 2.0 VINT Internal Voltage Reference 1.0 RREF Reference Input Resistance 32 k RAIN Analog Input Resistance 100 M ADC Conversion Output 2020 Microchip Technology Inc. 0 Data Sheet Complete 1.1 VCC V 1.2 V 1023 LSB DS40002269A-page 183 ATtiny24A/44A/84A Table 20-8. Symbol ADC Characteristics, Differential Channels (Unipolar Mode), TA = -40C to +85C Parameter Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Gain Error Offset Error Conversion Time Condition Max Units Gain = 1x 10 Bits Gain = 20x 10 Bits Input Voltage VDIFF Input Differential Voltage Typ Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 10 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 15 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 10 LSB Gain = 1x 10 LSB Gain = 20x 15 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 3 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4 LSB Free Running Conversion Clock Frequency VIN Min 70 280 s 50 200 kHz GND VCC V VREF/Gain V Input Bandwidth 4 kHz AREF External Reference Voltage 2.0 VINT Internal Voltage Reference 1.0 RREF Reference Input Resistance 32 k RAIN Analog Input Resistance 100 M ADC Conversion Output 2020 Microchip Technology Inc. 0 Data Sheet Complete 1.1 VCC - 1.0 V 1.2 V 1023 LSB DS40002269A-page 184 ATtiny24A/44A/84A Table 20-9. Symbol ADC Characteristics, Differential Channels (Bipolar Mode), TA = -40C to +85C Parameter Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Gain Error Offset Error Conversion Time Condition Max Units Gain = 1x 10 Bits Gain = 20x 10 Bits Input Voltage VDIFF Input Differential Voltage Typ Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 8 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 8 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 5 LSB Gain = 1x 4 LSB Gain = 20x 5 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 3 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4 LSB Free Running Conversion Clock Frequency VIN Min 70 280 s 50 200 kHz GND VCC V VREF/Gain V Input Bandwidth 4 kHz AREF External Reference Voltage 2.0 VINT Internal Voltage Reference 1.0 RREF Reference Input Resistance 32 k RAIN Analog Input Resistance 100 M ADC Conversion Output 2020 Microchip Technology Inc. -512 Data Sheet Complete 1.1 VCC - 1.0 V 1.2 V 511 LSB DS40002269A-page 185 ATtiny24A/44A/84A 20.7 Analog Comparator Characteristics Table 20-10. Analog Comparator Characteristics, TA = -40C to +85C Symbol Parameter Condition VAIO Input Offset Voltage VAIO Typ Max Units VCC = 5V, VIN = VCC / 2 < 10 40 mV Input Offset Voltage VCC < 3.6V, VIN < 0.5V < 15 60(2) mV VAIO Input Offset Voltage VCC > 3.6V, VIN < 0.5V < 15 500(2) mV ILAC Input Leakage Current VCC = 5V, VIN = VCC / 2 50 nA Analog Propagation Delay (from saturation to slight overdrive) VCC = 2.7V 750 VCC = 4.0V 500 Analog Propagation Delay (large step change) VCC = 2.7V 100 VCC = 4.0V 75 Digital Propagation Delay VCC = 1.8V - 5.5 1 tAPD tDPD Min -50 ns 2 CLK Notes: 1. All parameters are based on simulation results and are not tested in production 2. These values are based on characterization. The max. limit is not tested in production and can therefore not be assured 20.8 Serial Programming Characteristics Figure 20-3. Serial Programming Timing MOSI tSHOX tOVSH SCK tSLSH tSHSL MISO Figure 20-4. Serial Programming Waveform SERIAL DATA INPUT (MOSI) MSB LSB SERIAL DATA OUTPUT (MISO) MSB LSB SERIAL CLOCK INPUT (SCK) SAMPLE 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 186 ATtiny24A/44A/84A Table 20-11. Serial Programming Characteristics, TA = -40C to +85C, VCC = 1.8 - 5.5V (Unless Otherwise Noted) Symbol 1/tCLCL tCLCL Min Oscillator Frequency Typ 0 Oscillator Period Max Units 4 MHz 250 1/tCLCL Oscillator Freq. (VCC = 4.5V - 5.5V) 0 tCLCL Oscillator Period (VCC = 4.5V - 5.5V) 50 ns 20 MHz ns (1) ns tSHSL SCK Pulse Width High 2 tCLCL tSLSH SCK Pulse Width Low 2 tCLCL(1) ns tOVSH MOSI Setup to SCK High tCLCL ns tSHOX MOSI Hold after SCK High 2 tCLCL ns Note: 20.9 Parameter 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz High-Voltage Serial Programming Characteristics Figure 20-5. High-voltage Serial Programming Timing SDI (PA6), SII (PA5) tIVSH SCI (PB0) tSLSH tSHIX tSHSL SDO (PA4) tSHOV Table 20-12. High-voltage Serial Programming Characteristics TA = 25C, VCC = 5V (Unless otherwise noted) Symbol Parameter Min tSHSL SCI (PB0) Pulse Width High 125 ns tSLSH SCI (PB0) Pulse Width Low 125 ns tIVSH SDI (PA6), SII (PB1) Valid to SCI (PB0) High 50 ns tSHIX SDI (PA6), SII (PB1) Hold after SCI (PB0) High 50 ns tSHOV SCI (PB0) High to SDO (PA4) Valid 16 ns Wait after Instr. 3 for Write Fuse Bits 2.5 ms tWLWH_PFB 2020 Microchip Technology Inc. Data Sheet Complete Typ Max Units DS40002269A-page 187 ATtiny24A/44A/84A 21. Typical Characteristics The data contained in this section is largely based on simulations and characterization of similar devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave. The following charts show typical behavior. These figures are not tested during manufacturing. During characterisation devices are operated at frequencies higher than test limits but they are not guaranteed to function properly at frequencies higher than the ordering code indicates. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. Current consumption is a function of several factors such as operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. A sine wave generator with rail-to-rail output is used as clock source but current consumption in Power-Down mode is independent of clock selection. The difference between current consumption in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. The current drawn from pins with a capacitive load may be estimated (for one pin) as follows: I CP V CC C L f SW where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of I/O pin. 21.1 Supply Current of I/O Modules The tables and formulas below can be used to calculate the additional current consumption for the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules is controlled by the Power Reduction Register. See "Power Reduction Register" on page 41 for details. Table 21-1. Additional Current Consumption for the different I/O modules (absolute values) Typical numbers PRR bit VCC = 2V, f = 1 MHz VCC = 3V, f = 4 MHz VCC = 5V, f = 8 MHz PRTIM1 1.6 A 11 A 48 A PRTIM0 4.4 A 29 A 120 A PRUSI 1.6 A 11 A 48 A PRADC 8.0 A 55 A 240 A Table 21-2 below can be used for calculating typical current consumption for other supply voltages and frequencies than those mentioned in the Table 21-1 above. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 188 ATtiny24A/44A/84A Table 21-2. Additional Current Consumption (percentage) in Active and Idle mode Current consumption additional to active mode with external clock (see Figure 21-56 and Figure 21-57) PRR bit 21.1.1 Current consumption additional to idle mode with external clock (see Figure 21-61 and Figure 21-62) PRTIM1 1% 5% PRTIM0 3% 10 % PRUSI 1% 5% PRADC 5% 20 % Example Calculate the expected current consumption in idle mode with USI, TIMER0, and ADC enabled at VCC = 2.0V and f = 1 MHz. From Table 21-2 on page 189, third column, we see that we need to add 5% for the USI, 10% for TIMER0, and 20% for the ADC. Reading from Figure 21-61 on page 219, we find that current consumption in idle mode at 2V and 1 MHz is about 0.04 mA. The total current consumption in idle mode with USI, TIMER0, and ADC enabled is therefore: I CCTOT 0 ,05mA 1 + 0 ,05 + 0 ,10 + 0 ,20 0 ,06mA 21.2.1 ATtiny24A Current Consumption in Active Mode Figure 21-1. Active Supply Current vs. Low Frequency 0.1 - 1.0 MHz, PRR = 0xFF 1 5.5 V 0,8 5.0 V 4.5 V 0,6 ICC (mA) 21.2 4.0 V 3.3 V 0,4 2.7 V 0,2 1.8 V 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Frequency (MHz) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 189 ATtiny24A/44A/84A Figure 21-2. Active Supply Current vs. Frequency 1 - 20 MHz, PRR = 0xFF 12 10 5.5 V 5.0 V 8 ICC (mA) 4.5 V 6 4.0 V 4 3.3 V 2.7 V 2 1.8 V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) Figure 21-3. Active Supply Current vs. VCC Internal RC Oscillator, 8 MHz 6 5 85 C 25 C -40 C ICC (mA) 4 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 190 ATtiny24A/44A/84A Figure 21-4. Active Supply Current vs. VCC Internal RC Oscillator, 1 MHz 1,2 85 C 25 C -40 C 1 ICC (mA) 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-5. Active Supply Current vs. VCC Internal RC Oscillator, 128 kHz 0,14 0,12 -40 C 25 C 85 C ICC (mA) 0,1 0,08 0,06 0,04 0,02 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 191 ATtiny24A/44A/84A Current Consumption in Idle Mode Figure 21-6. Idle Supply Current vs. Low Frequency 0.1 - 1.0 MHz, PRR = 0xFF 0,14 5.5 V 0,12 5.0 V 0,1 ICC (mA) 4.5 V 0,08 4.0 V 0,06 3.3 V 2.7 V 0,04 1.8 V 0,02 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Frequency (MHz) Figure 21-7. Idle Supply Current vs. Frequency 1 - 20 MHz, PRR = 0xFF 4 3,5 3 2,5 ICC (mA) 21.2.2 5.5 V 5.0 V 2 4.5 V 1,5 4.0 V 1 3.3 V 0,5 2.7 V 1.8 V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 192 ATtiny24A/44A/84A Figure 21-8. Idle Supply Current vs. VCC Internal RC Oscillator, 8 MHz 2 1,8 1,6 1,4 85 C 25 C -40 C ICC (mA) 1,2 1 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-9. Idle Supply Current vs. VCC Internal RC Oscillator, 1 MHz 0,4 0,35 85 C 25 C -40 C 0,3 ICC (mA) 0,25 0,2 0,15 0,1 0,05 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 193 ATtiny24A/44A/84A Figure 21-10. Idle Supply Current vs. VCC Internal RC Oscillator, 128 kHz 0,03 0,025 -40 C 25 C 85 C ICC (mA) 0,02 0,015 0,01 0,005 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Current Consumption in Power-down Mode Figure 21-11. Power-down Supply Current vs. VCC Watchdog Timer Disabled 0,8 85 C 0,6 ICC (uA) 21.2.3 0,4 0,2 25 C -40 C 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 194 ATtiny24A/44A/84A Figure 21-12. Power-down Supply Current vs. VCC Watchdog Timer Enabled 10 8 -40 C 25 C 85 C ICC (uA) 6 4 2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Current Consumption in Reset Figure 21-13. Reset Supply Current vs. VCC 0.1 - 1.0 MHz, Excluding Current through Reset Pull-up 0,16 0,14 0,12 5.5 V 0,1 5.0 V ICC (mA) 21.2.4 4.5 V 0,08 4.0 V 0,06 3.3 V 2.7 V 0,04 1.8 V 0,02 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Frequency (MHz) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 195 ATtiny24A/44A/84A Figure 21-14. Reset Supply Current vs. VCC 1 - 20 MHz, Excluding Current through Reset Pull-up 3 2,5 5.5 V 2 ICC (mA) 5.0 V 4.5 V 1,5 4.0 V 1 3.3 V 2.7 V 0,5 1.8 V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) Current Consumption of Peripheral Units Figure 21-15. ADC Current vs. VCC 4 MHz Frequency 600 500 400 ICC (uA) 21.2.5 300 200 100 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 196 ATtiny24A/44A/84A Figure 21-16. AREF Pin Current vs. Pin Voltage 200 180 160 AREF pin current (uA) 140 120 100 80 60 40 20 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4 4,5 5 5,5 AREF (V) Figure 21-17. Analog Comparator Current vs. VCC 4 MHz Frequency 160 140 120 ICC (uA) 100 80 60 40 20 0 1,5 2 2,5 3 3,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 197 ATtiny24A/44A/84A Figure 21-18. Programming Current vs. VCC 10000 9000 -40 C 8000 7000 ICC (uA) 6000 25 C 5000 4000 85 C 3000 2000 1000 0 1,5 2,5 3,5 4,5 5,5 VCC (V) Figure 21-19. Brownout Detector Current vs. VCC BOD Level = 1.8V 45 40 35 ICC (uA) 30 85 C 25 C -40 C 25 20 15 10 5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 198 ATtiny24A/44A/84A Figure 21-20. Watchdog Timer Current vs. VCC 8 -40 C 7 25 C 85 C 6 ICC (uA) 5 4 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Pull-up Resistors Figure 21-21. Pull-up Resistor Current vs. Input Voltage I/O Pin, VCC = 1.8V 60 50 40 IOP (uA) 21.2.6 30 20 10 25 C -40 C 85 C 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VOP (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 199 ATtiny24A/44A/84A Figure 21-22. Pull-up Resistor Current vs. Input Voltage I/O Pin, VCC = 2.7V 80 70 60 IOP (uA) 50 40 30 20 10 25 C 85 C -40 C 0 0 0,5 1 1,5 2 2,5 3 VOP (V) Figure 21-23. Pull-up Resistor Current vs. Input Voltage I/O Pin, VCC = 5V 160 140 120 IOP (uA) 100 80 60 40 20 25 C 85 C -40 C 0 0 1 2 3 4 5 6 VOP (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 200 ATtiny24A/44A/84A Figure 21-24. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 1.8V 40 35 30 IRESET (uA) 25 25 C -40 C 20 85 C 15 10 5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VRESET (V) Figure 21-25. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 2.7V 60 50 IRESET (uA) 40 25 C -40 C 30 85 C 20 10 0 0 0,5 1 1,5 2 2,5 3 VRESET (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 201 ATtiny24A/44A/84A Figure 21-26. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 5V 120 100 IRESET (uA) 80 25 C 60 -40 C 85 C 40 20 0 0 1 2 3 4 5 6 VRESET (V) Output Driver Strength Figure 21-27. VOL: Output Voltage vs. Sink Current I/O Pin, VCC = 3V 1,2 1 85 C 0,8 25 C VOL (V) 21.2.7 0,6 -40 C 0,4 0,2 0 0 5 10 15 20 IOL (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 202 ATtiny24A/44A/84A Figure 21-28. VOL: Output Voltage vs. Sink Current I/O Pin, VCC = 5V 0,6 85 C 0,5 25 C VOL (V) 0,4 -40 C 0,3 0,2 0,1 0 0 5 10 15 20 IOL (mA) Figure 21-29. VOH: Output Voltage vs. Source Current I/O Pin, VCC = 3V 3,2 3 2,8 VOH (V) 2,6 2,4 -40 C 25 C 2,2 85 C 2 1,8 0 5 10 15 20 IOH (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 203 ATtiny24A/44A/84A Figure 21-30. VOH: Output Voltage vs. Source Current I/O Pin, VCC = 5V 5,2 5 VOH (V) 4,8 4,6 -40 C 25 C 85 C 4,4 4,2 0 10 5 15 20 IOH (mA) Figure 21-31. VOL: Output Voltage vs. Sink Current Reset Pin as I/O, VCC = 3V 1,4 1,2 85 C 1 25 C VOL (V) 0,8 -40 C 0,6 0,4 0,2 0 0 0,5 1 1,5 2 2,5 3 IOL (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 204 ATtiny24A/44A/84A Figure 21-32. VOL: Output Voltage vs. Sink Current Reset Pin as I/O, VCC = 5V 1,2 85 C 1 VOL (V) 0,8 25 C 0,6 -40 C 0,4 0,2 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 IOL (mA) Figure 21-33. VOH: Output Voltage vs. Source Current Reset Pin as I/O, VCC = 3V 3 2,5 VOH (V) 2 1,5 -40 C 25 C 85 C 1 0,5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 IOH (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 205 ATtiny24A/44A/84A Figure 21-34. VOH: Output Voltage vs. Source Current Reset Pin as I/O, VCC = 5V 4,5 4 3,5 VOH (V) 3 -40 C 25 C 85 C 2,5 2 1,5 1 0,5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 IOH (mA) Input Threshold and Hysteresis (for I/O Ports) Figure 21-35. VIH: Input Threshold Voltage vs. VCC I/O Pin, Read as `1' 3,5 85 C 25 C -40 C 3 2,5 Threshold (V) 21.2.8 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 206 ATtiny24A/44A/84A Figure 21-36. VIL: Input Threshold Voltage vs. VCC I/O Pin, Read as `0' 2,5 Threshold (V) 2 1,5 85 C 25 C -40 C 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4 4,5 5 5,5 VCC (V) Figure 21-37. VIH-VIL: Input Hysteresis vs. VCC I/O Pin 0,8 0,7 0,6 Input Hysteresis (V) -40 C 0,5 25 C 0,4 85 C 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 207 ATtiny24A/44A/84A Figure 21-38. VIH: Input Threshold Voltage vs. VCC Reset Pin as I/O, Read as `1' 3 2,5 Threshold (V) 2 1,5 25 C 85 C -40 C 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-39. VIL: Input Threshold Voltage vs. VCC Reset Pin as I/O, Read as `0' 2,5 Threshold (V) 2 1,5 1 85 C 25 C -40 C 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 208 ATtiny24A/44A/84A Figure 21-40. VIH-VIL: Input Hysteresis vs. VCC Reset Pin as I/O 1 0.9 0.8 -40 C Input Hysteresis (V) 0.7 25 C 0.6 0.5 85 C 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) BOD, Bandgap and Reset Figure 21-41. BOD Threshold vs. Temperature BODLEVEL is 4.3V 4,4 RISING V CC 4,38 4,36 Threshold (V) 21.2.9 4,34 4,32 FALLING VCC 4,3 4,28 4,26 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Temperature (C) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 209 ATtiny24A/44A/84A Figure 21-42. BOD Threshold vs. Temperature BODLEVEL is 2.7V 2,8 RISING V CC 2,78 Threshold (V) 2,76 2,74 2,72 FALLING VCC 2,7 2,68 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Temperature (C) Figure 21-43. BOD Threshold vs. Temperature BODLEVEL is 1.8V 1,87 1,86 1,85 RISING V CC Threshold (V) 1,84 1,83 1,82 FALLING VCC 1,81 1,8 1,79 1,78 1,77 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Temperature (C) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 210 ATtiny24A/44A/84A Figure 21-44. Bandgap Voltage vs. Supply Voltage 1,2 1,18 1,16 Bandgap Voltage (V) 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 Vcc (V) Figure 21-45. Bandgap Voltage vs. Temperature 1,2 1,18 1,16 Bandgap Voltage (V) 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 -40 -20 0 20 40 60 80 100 Temperature (C) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 211 ATtiny24A/44A/84A Figure 21-46. VIH: Input Threshold Voltage vs. VCC Reset Pin, Read as `1' 2,5 Threshold (V) 2 1,5 -40 C 25 C 85 C 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-47. VIL: Input Threshold Voltage vs. VCC Reset Pin, Read as `0' 2,5 85 C 25 C -40 C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 212 ATtiny24A/44A/84A Figure 21-48. VIH-VIL: Input Hysteresis vs. VCC Reset Pin 1 0,9 0,8 Input Hysteresis (V) 0,7 -40 C 0,6 0,5 25 C 0,4 0,3 85 C 0,2 0,1 0 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-49. Minimum Reset Pulse Width vs. VCC 2000 1800 1600 Pulsewidth (ns) 1400 1200 1000 800 600 400 85 C 25 C -40 C 200 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 213 ATtiny24A/44A/84A 21.2.10 Analog Comparator Offset Figure 21-50. Analog Comparator Offset VCC = 5V 0.004 0.002 0 Offset (V) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 -0.002 -0.004 -40 25 -0.006 85 -0.008 VIN (V) Internal Oscillator Speed Figure 21-51. Watchdog Oscillator Frequency vs. VCC 124 122 -40 C 120 FRC (kHz) 21.2.11 25 C 118 116 114 85 C 112 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 214 ATtiny24A/44A/84A Figure 21-52. Watchdog Oscillator Frequency vs. Temperature 124 122 FRC (kHz) 120 118 1.8 V 116 3.0 V 114 5.5 V 112 -40 -20 0 20 40 60 80 100 Temperature (C) Figure 21-53. Calibrated 8 MHz RC Oscillator Frequency vs. VCC 8,4 85 C 8,2 25 C FRC (MHz) 8 7,8 -40 C 7,6 7,4 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 215 ATtiny24A/44A/84A Figure 21-54. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature 8,4 8,3 5.5 V 8,2 3.0 V FRC (MHz) 8,1 1.8 V 8 7,9 7,8 7,7 7,6 7,5 -40 -20 0 20 40 60 80 100 Temperature (C) Figure 21-55. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value VCC = 3V 20 85 C 25 C -40 C 16 FRC (MHz) 12 8 4 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL (X1) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 216 ATtiny24A/44A/84A Current Consumption in Active Mode Figure 21-56. Active Supply Current vs. Low Frequency 0.1 - 1.0 MHz, PRR = 0xFF 1 5.5 V 5.0 V 0.8 4.5 V 0.6 4.0 V 3.3 V 0.4 2.7 V 1.8 V 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) Figure 21-57. Active Supply Current vs. frequency 1 - 20 MHz, PRR = 0xFF 12 5.5 V 10 5.0 V 4.5 V 8 I CC (mA) 21.3.1 ATtiny44A I CC (mA) 21.3 6 4.0 V 4 3.3 V 2.7 V 2 1.8 V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 217 ATtiny24A/44A/84A Figure 21-58. Active Supply Current vs. VCC Internal RC Oscillator, 8 MHz 6 85 C 25 C -40 C 5 I CC (mA) 4 3 2 1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Figure 21-59. Active Supply Current vs. VCC Internal RC Oscillator, 1 MHz 1.2 85 C 25 C -40 C 1 I CC (mA) 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 218 ATtiny24A/44A/84A Figure 21-60. Active Supply Current vs. VCC Internal RC Oscillator, 128 kHz 0.14 -40 C 25 C 85 C 0.12 I CC (mA) 0.1 0.08 0.06 0.04 0.02 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Current Consumption in Idle Mode Figure 21-61. Idle Supply Current vs. Low Frequency 0.1 - 1.0 MHz, PRR = 0xFF 0.2 0.18 5.5 V 0.16 5.0 V 0.14 4.5 V 0.12 I CC (mA) 21.3.2 4.0 V 0.1 0.08 3.3 V 0.06 2.7 V 0.04 1.8 V 0.02 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 219 ATtiny24A/44A/84A Figure 21-62. Idle Supply Current vs. Frequency 1 - 20 MHz, PRR = 0xFF I CC (mA) 4 3.5 5.5 V 3 5.0 V 2.5 4.5 V 2 4.0 V 1.5 1 3.3 V 0.5 2.7 V 1.8 V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) Figure 21-63. Idle Supply Current vs. VCC Internal RC Oscillator, 8 MHz 2 1.8 1.6 85 C 25 C -40 C 1.4 I CC (mA) 1.2 1 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 220 ATtiny24A/44A/84A Figure 21-64. Idle Supply Current vs. VCC Internal RC Oscillator, 1 MHz 0.4 85 C 25 C -40 C 0.35 0.3 I CC (mA) 0.25 0.2 0.15 0.1 0.05 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Figure 21-65. Idle Supply Current vs. VCC Internal RC Oscillator, 128 kHz 0.03 -40 C 25 C 85 C 0.025 I CC (mA) 0.02 0.015 0.01 0.005 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 221 ATtiny24A/44A/84A 21.3.3 Standby Supply Current Figure 21-66. Standby Supply Current vs. VCC 4 MHz External Crystal, 22 pF External Capacitors, Watchdog Timer Disabled 0.1 85 C 0.08 25 C -40 C I CC (mA) 0.06 0.04 0.02 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Current Consumption in Power-down Mode Figure 21-67. Power-down Supply Current vs. VCC Watchdog Timer Disabled 1.4 85 C 1.2 1 I CC (uA) 21.3.4 0.8 0.6 0.4 25 C 0.2 -40 C 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 222 ATtiny24A/44A/84A Figure 21-68. Power-down Supply Current vs. VCC Watchdog Timer Enabled 10 8 -40 C 85 C 25 C I CC (uA) 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Current Consumption in Reset Figure 21-69. Reset Supply Current vs. VCC 0.1 - 1.0 MHz, Excluding Current through Reset Pull-up 0.16 5.5 V 0.14 5.0 V 0.12 4.5 V 0.1 I CC (mA) 21.3.5 4.0 V 0.08 3.3 V 0.06 2.7 V 0.04 1.8 V 0.02 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 223 ATtiny24A/44A/84A Figure 21-70. Reset Supply Current vs. VCC 1 - 20 MHz, Excluding Current Through Reset Pull-up 3 5.5 V 2.5 5.0 V 4.5 V I CC (mA) 2 1.5 4.0 V 1 3.3 V 0.5 2.7 V 1.8 V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) Current Consumption of Peripheral Units Figure 21-71. ADC Current vs. VCC 4 MHz Frequency 600 500 400 I CC (uA) 21.3.6 300 200 100 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 224 ATtiny24A/44A/84A Figure 21-72. AREF Pin Current vs. Pin Voltage 180 160 140 AREF pin current (uA) 120 100 80 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 AREF (V) Figure 21-73. Analog Comparator Current vs. VCC 4 MHz Frequency 160 140 120 I CC (uA) 100 80 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 225 ATtiny24A/44A/84A Figure 21-74. Programming Current vs. VCC 12000 -40 C 10000 I CC (uA) 8000 25 C 6000 85 C 4000 2000 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Figure 21-75. Brownout Detector Current vs. VCC BOD Level = 1.8V 35 30 I CC (uA) 25 85 C 25 C -40 C 20 15 10 5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 226 ATtiny24A/44A/84A Figure 21-76. Watchdog Timer Current vs. VCC 0.008 -40 C 0.007 25 C 85 C 0.006 I CC (mA) 0.005 0.004 0.003 0.002 0.001 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Pull-up Resistors Figure 21-77. Pull-up Resistor Current vs. Input Voltage I/O Pin, VCC = 1.8V 50 40 30 I OP (uA) 21.3.7 20 10 25 C 85 C -40 C 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 V OP (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 227 ATtiny24A/44A/84A Figure 21-78. Pull-up Resistor Current vs. Input Voltage I/O Pin, VCC = 2.7V 80 70 60 I OP (uA) 50 40 30 20 10 25 C 85 C -40 C 0 0 0.5 1 1.5 2 2.5 3 V OP (V) Figure 21-79. Pull-up Resistor Current vs. Input Voltage I/O Pin, VCC = 5V 160 140 120 I OP (uA) 100 80 60 40 20 25 C 85 C -40 C 0 0 1 2 3 4 5 V OP (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 228 ATtiny24A/44A/84A Figure 21-80. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 1.8V 40 35 30 I RESET (uA) 25 20 15 10 5 85 C 25 C -40 C 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 V RESET (V) Figure 21-81. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 2.7V 60 50 I RESET (uA) 40 30 20 10 85 C 25 C -40 C 0 0 0.5 1 1.5 2 2.5 3 V RESET (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 229 ATtiny24A/44A/84A Figure 21-82. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 5V 120 100 I RESET (uA) 80 60 40 20 85 C 25 C -40 C 0 0 1 2 3 4 5 V RESET (V) Output Driver Strength Figure 21-83. VOL: Output Voltage vs. Sink Current I/O Pin, VCC = 3V 1.2 1 85 C 0.8 25 C V OL (V) 21.3.8 0.6 -40 C 0.4 0.2 0 0 5 10 15 20 I OL (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 230 ATtiny24A/44A/84A Figure 21-84. VOL: Output Voltage vs. Sink Current I/O Pin, VCC = 5V 0.7 0.6 85 C 0.5 V OL (V) 25 C 0.4 -40 C 0.3 0.2 0.1 0 0 5 10 15 20 I OL (mA) Figure 21-85. VOH: Output Voltage vs. Source Current I/O Pin, VCC = 3V 3.2 3 V OH (V) 2.8 2.6 2.4 -40 C 2.2 25 C 2 85 C 1.8 0 5 10 15 20 I OH (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 231 ATtiny24A/44A/84A Figure 21-86. VOH: Output Voltage vs. Source Current I/O Pin, VCC = 5V 5.2 5 V OH (V) 4.8 4.6 -40 C 25 C 4.4 85 C 4.2 0 5 10 15 20 I OH (mA) Figure 21-87. VOL: Output Voltage vs. Sink Current Reset Pin as I/O, VCC = 3V 1.4 1.2 85 C V OL (V) 1 25 C 0.8 0.6 -40 C 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 I OL (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 232 ATtiny24A/44A/84A Figure 21-88. VOL: Output Voltage vs. Sink Current Reset Pin as I/O, VCC = 5V 2 85 C 1.8 1.6 1.4 25 C V OL (V) 1.2 1 -40 C 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 I OL (mA) Figure 21-89. VOH: Output Voltage vs. Source Current Reset Pin as I/O, VCC = 3V 3 2.5 V OH (V) 2 1.5 -40 C 1 25 C 85 C 0.5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 I OH (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 233 ATtiny24A/44A/84A Figure 21-90. VOH: Output Voltage vs. Source Current Reset Pin as I/O, VCC = 5V 5 4.5 4 3.5 V OH (V) 3 -40 C 25 C 85 C 2.5 2 1.5 1 0.5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 I OH (mA) Input Threshold and Hysteresis (for I/O Ports) Figure 21-91. VIH: Input Threshold Voltage vs. VCC IO Pin, Read as `1' 3.5 -40 C 25 C 85 C 3 2.5 Threshold (V) 21.3.9 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 234 ATtiny24A/44A/84A Figure 21-92. VIL: Input Threshold Voltage vs. VCC I/O Pin, Read as `0' 2.5 85 C 25 C -40 C Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Figure 21-93. VIH-VIL: Input Hysteresis vs. VCC I/O Pin 0.8 0.7 Input Hysteresis (V) 0.6 -40 C 25 C 85 C 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 235 ATtiny24A/44A/84A Figure 21-94. VIH: Input Threshold Voltage vs. VCC Reset Pin as I/O, Read as `1' 3 -40 C 25 C 85 C 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Figure 21-95. VIL: Input Threshold Voltage vs. VCC Reset Pin as I/O, Read as `0' 2.5 85 C 25 C -40 C Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 236 ATtiny24A/44A/84A Figure 21-96. VIH-VIL: Input Hysteresis vs. VCC Reset Pin as I/O 1 0.9 0.8 -40 C Input Hysteresis (V) 0.7 0.6 25 C 0.5 85 C 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) BOD, Bandgap and Reset Figure 21-97. BOD Threshold vs. Temperature BODLEVEL is 4.3V 4.36 4.34 4.32 RISING VCC 4.3 Threshold (V) 21.3.10 4.28 4.26 4.24 FALLING VCC 4.22 4.2 -40 -20 0 20 40 60 80 100 Temperature (C) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 237 ATtiny24A/44A/84A Figure 21-98. BOD Threshold vs. Temperature BODLEVEL is 2.7V 2.78 2.76 2.74 Threshold (V) RISING VCC 2.72 2.7 2.68 FALLING VCC 2.66 2.64 -40 -20 0 20 40 60 80 100 Temperature (C) Figure 21-99. BOD Threshold vs. Temperature BODLEVEL is 1.8V 1.84 1.83 Threshold (V) 1.82 RISING VCC 1.81 1.8 1.79 1.78 FALLING VCC 1.77 -40 -20 0 20 40 60 80 100 Temperature (C) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 238 ATtiny24A/44A/84A Figure 21-100. Bandgap Voltage vs. Supply Voltage 1.2 1.18 1.16 Bandgap Voltage (V) 1.14 1.12 1.1 1.08 1.06 1.04 1.02 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Figure 21-101. Bandgap Voltage vs. Temperature 1.2 1.18 1.16 Bandgap Voltage (V) 1.14 1.12 1.1 1.08 1.06 1.04 1.02 1 -40 -20 0 20 40 60 80 100 Temperature (C) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 239 ATtiny24A/44A/84A Figure 21-102. VIH: Input Threshold Voltage vs. VCC Reset Pin, Read as `1' 2,5 Threshold (V) 2 1,5 -40 C 25 C 85 C 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-103. VIL: Input Threshold Voltage vs. VCC Reset Pin, Read as `0' 2,5 85 C 25 C -40 C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 240 ATtiny24A/44A/84A Figure 21-104. VIH-VIL: Input Hysteresis vs. VCC Reset Pin 1 0.9 0.8 Input Hysteresis (V) 0.7 0.6 -40 C 0.5 25 C 0.4 0.3 85 C 0.2 0.1 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) Figure 21-105. Minimum Reset Pulse Width vs. VCC 2000 1800 1600 Pulsewidth (ns) 1400 1200 1000 800 600 400 85 C 25 C -40 C 200 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 241 ATtiny24A/44A/84A 21.3.11 Analog Comparator Offset Figure 21-106. Analog Comparator Offset VCC = 5V 0.004 0.003 0.002 0.001 0 Offset (V) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 -0.001 -0.002 -0.003 -0.004 -40 25 -0.005 85 -0.006 -0.007 VIN (V) Internal Oscillator Speed Figure 21-107. Watchdog Oscillator Frequency vs. VCC 0.12 0.118 -40 C 0.116 Frequency (MHz) 21.3.12 25 C 0.114 0.112 0.11 85 C 0.108 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 242 ATtiny24A/44A/84A Figure 21-108. Watchdog Oscillator Frequency vs. Temperature 0.12 0.118 Frequency (MHz) 0.116 0.114 1.8 V 0.112 3.0 V 0.11 5.5 V 0.108 0.106 -40 -20 0 20 40 60 80 100 Temperature (C) Figure 21-109. Calibrated 8 MHz RC Oscillator Frequency vs. VCC 8.4 8.2 Frequency (MHz) 85 C 25 C 8 -40 C 7.8 7.6 7.4 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V CC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 243 ATtiny24A/44A/84A Figure 21-110. Calibrated 8 MHz RC oscillator Frequency vs. Temperature 8.2 5.0 V 3.0 V 8.1 8 Frequency (MHz) 1.8 V 7.9 7.8 7.7 7.6 7.5 -40 -20 0 20 40 60 80 100 Temperature (C) Figure 21-111. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value VCC = 3V 16 85 C 25 C -40 C 14 Frequency (MHz) 12 10 8 6 4 2 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL (X1) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 244 ATtiny24A/44A/84A Current Consumption in Active Mode Figure 21-112. Active Supply Current vs. Low Frequency 0.1 - 1.0 MHz, PRR = 0xFF 1 5.5 V 0,8 5.0 V 4.5 V 0,6 4.0 V ICC (mA) 21.4.1 ATtiny84A 3.3 V 0,4 2.7 V 0,2 1.8 V 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Frequency (MHz) Figure 21-113. Active Supply Current vs. Frequency 1 - 20 MHz, PRR = 0xFF 12 10 5.5 V 5.0 V 8 4.5 V ICC (mA) 21.4 6 4.0 V 4 3.3 V 2.7 V 2 1.8 V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 245 ATtiny24A/44A/84A Figure 21-114. Active Supply Current vs. VCC Internal RC Oscillator, 8 MHz 5 85 C 25 C -40 C 4,5 4 3,5 ICC (mA) 3 2,5 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-115. Active Supply Current vs. VCC Internal RC Oscillator, 1 MHz 1,4 1,2 85 C 25 C -40 C 1 ICC (mA) 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 246 ATtiny24A/44A/84A Figure 21-116. Active Supply Current vs. VCC Internal RC Oscillator, 128 kHz 0,14 0,12 -40 C 25 C 85 C 0,1 ICC (mA) 0,08 0,06 0,04 0,02 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Current Consumption in Idle Mode Figure 21-117. Idle Supply Current vs. Low Frequency 0.1 - 1.0 MHz, PRR = 0xFF 0,14 5.5 V 0,12 5.0 V 0,1 4.5 V 0,08 4.0 V 0,06 3.3 V ICC (mA) 21.4.2 2.7 V 0,04 1.8 V 0,02 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Frequency (MHz) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 247 ATtiny24A/44A/84A Figure 21-118. Idle Supply Current vs. Frequency 1 - 20 MHz, PRR = 0xFF 4 3,5 3 5.5 V ICC (mA) 2,5 5.0 V 2 4.5 V 1,5 4.0 V 1 3.3 V 0,5 2.7 V 1.8 V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) Figure 21-119. Idle Supply Current vs. VCC Internal RC Oscillator, 8 MHz 2 1,8 1,6 1,4 85 C 25 C -40 C ICC (mA) 1,2 1 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 248 ATtiny24A/44A/84A Figure 21-120. Idle Supply Current vs. VCC Internal RC Oscillator, 1 MHz 0,4 0,35 0,3 85 C 25 C -40 C ICC (mA) 0,25 0,2 0,15 0,1 0,05 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-121. Idle Supply Current vs. VCC Internal RC Oscillator, 128 kHz 0,03 0,025 -40 C 25 C 85 C ICC (mA) 0,02 0,015 0,01 0,005 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 249 ATtiny24A/44A/84A Current Consumption in Power-down Mode Figure 21-122. Power-down Supply Current vs. VCC Watchdog Timer Disabled 1,6 1,4 85 C 1,2 ICC (uA) 1 0,8 0,6 0,4 25 C 0,2 -40 C 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4 4,5 5 5,5 VCC (V) Figure 21-123. Power-down Supply Current vs. VCC Watchdog Timer Enabled 10 8 6 ICC (uA) 21.4.3 -40 C 4 25 C 85 C 2 0 1,5 2 2,5 3 3,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 250 ATtiny24A/44A/84A Current Consumption in Reset Figure 21-124. Reset Supply Current vs. VCC 0.1 - 1.0 MHz, Excluding Current through Reset Pull-up 0,16 0,14 0,12 5.5 V ICC (mA) 0,1 5.0 V 4.5 V 0,08 4.0 V 0,06 3.3 V 2.7 V 0,04 1.8 V 0,02 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Frequency (MHz) Figure 21-125. Reset Supply Current vs. VCC 1 - 20 MHz, Excluding Current through Reset Pull-up 3 2,5 2 ICC (mA) 21.4.4 5.5 V 5.0 V 1,5 4.5 V 4.0 V 1 3.3 V 0,5 2.7 V 1.8 V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 251 ATtiny24A/44A/84A Current Consumption of Peripheral Units Figure 21-126. ADC Current vs. VCC 4 MHz Frequency 600 500 ICC (uA) 400 300 200 100 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4 4,5 5 5,5 VCC (V) Figure 21-127. AREF Pin Current vs. Pin Voltage 160 140 120 AREF pin current (uA) 21.4.5 100 80 60 40 20 0 1,5 2 2,5 3 3,5 AREF (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 252 ATtiny24A/44A/84A Figure 21-128. Analog Comparator Current vs. VCC 4 MHz Frequency 160 140 120 ICC (uA) 100 80 60 40 20 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-129. Programming Current vs. VCC 7000 6000 -40 C 5000 25 C ICC (uA) 4000 85 C 3000 2000 1000 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 253 ATtiny24A/44A/84A Figure 21-130. Brownout Detector Current vs. VCC BOD Level = 1.8V 45 40 35 ICC (uA) 30 25 85 C 25 C -40 C 20 15 10 5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Pull-up Resistors Figure 21-131. Pull-up Resistor Current vs. Input Voltage I/O Pin, VCC = 1.8V 60 50 40 IOP (uA) 21.4.6 30 20 10 25 C -40 C 85 C 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VOP (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 254 ATtiny24A/44A/84A Figure 21-132. Pull-up Resistor Current vs. Input Voltage I/O Pin, VCC = 2.7V 80 70 60 IOP (uA) 50 40 30 20 10 25 C 85 C -40 C 0 0 0,5 1 1,5 2 2,5 3 VOP (V) Figure 21-133. Pull-up Resistor Current vs. Input Voltage I/O Pin, VCC = 5V 160 140 120 IOP (uA) 100 80 60 40 20 25 C 85 C -40 C 0 0 1 2 3 4 5 6 VOP (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 255 ATtiny24A/44A/84A Figure 21-134. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 1.8V 40 35 30 IRESET (uA) 25 20 15 10 5 25 C -40 C 85 C 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VRESET (V) Figure 21-135. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 2.7V 60 50 IRESET (uA) 40 30 20 10 25 C -40 C 85 C 0 0 0,5 1 1,5 2 2,5 3 VRESET (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 256 ATtiny24A/44A/84A Figure 21-136. Reset Pull-up Resistor Current vs. Reset Pin Voltage VCC = 5V 120 100 IRESET (uA) 80 60 40 20 25 C -40 C 85 C 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 VRESET (V) Output Driver Strength Figure 21-137. VOL: Output Voltage vs. Sink Current I/O Pin, VCC = 3V 1,2 1 85 C 0,8 25 C VOL (V) 21.4.7 -40 C 0,6 0,4 0,2 0 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 257 ATtiny24A/44A/84A Figure 21-138. VOL: Output Voltage vs. Sink Current I/O Pin, VCC = 5V 0,7 0,6 85 C 0,5 25 C -40 C VOL (V) 0,4 0,3 0,2 0,1 0 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) Figure 21-139. VOH: Output Voltage vs. Source Current I/O Pin, VCC = 3V 3,2 3 2,8 VOH (V) 2,6 2,4 -40 C 25 C 2,2 85 C 2 1,8 0 2 4 6 8 10 12 14 16 18 20 IOH (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 258 ATtiny24A/44A/84A Figure 21-140. VOH: Output Voltage vs. Source Current I/O Pin, VCC = 5V 5,2 5 VOH (V) 4,8 4,6 -40 C 25 C 4,4 85 C 4,2 0 2 4 6 8 10 12 14 16 18 20 IOH (mA) Figure 21-141. VOL: Output Voltage vs. Sink Current Reset Pin as I/O, VCC = 3V 1,4 1,2 85 C 1 25 C VOL (V) 0,8 -40 C 0,6 0,4 0,2 0 0 0,5 1 1,5 2 2,5 3 IOL (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 259 ATtiny24A/44A/84A Figure 21-142. VOL: Output Voltage vs. Sink Current Reset Pin as I/O, VCC = 5V 2 85 C 1,8 1,6 25 C 1,4 VOL (V) 1,2 -40 C 1 0,8 0,6 0,4 0,2 0 0 1 2 3 4 5 6 7 8 IOL (mA) Figure 21-143. VOH: Output Voltage vs. Source Current Reset Pin as I/O, VCC = 3V 3 2,5 VOH (V) 2 1,5 -40 C 1 25 C 85 C 0,5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 IOH (mA) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 260 ATtiny24A/44A/84A Figure 21-144. VOH: Output Voltage vs. Source Current Reset Pin as I/O, VCC = 5V 5 4,5 4 3,5 VOH (V) 3 -40 C 25 C 85 C 2,5 2 1,5 1 0,5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 IOH (mA) Input Threshold and Hysteresis (for I/O Ports) Figure 21-145. VIH: Input Threshold Voltage vs. VCC I/O Pin, Read as `1' 3,5 85 C 25 C -40 C 3 2,5 Threshold (V) 21.4.8 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 261 ATtiny24A/44A/84A Figure 21-146. VIL: Input Threshold Voltage vs. VCC I/O Pin, Read as `0' 2,5 85 C 25 C -40 C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-147. VIH-VIL: Input Hysteresis vs. VCC I/O Pin 0,6 -40 C 0,5 25 C Input Hysteresis (V) 0,4 85 C 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 262 ATtiny24A/44A/84A Figure 21-148. VIH: Input Threshold Voltage vs. VCC Reset Pin as I/O, Read as `1' 3 25 C 85 C -40 C 2,5 Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-149. VIL: Input Threshold Voltage vs. VCC Reset Pin as I/O, Read as `0' 2,5 85 C 25 C -40 C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 263 ATtiny24A/44A/84A Figure 21-150. VIH-VIL: Input Hysteresis vs. VCC Reset Pin as I/O 1 0,9 0,8 Input Hysteresis (V) 0,7 85 C 0,6 25 C 0,5 -40 C 0,4 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) BOD, Bandgap and Reset Figure 21-151. BOD Threshold vs. Temperature BODLEVEL is 4.3V 4,42 RISING VCC 4,4 4,38 4,36 Threshold (V) 21.4.9 4,34 FALLING VCC 4,32 4,3 4,28 4,26 4,24 -40 -20 0 20 40 60 80 100 Temperature (C) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 264 ATtiny24A/44A/84A Figure 21-152. BOD Threshold vs. Temperature BODLEVEL is 2.7V 2,82 2,8 RISING VCC 2,78 Threshold (V) 2,76 2,74 FALLING VCC 2,72 2,7 2,68 2,66 -40 -20 0 20 40 60 80 100 Temperature (C) Figure 21-153. Bandgap Voltage vs. Supply Voltage 1,2 1,18 1,16 Bandgap Voltage (V) 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 Vcc (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 265 ATtiny24A/44A/84A Figure 21-154. Bandgap Voltage vs. Temperature 1,2 1,18 1,16 Bandgap Voltage (V) 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 -40 -20 0 20 40 60 80 100 Temperature (C) Figure 21-155. VIH: Input Threshold Voltage vs. VCC Reset Pin, Read as `1' 2,5 Threshold (V) 2 1,5 1 -40 C 25 C 85 C 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 266 ATtiny24A/44A/84A Figure 21-156. VIL: Input Threshold Voltage vs. VCC Reset Pin, Read as `0' 2,5 85 C 25 C -40 C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4 4,5 5 5,5 VCC (V) Figure 21-157. VIH-VIL: Input Hysteresis vs. VCC Reset Pin 1 0,9 0,8 Input Hysteresis (V) 0,7 0,6 -40 C 0,5 25 C 0,4 0,3 85 C 0,2 0,1 0 1,5 2 2,5 3 3,5 VCC (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 267 ATtiny24A/44A/84A Figure 21-158. Minimum Reset Pulse Width vs. VCC 2000 1800 1600 Pulsewidth (ns) 1400 1200 1000 800 600 400 85 C 25 C -40 C 200 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Analog Comparator Offset Figure 21-159. Analog Comparator Offset VCC = 5V 0.004 0.002 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 -0.002 Offset (V) 21.4.10 -0.004 -0.006 -40 25 -0.008 85 -0.01 -0.012 Vin (V) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 268 ATtiny24A/44A/84A Internal Oscillator Speed Figure 21-160. Watchdog Oscillator Frequency vs. VCC 120 118 116 FRC (kHz) -40 C 114 25 C 112 110 85 C 108 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-161. Watchdog Oscillator Frequency vs. Temperature 120 118 116 FRC (kHz) 21.4.11 114 112 1.8 V 3.0 V 110 5.5 V 108 106 -40 -20 0 20 40 60 80 100 Temperature (C) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 269 ATtiny24A/44A/84A Figure 21-162. Calibrated 8 MHz RC Oscillator Frequency vs. VCC 8,4 8,3 85 C 8,2 25 C 8,1 -40 C FRC (MHz) 8 7,9 7,8 7,7 7,6 7,5 7,4 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 21-163. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature 8,4 8,3 8,2 5.0 V 8,1 FRC (MHz) 3.0 V 8 1.8 V 7,9 7,8 7,7 7,6 7,5 -40 -20 0 20 40 60 80 100 Temperature (C) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 270 ATtiny24A/44A/84A Figure 21-164. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value VCC = 3V 16 14 85 C 25 C -40 C 12 FRC (MHz) 10 8 6 4 2 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL (X1) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 271 ATtiny24A/44A/84A 22. Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 0x3F (0x5F) SREG I T H S V N Z C Page 20 - - - - SP9 SP8 Page 19 SP1 SP0 0x3E (0x5E) SPH - - 0x3D (0x5D) SPL SP7 SP6 0x3C (0x5C) OCR0B 0x3B (0x5B) GIMSK - INT0 PCIE1 PCIE0 - - - - 0x3A (0x5A) GIFR - INTF0 PCIF1 PCIF0 - - - - Page 57 0x39 (0x59) TIMSK0 - - - - - OCIE0B OCIE0A TOIE0 Page 89 0x38 (0x58) TIFR0 - - - - - OCF0B OCF0A TOV0 Page 90 0x37 (0x57) SPMCSR - - RSIG CTPB RFLB PGWRT Timer/Counter0 - Output Compare Register A PGERS SPMEN Page 162 BODS PUD SE SM1 Pages 42, 56, 72 0x36 (0x56) OCR0A 0x35 (0x55) MCUCR SP5 SP4 SP3 SP2 Timer/Counter0 - Output Compare Register B Page 19 Page 89 Page 56 Page 89 SM0 BODSE ISC01 ISC00 0x34 (0x54) MCUSR - - - - WDRF BORF EXTRF PORF Page 50 0x33 (0x53) TCCR0B FOC0A FOC0B - - WGM02 CS02 CS01 CS00 Page 88 CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 Page 37 0x32 (0x52) TCNT0 0x31 (0x51) OSCCAL Timer/Counter0 Page 89 0x30 (0x50) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 - - WGM01 WGM00 Page 85 0x2F (0x4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - - WGM11 WGM10 Page 112 ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 Page 114 0x2E (0x4E) TCCR1B 0x2D (0x4D) TCNT1H Timer/Counter1 - Counter Register High Byte Page 116 0x2C (0x4C) TCNT1L Timer/Counter1 - Counter Register Low Byte Page 116 0x2B (0x4B) OCR1AH Timer/Counter1 - Compare Register A High Byte Page 116 0x2A (0x4A) OCR1AL Timer/Counter1 - Compare Register A Low Byte Page 116 0x29 (0x49) OCR1BH Timer/Counter1 - Compare Register B High Byte Page 116 0x28 (0x48) OCR1BL Timer/Counter1 - Compare Register B Low Byte Page 116 0x27 (0x47) DWDR 0x26 (0x46) CLKPR 0x25 (0x45) ICR1H DWDR[7:0] CLKPCE - - - Page 157 CLKPS3 CLKPS2 CLKPS1 CLKPS0 Timer/Counter1 - Input Capture Register High Byte 0x24 (0x44) ICR1L 0x23 (0x43) GTCCR TSM - Timer/Counter1 - Input Capture Register Low Byte 0x22 (0x42) TCCR1C FOC1A FOC1B - - - - 0x21 (0x41) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 0x20 (0x40) PCMSK1 - - - - PCINT11 PCINT10 PCINT9 - - - - Page 37 Page 117 Page 117 - PSR10 Page 120 - - Page 115 WDP1 WDP0 Page 50 PCINT8 Page 57 0x1F (0x3F) EEARH - - - - - - - EEAR8 Page 26 0x1E (0x3E) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 Page 27 0x1D (0x3D) EEDR 0x1C (0x3C) EECR - - EEPM1 EEPM0 EERIE EEMPE EEPE EERE Page 29 0x1B (0x3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 Page 72 0x1A (0x3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 Page 72 0x19 (0x39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 Page 73 0x18 (0x38) PORTB - - - - PORTB3 PORTB2 PORTB1 PORTB0 Page 73 0x17 (0x37) DDRB - - - - DDB3 DDB2 DDB1 DDB0 Page 73 0x16 (0x36) PINB - - - - PINB3 PINB2 PINB1 PINB0 Page 73 0x15 (0x35) GPIOR2 General Purpose I/O Register 2 Page 28 0x14 (0x34) GPIOR1 General Purpose I/O Register 1 Page 29 0x13 (0x33) GPIOR0 General Purpose I/O Register 0 0x12 (0x32) PCMSK0 0x11 (0x31)) Reserved - 0x10 (0x30) USIBR USI Buffer Register 0x0F (0x2F) USIDR USI Data Register 0x0E (0x2E) USISR USISIF USIOIF USIPF USIDC USICNT3 0x0D (0x2D) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 0x0C (0x2C) TIMSK1 - - ICIE1 - - 0x0B (0x2B) TIFR1 - - ICF1 - - 0x0A (0x2A) Reserved 0x09 (0x29) Reserved 0x08 (0x28) ACSR ACD ACBG ACO ACI 0x07 (0x27) ADMUX REFS1 REFS0 MUX5 MUX4 0x06 (0x26) ADCSRA ADEN ADSC ADATE ADIF ADIE 0x05 (0x25) ADCH ADC Data Register High Byte 0x04 (0x24) ADCL ADC Data Register Low Byte 0x03 (0x23) ADCSRB EEPROM Data Register PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 Page 27 Page 29 PCINT2 PCINT1 PCINT0 Page 58 Page 133 Page 132 USICNT2 USICNT1 USICNT0 Page 131 USICS0 USICLK USITC Page 129 OCIE1B OCIE1A TOIE1 Page 117 OCF1B OCF1A TOV1 Page 118 ACIE ACIC ACIS1 ACIS0 Page 135 MUX3 MUX2 MUX1 MUX0 Page 150 ADPS2 ADPS1 ADPS0 Page 152 - - BIN ACME - ADLAR Page 154 Page 154 - ADTS2 ADTS1 ADTS0 Pages 136, 154 0x02 (0x22) Reserved 0x01 (0x21) DIDR0 ADC7D ADC6D ADC5D ADC4D - ADC3D ADC2D ADC1D ADC0D Pages 137, 155 0x00 (0x20) PRR - - - - PRTIM1 PRTIM0 PRUSI PRADC Page 43 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 272 ATtiny24A/44A/84A Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 273 ATtiny24A/44A/84A 23. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd Rd + Rr Z,C,N,V,H ADC Rd, Rr Add with Carry two Registers Rd Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd Rd Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd Rd K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd Rd v Rr Z,N,V 1 1 ORI Rd, K Logical OR Register and Constant Rd Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd Rd Rr Z,N,V 1 COM Rd One's Complement Rd 0xFF Rd Z,C,N,V 1 NEG Rd Two's Complement Rd 0x00 Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd Rd (0xFF - K) Z,N,V 1 INC Rd Increment Rd Rd + 1 Z,N,V 1 DEC Rd Decrement Rd Rd 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd Rd Rd Z,N,V 1 CLR Rd Clear Register Rd Rd Rd Z,N,V 1 SER Rd Set Register Rd 0xFF None 1 Relative Jump PC PC + k + 1 None 2 Indirect Jump to (Z) PC Z None 2 BRANCH INSTRUCTIONS RJMP k IJMP Relative Subroutine Call PC PC + k + 1 None 3 ICALL Indirect Call to (Z) PC Z None 3 RET Subroutine Return PC STACK None 4 RETI Interrupt Return PC STACK I None RCALL k CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 4 1/2/3 CP Rd,Rr Compare Rd Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd Rr C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd K Z, N,V,C,H SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC PC + 2 or 3 None 1 1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N V= 0) then PC PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N V= 1) then PC PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC PC + k + 1 None 1/2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC PC + k + 1 None 1/2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) 0 None 2 LSL Rd Logical Shift Left Rd(n+1) Rd(n), Rd(0) 0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n) Rd(n+1), Rd(7) 0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z,C,N,V 1 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 274 ATtiny24A/44A/84A Mnemonics Operands Description Operation Flags #Clocks ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1 BSET s Flag Set SREG(s) 1 SREG(s) 1 BCLR s Flag Clear SREG(s) 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) T None 1 SEC Set Carry C1 C 1 CLC Clear Carry C0 C 1 SEN Set Negative Flag N1 N 1 CLN Clear Negative Flag N0 N 1 SEZ Set Zero Flag Z1 Z 1 CLZ Clear Zero Flag Z0 Z 1 SEI Global Interrupt Enable I1 I 1 CLI Global Interrupt Disable I 0 I 1 SES Set Signed Test Flag S1 S 1 CLS Clear Signed Test Flag S0 S 1 SEV Set Twos Complement Overflow. V1 V 1 CLV Clear Twos Complement Overflow V0 V 1 SET Set T in SREG T1 T 1 CLT Clear T in SREG T0 T 1 SEH CLH Set Half Carry Flag in SREG Clear Half Carry Flag in SREG H1 H0 H H 1 Rd Rr Rd+1:Rd Rr+1:Rr None 1 None 1 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers MOVW Rd, Rr Copy Register Word LDI Rd, K Load Immediate Rd K None 1 LD Rd, X Load Indirect Rd (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd (X), X X + 1 None 2 LD Rd, - X Load Indirect and Pre-Dec. X X - 1, Rd (X) None 2 LD Rd, Y Load Indirect Rd (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd (Y), Y Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y Y - 1, Rd (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd (Y + q) None 2 LD Rd, Z Load Indirect Rd (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd (Z), Z Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z Z - 1, Rd (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd (k) None 2 ST X, Rr Store Indirect (X) Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X X - 1, (X) Rr None 2 ST Y, Rr Store Indirect (Y) Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) Rr, Y Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y Y - 1, (Y) Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q) Rr None 2 ST Z, Rr Store Indirect (Z) Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) Rr, Z Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z Z - 1, (Z) Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) Rr None 2 STS k, Rr LPM Store Direct to SRAM (k) Rr None 2 Load Program Memory R0 (Z) None 3 LPM Rd, Z Load Program Memory Rd (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd (Z), Z Z+1 None 3 Store Program Memory (z) R1:R0 None SPM IN Rd, P In Port Rd P None OUT P, Rr Out Port P Rr None 1 PUSH Rr Push Register on Stack STACK Rr None 2 POP Rd Pop Register from Stack Rd STACK None 2 1 MCU CONTROL INSTRUCTIONS NOP No Operation None 1 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR BREAK Watchdog Reset Break (see specific descr. for WDR/Timer) For On-chip Debug Only None None 1 N/A 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 275 ATtiny24A/44A/84A 24. Ordering Information 24.1 ATtiny24A Speed (MHz) (1) Supply Voltage (V) Temperature Range Package (2) 14S1 14P3 Industrial (-40C to +85C) (4) 15CC1 20M1 20 20M2 1.8 - 5.5V Industrial (-40C to +105C) (5) 14S1 14S1 Industrial (-40C to +125C) (6) 20M1 20M2 Notes: Ordering Code (3) ATtiny24A-SSU ATtiny24A-SSUR ATtiny24A-PU ATtiny24A-CCU ATtiny24A-CCUR ATtiny24A-MU ATtiny24A-MUR ATtiny24A-MMH ATtiny24A-MMHR ATtiny24A-SSN ATtiny24A-SSNR ATtiny24A-SSF ATtiny24A-SSFR ATtiny24A-MF ATtiny24A-MFR ATtiny24A-MM8 ATtiny24A-MM8R 1. For speed vs. supply voltage, see section 20.3 "Speed" on page 180. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS) 3. Code indicators: - H: NiPdAu lead finish - F, N, U: matte tin - R: tape & reel 4. Also supplied in wafer form. Contact your local Microchip sales office for ordering information and minimum quantities. 5. For typical and electrical characteristics, see "Appendix A - ATtiny24A/44A Specification at 105C". 6. For typical and electrical characteristics, see "Appendix B - ATtiny24A/44A/84A Specification at 125C". Package Type 14S1 14-lead, 3.90 mm Narrow Body, Plastic Small Outline Package (SOIC) 14P3 14-lead, 0.300" Wide, Plastic Dual In-line Package (PDIP) 15CC1 15-ball (4 x 4 Array), 0.65 mm Pitch, 3.0 x 3.0 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA) 20M1 20-Lead, 4 x 4 x 0.8 mm Body, Very, Very Thin Quad Flat, No Lead Package (WQFN) 20M2 20-Lead, 3 x 3 x 0.85 mm Body, Very Thin Plastic Quad Flat, No Lead Package (VQFN) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 276 ATtiny24A/44A/84A 24.2 ATtiny44A Speed (MHz) (1) Supply Voltage (V) Temperature Range Package (2) 14S1 14P3 Industrial (-40C to +85C) (4) 15CC1 20M1 20 1.8 - 5.5V 20M2 Industrial (-40C to +105C) (5) 14S1 14S1 Industrial (-40C to +125C) (6) 20M1 Notes: Ordering Code (3) ATtiny44A-SSU ATtiny44A-SSUR ATtiny44A-PU ATtiny44A-CCU ATtiny44A-CCUR ATtiny44A-MU ATtiny44A-MUR ATtiny44A-MMH ATtiny44A-MMHR ATtiny44A-SSN ATtiny44A-SSNR ATtiny44A-SSF ATtiny44A-SSFR ATtiny44A-MF ATtiny44A-MFR 1. For speed vs. supply voltage, see section 20.3 "Speed" on page 180. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). 3. Code indicators: - H: NiPdAu lead finish - F, N, U: matte tin - R: tape & reel 4. These devices can also be supplied in wafer form. Please contact your local Microchip sales office for detailed ordering information and minimum quantities. 5. For typical and electrical characteristics, see "Appendix A - ATtiny24A/44A Specification at 105C". 6. For typical and electrical characteristics, see "Appendix B - ATtiny24A/44A/84A Specification at 125C". Package Type 14S1 14-lead, 3.90 mm Narrow Body, Plastic Small Outline Package (SOIC) 14P3 14-lead, 0.300" Wide, Plastic Dual In-line Package (PDIP) 15CC1 15-ball (4 x 4 Array), 0.65 mm Pitch, 3.0 x 3.0 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA) 20M1 20-Lead, 4 x 4 x 0.8 mm Body, Very, Very Thin Quad Flat, No Lead Package (WQFN) 20M2 20-Lead, 3 x 3 x 0.85 mm Body, Very Thin Plastic Quad Flat, No Lead Package (VQFN) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 277 ATtiny24A/44A/84A 24.3 ATtiny84A Speed (MHz) (1) Supply Voltage (V) Temperature Range Package (2) 14S1 14P3 15CC1 Industrial (-40C to +85C) (4) 20 1.8 - 5.5V Ordering Code (3) ATtiny84A-SSU ATtiny84A-SSUR ATtiny84A-PU ATtiny84A-CCU ATtiny84A-CCUR ATtiny84A-MU 20M1 ATtiny84A-MUR ATtiny84A-MF ATtiny84A-MFR 20M2 Industrial (-40C to +125C) (6) Notes: 14S1 ATtiny84A-MMH ATtiny84A-MMHR ATtiny84A-SSF ATtiny84A-SSFR 1. For speed vs. supply voltage, see section 20.3 "Speed" on page 180. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). 3. Code indicators: - H: NiPdAu lead finish - F, N, U: matte tin - R: tape & reel 4. These devices can also be supplied in wafer form. Please contact your local Microchip sales office for detailed ordering information and minimum quantities. 5. For typical and electrical characteristics, see "Appendix A - ATtiny24A/44A Specification at 105C". 6. For typical and electrical characteristics, see "Appendix B - ATtiny24A/44A/84A Specification at 125C". Package Type 14S1 14-lead, 3.90 mm Narrow Body, Plastic Small Outline Package (SOIC) 14P3 14-lead, 0.300" Wide, Plastic Dual In-line Package (PDIP) 15CC1 15-ball (4 x 4 Array), 0.65 mm Pitch, 3.0 x 3.0 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA) 20M1 20-Lead, 4 x 4 x 0.8 mm Body, Very, Very Thin Quad Flat, No Lead Package (WQFN) 20M2 20-Lead, 3 x 3 x 0.85 mm Body, Very Thin Plastic Quad Flat, No Lead Package (VQFN) 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 278 ATtiny24A/44A/84A 25. Packaging Information 25.1 14S1 14-Lead Plastic Small Outline (D3X, UEB, M5B, UEB) - Narrow, 3.90 mm Body [SOIC] Atmel Legacy Global Package Code SVQ Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2X 0.10 C A-B D A NOTE 5 D N E 2 E2 2 E1 E 2X 0.10 C D NOTE 1 1 2 2X N/2 TIPS 0.20 C 3 e NX b B 0.25 NOTE 5 C A-B D TOP VIEW 0.10 C C A A2 SEATING PLANE 14X 0.10 C SIDE VIEW A1 h h R0.13 H R0.13 c SEE VIEW C L VIEW A-A (L1) VIEW C Microchip Technology Drawing No. C04-065-D3X Rev D 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 279 ATtiny24A/44A/84A 14-Lead Plastic Small Outline (D3X, UEB, M5B, UEB) - Narrow, 3.90 mm Body [SOIC] Atmel Legacy Global Package Code SVQ Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2X 0.10 C A-B D A NOTE 5 D N E 2 E2 2 E1 E 2X 0.10 C D NOTE 1 1 2 2X N/2 TIPS 0.20 C 3 e NX b B 0.25 NOTE 5 C A-B D TOP VIEW 0.10 C C A A2 SEATING PLANE 14X 0.10 C SIDE VIEW A1 h h R0.13 H R0.13 c SEE VIEW C L VIEW A-A (L1) VIEW C Microchip Technology Drawing No. C04-065-D3X Rev D 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 280 ATtiny24A/44A/84A 14-Lead Plastic Small Outline (D3X, UEB, M5B, UEB) - Narrow, 3.90 mm Body [SOIC] Atmel Legacy Global Package Code SVQ Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 14 SILK SCREEN C Y 1 2 X E RECOMMENDED LAND PATTERN Units Dimension Limits Contact Pitch E Contact Pad Spacing C Contact Pad Width (X14) X Contact Pad Length (X14) Y MIN MILLIMETERS NOM 1.27 BSC 5.40 MAX 0.60 1.55 Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2065-D3X Rev D 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 281 ATtiny24A/44A/84A 25.2 14P3 /HDG3ODVWLF'XDO,Q/LQH3' PLO%RG\>3',3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ N NOTE 1 E1 1 3 2 D E A2 A L A1 c b1 b e eB 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI3LQV ,1&+(6 0,1 1 120 0$; 3LWFK H 7RSWR6HDWLQJ3ODQH $ 0ROGHG3DFNDJH7KLFNQHVV $ %DVHWR6HDWLQJ3ODQH $ 6KRXOGHUWR6KRXOGHU:LGWK ( 0ROGHG3DFNDJH:LGWK ( 2YHUDOO/HQJWK ' 7LSWR6HDWLQJ3ODQH / /HDG7KLFNQHVV F E E H% 8SSHU/HDG:LGWK /RZHU/HDG:LGWK 2YHUDOO5RZ6SDFLQJ %6& 1RWHV 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKWKHKDWFKHGDUHD 6LJQLILFDQW&KDUDFWHULVWLF 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6&%DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 282 ATtiny24A/44A/84A 25.3 15CC1 15-Ball Ultra Thin Fine Pitch Ball Grid Array (BNB) - 3x3x0.6 mm Body [UFBGA] Atmel Legacy Global Package Code CBC Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 15X 0.08 C D 1 NOTE1 A 3 2 4 0.10 C B A B E (DATUM B) (DATUM A) C D 2X 0.10 C 2X A1 TOP VIEW 0.10 C A2 1 2 3 A SEATING C PLANE 4 SIDE VIEW D e 2 C eE B A NOTE 1 15X Ob e eD 0.10 0.05 C A B C BOTTOM VIEW Microchip Technology Drawing C04-21151 Rev A Sheet 1 of 2 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 283 ATtiny24A/44A/84A 15-Ball Ultra Thin Fine Pitch Ball Grid Array (BNB) - 3x3x0.6 mm Body [UFBGA] Atmel Legacy Global Package Code CBC Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units Dimension Limits N Number of Terminals e Pitch Overall Terminal Spacing eD eE Overall Terminal Spacing Overall Height A Standoff A1 A2 Package Thickness Overall Length D E Overall Width b Terminal Width MIN - 0.12 0.25 MILLIMETERS NOM 15 0.65 BSC 1.95 BSC 1.95 BSC - - 0.38 REF 3.00 BSC 3.00 BSC 0.30 MAX 0.60 - 0.35 Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-21151 Rev A Sheet 2 of 2 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 284 ATtiny24A/44A/84A 15-Ball Ultra Thin Fine Pitch Ball Grid Array (BNB) - 3x3x0.6 mm Body [UFBGA] Atmel Legacy Global Package Code CBC Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 1 2 3 4 A B G C2 C D SILK SCREEN OX E C1 RECOMMENDED LAND PATTERN Units Dimension Limits E Contact Pitch Contact Pad Spacing C1 Contact Pad Spacing C2 Contact Pad Diameter (X15) X Contact Pad to Contact Pad G MIN MILLIMETERS NOM 0.65 BSC 1.95 BSC 1.95 BSC MAX 0.25 0.40 Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process Microchip Technology Drawing C04-23151 Rev A 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 285 ATtiny24A/44A/84A 25.4 20M1 20-Lead Very, Very Thin Quad Flat, No Lead Package (TRB) - 4x4x0.8 mm Body [WQFN] With 2.6 mm Exposed Pad; Atmel Legacay Global Package Code ZYZ Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 20X 0.08 C D NOTE1 A 0.10 C B N 1 2 E (DATUM B) (DATUM A) 2X 0.15 C 2X TOP VIEW 0.15 C A1 0.10 (A3) C A B D2 (K) A SEATING C PLANE SIDE VIEW E2 2 1 0.10 NOTE 1 C A B N L e BOTTOM VIEW 20X b 0.10 0.05 C A B C Microchip Technology Drawing C04-21443 Rev A Sheet 1 of 2 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 286 ATtiny24A/44A/84A 20-Lead Very, Very Thin Quad Flat, No Lead Package (TRB) - 4x4x0.8 mm Body [WQFN] With 2.6 mm Exposed Pad; Atmel Legacay Global Package Code ZYZ Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units Dimension Limits Number of Terminals N e Pitch Overall Height A Standoff A1 A3 Terminal Thickness Overall Length D Exposed Pad Length D2 Overall Width E E2 Exposed Pad Width Terminal Width b Terminal Length L Terminal-to-Exposed-Pad K MIN 0.70 - 2.45 2.45 0.18 0.35 MILLIMETERS NOM 20 0.50 BSC 0.75 0.01 0.20 REF 4.00 BSC 2.60 4.00 BSC 2.60 0.23 0.40 0.30 REF MAX 0.80 0.05 2.75 2.75 0.30 0.55 Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Package is saw singulated 3. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-21443 Rev A Sheet 2 of 2 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 287 ATtiny24A/44A/84A 20-Lead Very, Very Thin Quad Flat, No Lead Package (TRB) - 4x4x0.8 mm Body [WQFN] With 2.6 mm Exposed Pad; Atmel Legacay Global Package Code ZYZ Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging C1 X2 EV 20 OV 1 2 G2 C2 Y2 EV G1 Y1 SILK SCREEN X1 E RECOMMENDED LAND PATTERN Units Dimension Limits E Contact Pitch Optional Center Pad Width X2 Optional Center Pad Length Y2 Contact Pad Spacing C1 Contact Pad Spacing C2 Contact Pad Width (X20) X1 Contact Pad Length (X20) Y1 Contact Pad to Center Pad (X20) G1 Contact Pad to Contact Pad (X16) G2 Thermal Via Diameter V Thermal Via Pitch EV MIN MILLIMETERS NOM 0.50 BSC MAX 2.75 2.75 4.00 4.00 0.30 0.80 0.23 0.20 0.30 1.00 Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process Microchip Technology Drawing C04-2343 Rev A 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 288 ATtiny24A/44A/84A 25.5 20M2 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 289 ATtiny24A/44A/84A 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 290 ATtiny24A/44A/84A 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 291 ATtiny24A/44A/84A 26. Errata The errata content has been moved to a separate document, refer to ATtiny24A/44A/84A Silicon Errata and Data Sheet Clarification, located at: www.microchip.com/DS80000851. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 292 ATtiny24A/44A/84A 27. Datasheet Revision History 27.1 Rev. A - 10/20 1. New Microchip document number. Previous version was Atmel data sheet rev. 8183F. 2. Updated "Packaging Information" on page 279 to Microchip style. 3. Updated "Ordering Information" on page 276. 4. Errata has been moved to separate document. 5. Updated Table 9-1, "Reset and Interrupt Vectors," on page 53. 6. Analog Comparator Input Offset Voltage updated in Table 20-7, "ADC Characteristics, Single Ended Channels. T = -40C to +85C," on page 183. 7. Removed notes regarding topside package markings from "Ordering Information" on page 276. 27.2 Rev. 8183F - 06/12 1. Updated: - Table 16-1 on page 144 - Figure 16-7 on page 143 - "Ordering Information" on page 276 27.3 Rev. 8183E - 01/12 1. Updated: - Production status for ATtiny24A and ATtiny84A - "Start Condition Detector" on page 128 - "Ordering Information" on page 276, 277, and 278 27.4 Rev. 8183D - 04/11 1. Added errata for ATtiny44A rev. G in Section 26. "Errata" on page 292 27.5 Rev. 8183C - 03/11 1. Added: - ATtiny84A, including typical characteristics plots - Section 3.3 "Capacitive Touch Sensing" on page 12 - Table 6-8, "Capacitance of Low-Frequency Crystal Oscillator," on page 34 - Analog Comparator Offset plots for ATtiny24A ("Analog Comparator Offset" on page 214) and ATtiny44A ("Analog Comparator Offset" on page 242) - Extended temperature part numbers in Section 24. "Ordering Information" on page 276 2. Updated: - Bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0] - Section 6.4 "Clock Output Buffer" on page 36, changed CLKO to CKOUT - Table 16-4, "Single-Ended Input channel Selections," on page 151, added note for Internal 1.1V Reference 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 293 ATtiny24A/44A/84A - Table 19-16, "High-voltage Serial Programming Instruction Set for ATtiny24A/44A/84A," on page 176, adjusted notes - Table 20-1, "DC Characteristics. TA = -40C to +85C," on page 179, adjusted notes 27.6 Rev. 8183B - 03/10 1. Updated template. 2. Added UFBGA package (15CC1) in: "Features" on page 1, "Pin Configurations" on page 8, Section 24. "Ordering Information" on page 276, and Section 25.3 "15CC1" on page 283. 3. Separated typical characteristic plots, added Section 21.2 "ATtiny24A" on page 189. 4. Updated sections: - Section 14.5.4 "USIBR - USI Buffer Register" on page 133, header updated - Section 24. "Ordering Information" on page 276, added tape & reel and topside marking, updated notes 5. Updated Figures: - Figure 4-1 "Block Diagram of the AVR(R) Architecture" on page 13 - Figure 8-1 "Reset Logic" on page 44 - Figure 14-1 "Universal Serial Interface, Block Diagram" on page 122, USIDB -> USIBR - Figure 19-5 "High-voltage Serial Programming Waveforms" on page 175 6. Updated Tables: - Table 19-11, "Minimum Wait Delay Before Writing the Next Flash or EEPROM Location," on page 170, updated value for tWD_ERASE 27.7 Rev. 8183A - 12/08 1. Initial revision. Created from document 8006H. 2. Updated "Ordering Information" on page 276. Pb-plated packages are no longer offered and there are no separate ordering codes for commercial operation range, the only available option now is industrial. Also, updated some order codes to reflect changes in leadframe composition and added VQFN package option. 3. Updated data sheet template. 4. Removed all references to 8K device. 5. Updated characteristic plots of section "Typical Characteristics", starting on page 188. 6. Added characteristic plots: - "Bandgap Voltage vs. Supply Voltage" on page 239 - "Bandgap Voltage vs. Temperature" on page 239 7. Updated sections: - "Features" on page 1 - "Power Reduction Register" on page 41 - "Analog Comparator" on page 134 - "Features" on page 138 - "Operation" on page 139 - "Starting a Conversion" on page 140 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 294 ATtiny24A/44A/84A - "ADC Voltage Reference" on page 145 - "Speed" on page 180 8. Updated Figures: - "Program Memory Map" on page 21 - "Data Memory Map" on page 22 9. Update Tables: - "Device Signature Bytes" on page 167 - "DC Characteristics. TA = -40C to +85C" on page 179 - "Additional Current Consumption for the different I/O modules (absolute values)" on page 188 - "Additional Current Consumption (percentage) in Active and Idle mode" on page 189 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 295 ATtiny24A/44A/84A DEVELOPMENT SUPPORT Move a design from concept to production in record time with Microchip's award-winning development tools. Microchip tools work together to provide state of the art debugging for any project with easy-to-use Graphical User Interfaces (GUIs) in our free MPLAB(R) X and Atmel Studio Integrated Development Environments (IDEs), and our code generation tools. Providing the ultimate ease-of-use experience, Microchip's line of programmers, debuggers and emulators work seamlessly with our software tools. Microchip development boards help evaluate the best silicon device for an application, while our line of third party tools round out our comprehensive development tool solutions. Microchip's MPLAB X and Atmel Studio ecosystems provide a variety of embedded design tools to consider, which support multiple devices, such as PIC(R) MCUs, AVR(R) MCUs, SAM MCUs and dsPIC(R) DSCs. MPLAB X tools are compatible with Windows(R), Linux(R) and Mac(R) operating systems while Atmel Studio tools are compatible with Windows. Go to the following website for more information and details: https://www.microchip.com/development-tools/ 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 293 ATtiny24A/44A/84A THE MICROCHIP WEBSITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information: Users of Microchip products can receive assistance through several channels: * Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software * General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing * Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives * * * * Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the website at: http://microchip.com/support CUSTOMER CHANGE NOTIFICATION SERVICE Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions. 2020 Microchip Technology Inc. Data Sheet Complete DS40002269A-page 294 Note the following details of the code protection feature on Microchip devices: * Microchip products meet the specifications contained in their particular Microchip Data Sheet. * Microchip believes that its family of products is secure when used in the intended manner and under normal conditions. * There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights. * Microchip is willing to work with any customer who is concerned about the integrity of its code. * Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Trademarks The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. (c) 2020, Microchip Technology Incorporated, All Rights Reserved. For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. 2020 Microchip Technology Inc. ISBN: 978-1-5224-6906-3 DS40002269A-page 295 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Australia - Sydney Tel: 61-2-9868-6733 India - Bangalore Tel: 91-80-3090-4444 China - Beijing Tel: 86-10-8569-7000 India - New Delhi Tel: 91-11-4160-8631 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Chengdu Tel: 86-28-8665-5511 India - Pune Tel: 91-20-4121-0141 Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829 China - Chongqing Tel: 86-23-8980-9588 Japan - Osaka Tel: 81-6-6152-7160 Finland - Espoo Tel: 358-9-4520-820 China - Dongguan Tel: 86-769-8702-9880 Japan - Tokyo Tel: 81-3-6880- 3770 China - Guangzhou Tel: 86-20-8755-8029 Korea - Daegu Tel: 82-53-744-4301 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 China - Hangzhou Tel: 86-571-8792-8115 Korea - Seoul Tel: 82-2-554-7200 China - Hong Kong SAR Tel: 852-2943-5100 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 China - Nanjing Tel: 86-25-8473-2460 Malaysia - Penang Tel: 60-4-227-8870 China - Qingdao Tel: 86-532-8502-7355 Philippines - Manila Tel: 63-2-634-9065 China - Shanghai Tel: 86-21-3326-8000 Singapore Tel: 65-6334-8870 China - Shenyang Tel: 86-24-2334-2829 Taiwan - Hsin Chu Tel: 886-3-577-8366 China - Shenzhen Tel: 86-755-8864-2200 Taiwan - Kaohsiung Tel: 886-7-213-7830 Israel - Ra'anana Tel: 972-9-744-7705 China - Suzhou Tel: 86-186-6233-1526 Taiwan - Taipei Tel: 886-2-2508-8600 China - Wuhan Tel: 86-27-5980-5300 Thailand - Bangkok Tel: 66-2-694-1351 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 China - Xian Tel: 86-29-8833-7252 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 DS40002269A-page 296 China - Xiamen Tel: 86-592-2388138 China - Zhuhai Tel: 86-756-3210040 Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-72400 Germany - Karlsruhe Tel: 49-721-625370 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 Italy - Padova Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7288-4388 Poland - Warsaw Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 2020 Microchip Technology Inc. 02/28/20