© 2010 Freescale Semiconductor, Inc. All rights reserved.
Freescale Semiconductor
The MPC8347EA PowerQUICC II Pro i s a next generation
PowerQUICC II integrated host processor. The
MPC8347EA contains a processor core built on Power
Architecture™ technology with system logic for
networking, storage, and general-purpose embedded
applications. For functional characteristics of the processor,
refer to th e MPC8349EA PowerQUICC II Pro Integrated
Host Processor Family Refere nce Manual.
T o locate published errata or updates for this document, refer
to the MPC8347EA product summary page on our website
listed on the back cover of this document or, contact your
local Freescale sales office.
Document Number: MPC8347EAEC
Rev. 10, 05/2010
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 6
3. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 10
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 13
6. DDR and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . 15
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8. Ethernet: Three-Speed Ethernet, MII Management . 22
9. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10. Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
14. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
15. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
16. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
17. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
18. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 53
19. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
20. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
21. System Design Information . . . . . . . . . . . . . . . . . . . 90
22. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 93
23. Document Revision History . . . . . . . . . . . . . . . . . . . 95
MPC8347EA PowerQUICC II Pro
Integrated Host Processor Hardware
Specifications
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
2Freescale Semiconductor
Overview
NOTE
The information in this document is accurate for revis ion 3.x silicon and
later (in other words, for orderable part numbers ending in A or B). For
information on revis ion 1.1 silicon a nd earlier ve rsions, see the MPC8347E
PowerQUIC C II Pro Integrated Host Processor Hardware Specifications.
See Section 22.1, “Part Numbers Fully Addressed by This Document, for
silicon revision level determination.
1Overview
This section provides a high-level overview of the device features. Figure 1 shows the major functiona l
units within the MPC8347EA.
Figure 1. MPC8347EA Block Diagram
Major features of the device are as follows:
Embedded PowerPC e300 processor core; operates at up to 667 MHz
High-performance, superscalar processor core
Floating-point, integer, loa d/store, system register, and branch processing units
32-Kbyte instruction cache, 32-Kbyte data cache
Lockable portion of L1 cache
Dynamic power management
Software-compatible with the other Freescale proc essor fa milies that implement Power
Architecture technology
Double data rate, DDR1/DDR2 SDRAM memory controller
Programmable timing supporting DDR1 and DDR2 SDR AM
32- or 64-bit data interface, up to 400 MHz data rate for TB GA, 266 MHz for PBGA
DUART
Dual I2C
Timers
GPIO
Security Interrupt
Controller
Dual
Role
High-Speed
Local Bus
DDR
SDRAM
Controller
Host
32KB
D-Cache
e300 Core
32KB
I-Cache
USB 2.0 10/100/1000 SEQ
PCI DMA
Ethernet
10/100/1000
Ethernet
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 3
Overview
Up to four physical banks (chip selects), each bank up to 1 Gbyte independently addressable
DRAM chip configurations from 64 Mbits to 1 Gbit with x8/x16 data ports
Full error checking and correction (ECC) support
Support for up to 16 simultaneous open pages (up to 32 pages for DDR2)
Contiguous or discontiguous memory mapping
Read-modify-write support
Sleep-mode support for SDRAM self refresh
Auto refresh
On-the-fly power management using CKE
Registered DIMM support
2.5-V SSTL 2 compatib le I/O for DDR1, 1 .8-V SSTL2 comp at ib le I/O for DDR2
Dual three-speed (10/100/1000) Ethernet controllers (TSECs)
Dual controllers designed to comply with IEEE 802.3™, 802.3u™, 820. 3x™, 802.3z™,
802.3ac™ standards
Ethernet physical interfaces:
1000 Mbps IEEE Std. 802.3 GMII /RGMII, IEEE Std. 802.3z TBI/RT BI, full-duplex
10/100 Mbps IEEE Std. 802.3 MII full- and half-duplex
Buffer desc riptors are backward-compatible with MPC8260 and MPC860T 10/100
programming models
9.6-Kbyte jumbo frame support
RMON statistics support
Internal 2-Kbyte transmit and 2-Kbyte receive FIFOs per TSEC module
MII management interface for control and status
Programmable CRC generation and checking
PCI i nte rfa c e
Designed to comply with PCI Specification Revision 2.3
Data bus width:
32-bit data PCI interface operating at up to 66 MHz
PCI 3.3 -V compatible
PCI host bridge capabilities
PCI agent mode on PCI inte rf a ce
PCI-to-memory and memory-to-PC I str eaming
Memory prefetching of PCI read accesses and support for delayed read transactions
Posting of processor-t o-PCI and PCI-to-memory writes
On-chip arbitration supporting five masters on PCI
A cces ses to all PCI address spaces
Parity supported
S electable hardw are-enfor ced coher ency
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
4Freescale Semiconductor
Overview
Address translation units for address mapping between host and peripheral
Dual address cycl e for target
Internal configuration registers accessible from PCI
Security engine is optimized to handle all the algorithms ass oci ated with IPS ec, SSL/T LS , SRTP,
IEEE Std. 802.11i®, iSCSI, and IK E processing. The secur ity engine contains four
crypto-channels, a controller, and a set of crypto execution units (EUs ):
Public key execution unit (PKEU) :
RSA and Diff ie-Hellman algori thms
Programmable field size up to 2048 bits
Elliptic curve cryptography
F2m and F(p) modes
Programmable field size up to 511 bits
Data encr yption standard (DES) execution unit (DEU)
DES and 3DES algorithms
Two key (K1, K2) or three key (K1, K2, K3) for 3DES
ECB a nd CBC mode s for both DES and 3DES
Advanced encr yption standard unit (AESU)
Implements the Rijndael symmetric-key cipher
Key lengths of 128, 192, and 256 bi ts
ECB, CBC, CC M, and counter (CTR) modes
XOR parity generation accelerator for RAID a pplicat ions
ARC four execution unit (AFEU)
Stre am ciph er compatible with the RC4 algorithm
40- to 128-bit programmable key
Message digest execution unit (MDEU)
SHA with 160-, 224-, or 256-bit message digest
MD5 with 128-bit message digest
HMAC with either algorithm
Random number generator (RNG)
Four crypto-channels, each supporting multi-command descriptor chains
Static and/or dynamic assignment of crypto-execution units through an integrated controller
Buffer size of 256 bytes for each execution unit, with flow contr ol for large data sizes
Universal serial bus (USB) dual role controller
USB on-the-go mode with both device and host functionality
Complies with USB specifica tion Rev. 2.0
Can operate as a stand-alone USB device
One ups tream facing port
Six programmable USB endpoints
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 5
Overview
Can operate as a stand-alone USB host controller
USB root hub with one downstream-facing port
Enha nced host controller interface (E HCI) compatibl e
High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1. 5 Mbps) operations
External PHY with UTMI, serial and UTM I+ low-pin interface (ULPI)
Univers al seria l bus (USB) multi- port host controlle r
Can operate as a stand-alone USB host controller
USB root hub with one or two downstream-facing ports
Enha nced host controller interface (E HCI) compatibl e
Complies with USB Specification Rev. 2.0
High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
Dire ct connection to a high-speed device without an external hub
External PHY with serial and low-pin count (ULPI) interfaces
Local bus controller (LBC)
Multiplexed 32-bit address and data operating at up to 133 MHz
Eight chip select s for eight external sl aves
Up to eight-beat burst transfers
32-, 16-, and 8-bit port sizes controlled by an on-chip me mory controller
Three protocol engines on a per chip select basis:
General-purpose chip select machine (GPCM)
Three user-programmabl e machi nes ( UPMs)
Dedicated singl e data rate SDRAM controller
Parity support
Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
Programmable inter rupt controller (PIC)
Functional and programming compatibility with the MPC8260 interrupt controller
Support for 8 external and 35 internal discrete interrupt sources
S upport for 1 extern al (optional) and 7 internal machine checkstop interrupt sources
Programmable highest priority request
Four groups of interrupts with programmable priority
External and internal interrupts directed to host processor
Redirec ts interr upts to exter nal INTA pin in core disable mode.
Unique vector number for each interrupt s ource
Dual industry-standard I2C interfaces
Two- wire int erface
Multiple master support
Master or slave I2C mode s upport
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
6Freescale Semiconductor
Electrical Characteristics
On-chip digital filtering rejects spikes on the bus
System initialization data optionally loaded from I2C-1 EPROM by boot sequencer embedded
hardware
DMA controlle r
F our independent virtual channels
Concurrent execution across multiple channels with programmable bandwidth control
Handsha king (external control) signals for all channels : DMA_DREQ[0:3],
DMA_DACK[0:3], DMA_DDONE[0:3]
All channels accessible to local core and remote PCI masters
Misaligned trans fer capabili ty
Data chaining and direct mode
Interrupt on completed segment and chain
DUART
Two 4-wire interfaces (RxD, TxD, RTS, CTS)
Programming model compatible with the original 16450 UART and the PC16550D
Serial periphera l interface (SPI) for master or slave
General- purpose parallel I/O (GPIO)
52 parallel I/O pins multiplexed on various chip interfaces
Syste m timers
Periodic interrupt timer
Real-time clock
S oftware watchdog timer
Eight general-purpose timers
Designed to comply with IEEE Std. 1149.1™, JTAG boundary scan
Integrated PCI bus and SDRAM clock generation
2 Electrical Characteristics
This section provides th e AC and DC electrical specif i cati ons and the rmal charact er isti cs f or the
MPC8347EA. The device is currently targeted to these specifications. Some of thes e specifications are
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buf fer
design specifications.
2.1 Overall DC Electrical Characteristics
This s ection cove rs the ratings, conditions , and othe r characteristics.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 7
Electrical Characteristics
2.1.1 Absolute Maximum Ratings
Table 1 provides the absolute maximum ratings.
Table 1. Absolute Maximum Ratings1
Characteristic Symbol Max Value Unit Notes
Core supply voltage VDD –0.3 to 1.32 (1.36 max
for 667-MHz core
frequency)
V—
PLL supply voltage AVDD –0.3 to 1.32 (1.36 max
for 667-MHz core
frequency)
V—
DDR and DDR2 DRAM I/O voltage GVDD –0.3 to 2.75
–0.3 to 1.98
V—
Three-speed Ethernet I/O, MII management voltage LVDD –0.3 to 3.63 V
PCI, local bus, DUART, system control and power management, I2C,
and JTAG I/O voltage
OVDD –0.3 to 3.63 V
Input voltage DDR DRAM signals MVIN –0.3 to (GVDD + 0.3) V 2, 5
DDR DRAM reference MVREF –0.3 to (GVDD + 0.3) V 2, 5
Three-speed Ethernet signals LVIN –0.3 to (LVDD + 0.3) V 4, 5
Local bus, DUART, CLKIN, system control and
power management, I2C, and JTAG signals
OVIN 0.3 to (OVDD + 0.3) V 3, 5
PCI OVIN –0.3 to (OVDD + 0.3) V 6
Storage temperature range TSTG –55 to 150 °C—
Notes:
1Functional and tested operating conditions are given in Ta b l e 2 . Absolute maximum ratings are stress ratings only, and
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause
permanent damage to the device.
2Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
3Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
4Caution: LV IN must not exceed LVDD by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on
reset and power-down sequences.
5(M,L,O)VIN and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
6OVIN on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as
shown in Figure 3.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
8Freescale Semiconductor
Electrical Characteristics
2.1.2 Power Supply Voltage Specification
Table 2 provides the recommended operating conditions for t he MPC8347EA. Note that the values in
Table 2 are the recommended and test ed operating conditions. Prope r device operation outside these
conditions is not guaranteed.
Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8347EA.
Figure 2. Overshoot/Undershoot Voltage for GVDD/OVDD/LVDD
Table 2. Recommended Operating Conditions
Characteristic Symbol Recommended
Value Unit Notes
Core supply voltage for 667-MHz core frequency VDD 1.3 V ± 60 mV V 1
Core supply voltage VDD 1.2 V ± 60 mV V 1
PLL supply voltage for 667-MHz core frequency AVDD 1.3 V ± 60 mV V 1
PLL supply voltage AVDD 1.2 V ± 60 mV V 1
DDR and DDR2 DRAM I/O voltage GVDD 2.5 V ± 125 mV
1.8 V ± 90 mV
V—
Three-speed Ethernet I/O supply voltage LVDD1 3.3 V ± 330 mV
2.5 V ± 125 mV
V—
Three-speed Ethernet I/O supply voltage LVDD2 3.3 V ± 330 mV
2.5 V ± 125 mV
V—
PCI, local bus, DUART, system control and power
management, I2C, and JTAG I/O voltage
OVDD 3.3 V ± 330 mV V
Note:
1GVDD, LVDD, OVDD
, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or
negative direction.
GND
GND – 0.3 V
GND – 0.7 V Not to Exceed 10%
G/L/OVDD + 20%
G/L/OVDD
G/L/OVDD + 5%
of tinterface1
1. tinterface refers to the clock period associated with the bus clock interface.
VIH
VIL
Note:
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 9
Electrical Characteristics
Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8347EA for the
3.3-V signals, respectively.
Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling
2.1.3 Output Driver Characteristics
Table 3 provides information on the characteristics of the output driver strengths. The values are
prelimina ry estimates .
2.2 Power Sequencing
The device does not require the core supply voltage and I/O supply voltages to be applied in any particular
order. Note that during the power ramp up, before the power supplies are stable, there may be a period of
time that I/ O pins are actively driven. After the power is stable, as long as PORESET is asserted, most I/O
pins are three-stated. To minimize the time that I/O pins are actively driven, it is recommended to apply
core voltage before I/O voltage and assert PO RESET before the power supplies fully ramp up.
Table 3. Output Drive Capability
Driver Type Output Impedance
(Ω)
Supply
Voltage
Local bus interface utilities signals 40 OVDD = 3.3 V
PCI signals (not including PCI output clocks) 25
PCI output clocks (including PCI_SYNC_OUT) 40
DDR signal 18 GVDD = 2.5 V
DDR2 signal 18
36 (half strength mode)
GVDD = 1.8 V
TSEC/10/100 signals 40 LVDD = 2.5/3.3 V
DUART, system control, I2C, JTAG, USB 40 OVDD = 3.3 V
GPIO signals 40 OVDD = 3.3 V,
LVDD = 2.5/3.3 V
Undervoltage
Waveform
Overvoltage
Waveform
11 ns
(Min)
+7.1 V
7.1 V p-to-p
(Min)
4 ns
(Max)
–3.5 V
7.1 V p-to-p
(Min)
62.5 ns
+3.6 V
0 V
4 ns
(Max)
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
10 Freescale Semiconductor
Power Characteristics
3 Power Characteristics
The estimated typical power dissipation for the MPC8347EA device is shown in Table 4.
Table 4. MPC8347EA Power Dissipation1
1The values do not include I/O supply power (OVDD, LVDD, GVDD) or AVDD. For I/O power values, see Ta bl e 5 .
Core
Frequency
(MHz)
CSB
Frequency
(MHz)
Typical at TJ= 65 Typical2,3
2Typical power is based on a voltage of VDD = 1.2 V, a junction temperature of TJ = 105°C, and a Dhrystone benchmark
application.
3Thermal solutions may need to design to a value higher than typical power based on the end application, TA target, and I/O
power.
Maximum4
4Maximum power is based on a voltage of VDD = 1.2 V, worst case process, a junction temperature of TJ = 105°C, and an
artificial smoke test.
Unit
PBGA 266 266 1.3 1.6 1.8 W
133 1.1 1.4 1.6 W
400 266 1.5 1.9 2.1 W
133 1.4 1.7 1.9 W
400 200 1.5 1.8 2.0 W
100 1.3 1.7 1.9 W
TBGA 333 333 2.0 3.0 3.2 W
166 1.8 2.8 2.9 W
400 266 2.1 3.0 3.3 W
133 1.9 2.9 3.1 W
450 300 2.3 3.2 3.5 W
150 2.1 3.0 3.2 W
500 333 2.4 3.3 3.6 W
166 2.2 3.1 3.4 W
533 266 2.4 3.3 3.6 W
133 2.2 3.1 3.4 W
6675,6
5Typical power is based on a voltage of VDD = 1.3 V, a junction temperature of TJ = 105°C, and a Dhrystone benchmark
application.
6Maximum power is based on a voltage of VDD = 1.3 V, worst case process, a junction temperature of TJ = 105°C, and an
artificial smoke test.
333 3.5 4.6 5 W
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 11
Power Characteristics
Table 5 shows the estimated typical I/O power dissipation for MPC8347EA.
Table 5. MPC8347EA Typical I/O Power Dissipation
Interface Parameter
DDR2
GVDD
(1.8 V)
DDR1
GVDD
(2.5 V)
OVDD
(3.3 V)
LVDD
(3.3 V)
LVDD
(2.5 V) Unit Comments
DDR I/O
65% utilization
2.5 V
Rs = 20 Ω
Rt = 50 Ω
2 pair of clocks
200 MHz, 32 bits 0.31 0.42 W
200 MHz, 64 bits 0.42 0.55 W
266 MHz, 32 bits 0.35 0.5 W
266 MHz, 64 bits 0.47 0.66 W
300 MHz,1 32 bits
1TBGA package only.
0.37 0.54 W
300 MHz,1 64 bits 0.50 0.7 W
333 MHz,1 32 bits 0.39 0.58 W
333 MHz,1 64 bits 0.53 0.76 W
400 MHz,1 32 bits 0.44
400 MHz,1 64 bits 0.59
PCI I/O
load = 30 pF
33 MHz, 32 bits 0.04 W
66 MHz, 32 bits 0.07 W
Local bus I/O
load = 25 pF
167 MHz, 32 bits 0.34 W
133 MHz, 32 bits 0.27 W
83 MHz, 32 bits 0.17 W
66 MHz, 32 bits 0.14 W
50 MHz, 32 bits 0.11 W
TSEC I/O
load = 25 pF
MII 0.01 W Multiply by number of
interfaces used.
GMII or TBI 0.06 W
RGMII or RTBI 0.04 W
USB 12 MHz 0.01 W Multiply by 2 if using
2 ports.
480 MHz —0.2——W
Other I/O 0.01 W
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
12 Freescale Semiconductor
Clock Input Timing
4 Clock Input Timing
This section provides the clock input DC and AC electrical character istics for the device.
4.1 DC Electrical Characteristics
Table 6 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the MPC8347EA.
4.2 AC Electrical Characteristics
The pr imary clock source for t he M PC8347EA can be one of two i nputs, CLKIN or P CI_CLK, depending
on whether the device is configured in PCI host or PCI agent mode. Table 7 provides the clock input
(CLKIN/PCI_CLK) AC timing specifications for the device.
Table 6. CLKIN DC Timing Specifications
Parameter Condition Symbol Min Max Unit
Input high voltage VIH 2.7 OVDD +0.3 V
Input low voltage VIL –0.3 0.4 V
CLKIN input current 0 V VIN OVDD IIN ±10 μA
PCI_SYNC_IN input current 0 V VIN 0.5 V or
OVDD –0.5VVIN OVDD
IIN ±10 μA
PCI_SYNC_IN input current 0.5 V VIN OVDD – 0.5 V IIN ±50 μA
Table 7. CLKIN AC Timing Specifications
Parameter/Condition Symbol Min Typical Max Unit Notes
CLKIN/PCI_CLK frequency fCLKIN ——66MHz1, 6
CLKIN/PCI_CLK cycle time tCLKIN 15 ns
CLKIN/PCI_CLK rise and fall time tKH, tKL 0.6 1.0 2.3 ns 2
CLKIN/PCI_CLK duty cycle tKHK/tCLKIN 40 60 % 3
CLKIN/PCI_CLK jitter ±150 ps 4, 5
Notes:
1. Caution: The system, core, USB, security, and TSEC must not exceed their respective maximum or minimum operating
frequencies.
2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 and 2.7 V.
3. Timing is guaranteed by design and characterization.
4. This represents the total input jitter—short term and long term—and is guaranteed by design.
5. The CLKIN/PCI_CLK driver’s closed loop jitter bandwidth should be < 500 kHz at –20 dB. The bandwidth must be set low to
allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.
6. Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 50 KHz modulation rate regardless
of input frequency.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 13
RESET Initialization
4.3 TSEC Gigabit Reference Clock Timing
Table 8 provides the TSEC gigabit reference cloc ks (EC_GTX_CLK12 5) AC timing specif ications.
5 RESET Initialization
This section describes the DC and AC electrical specifications for the reset initialization timing and
electrical requirements of the MPC8347EA.
5.1 RESET DC Electrical Characteristics
Table 9 provides the DC electrical char acter istics for the R ESET pins of the MPC8347EA.
Table 8. EC_GTX_CLK125 AC Timing Specifications
At recommended operating conditions with LVDD = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV
Parameter/Condition Symbol Min Typical Max Unit Notes
EC_GTX_CLK125 frequency tG125 125 MHz
EC_GTX_CLK125 cycle time tG125 —8ns
EC_GTX_CLK rise and fall time
LV DD = 2.5 V
LV DD = 3.3 V
tG125R/tG125F ——
0.75
1.0
ns 1
EC_GTX_CLK125 duty cycle
GMII, TBI
1000Base-T for RGMII, RTBI
tG125H/tG125
45
47
55
53
%2
EC_GTX_CLK125 jitter ±150 ps 2
Notes:
1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for LVDD = 2.5 V and from 0.6 and 2.7 V for
LVDD =3.3V.
2. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. The EC_GTX_CLK125
duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC
GTX_CLK. See Section 8.2.4,RGMII and RTBI AC Timing Specifications for the duty cycle for 10Base-T and 100Base-T
reference clock.
Table 9. RESET Pins DC Electrical Characteristics1
Characteristic Symbol Condition Min Max Unit
Input high voltage VIH —2.0OV
DD +0.3 V
Input low voltage VIL –0.3 0.8 V
Input current IIN ——±5μA
Output high voltage2VOH IOH = –8.0 mA 2.4 V
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
Notes:
1. This table applies for pins PORESET
, HRESET, SRESET, and QUIESCE.
2. HRESET and SRESET are open drain pins, thus VOH is not relevant for those pins.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
14 Freescale Semiconductor
RESET Initialization
5.2 RESET AC Electrical Characteristics
Table 10 provid es the reset initialization AC timing specification s of t he MPC8347EA.
Table 11 lists the PLL and DLL lock times.
Table 10. RESET Initialization Timing Specifications
Parameter/Condition Min Max Unit Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow 32 tPCI_SYNC_IN 1
Required assertion time of PORESET with stable clock applied to CLKIN when the
MPC8347EA is in PCI host mode
32 tCLKIN 2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN
when the MPC8347EA is in PCI agent mode
32 tPCI_SYNC_IN 1
HRESET/SRESET assertion (output) 512 tPCI_SYNC_IN 1
HRESET negation to SRESET negation (output) 16 tPCI_SYNC_IN 1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and
CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347EA is
in PCI host mode
4—t
CLKIN 2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and
CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347EA is
in PCI agent mode
4—t
PCI_SYNC_IN 1
Input hold time for POR configuration signals with respect to negation of HRESET 0— ns
Time for the MPC8347EA to turn off POR configuration signals with respect to the
assertion of HRESET
—4 ns 3
Time for the MPC8347EA to turn on POR configuration signals with respect to the
negation of HRESET
1—t
PCI_SYNC_IN 1, 3
Notes:
1. tPCI_SYNC_IN is the clock period of the input clock applied to PCI_SYNC_IN. In PCI host mode, the primary clock is applied
to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the
MPC8349EA
PowerQUICC II Pro Integrated Host Processor Family Reference Manual
.
2. tCLKIN is the clock period of the input clock applied to CLKIN. It is valid only in PCI host mode. See the
MPC8349EA
PowerQUICC II Pro Integrated Host Processor Family Reference Manual
.
3. POR configuration signals consist of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.
Table 11. PLL and DLL Lock Times
Parameter/Condition Min Max Unit Notes
PLL lock times 100 μs—
DLL lock times 7680 122,880 csb_clk cycles 1, 2
Notes:
1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio
results in the minimum and an 8:1 ratio results in the maximum.
2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 19, “Clocking.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 15
DDR and DDR2 SDRAM
6 DDR and DDR2 SDRAM
This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the
MPC8347EA. Note that DDR SDRAM is GVDD(typ) = 2.5 V and DDR2 SDRAM is GVDD(typ) = 1.8 V.
The AC electri cal specif i cat ions ar e the sa me for DDR and DRR2 SDRAM.
NOTE
The information in this document is accurate for revis ion 3.0 silicon and
later. For information on revision 1.1 silicon and earlier versions see the
MPC8347E PowerQUICC II Pro Integrated Host Processor Hardware
Specifications. See Section 22. 1, “Part Numbers Fully Addressed by This
Document,” for silicon re vision level determination.
6.1 DDR and DDR2 SDRAM DC Electrical Characteristics
Table 12 provid es the recommended operating conditions for the DDR2 SDRAM component(s) of the
MPC8347EA when GVDD(typ) = 1.8 V.
Table 12. DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V
Parameter/Condition Symbol Min Max Unit Notes
I/O supply voltage GVDD 1.71 1.89 V 1
I/O reference voltage MVREF 0.49 ×GVDD 0.51 ×GVDD V2
I/O termination voltage VTT MVREF –0.04 MV
REF +0.04 V 3
Input high voltage VIH MVREF +0.125 GV
DD +0.3 V
Input low voltage VIL –0.3 MVREF –0.125 V
Output leakage current IOZ –9.9 9.9 μA4
Output high current (VOUT = 1.420 V) IOH –13.4 mA
Output low current (VOUT = 0.280 V) IOL 13.4 mA
Notes:
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.
2. MVREF is expected to equal 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise
on MVREF cannot exceed ±2% of the DC value.
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal
MVREF
. This rail should track variations in the DC level of MVREF.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD
.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
16 Freescale Semiconductor
DDR and DDR2 SDRAM
Table 13 provides the DDR2 capacitance when GVDD(typ) = 1.8 V.
Table 14 provid es the recommended operating conditions for the DDR SDRAM component(s) when
GVDD(typ) = 2.5 V.
Table 15 provides the DDR capacitance when GVDD(typ) = 2.5 V.
Table 13. DDR2 SDRAM Capacitance for GVDD(typ) = 1.8 V
Parameter/Condition Symbol Min Max Unit Notes
Input/output capacitance: DQ, DQS, DQS CIO 68pF1
Delta input/output capacitance: DQ, DQS, DQS CDIO —0.5pF1
Note:
1. This parameter is sampled. GVDD = 1.8 V ± 0.090 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.
Table 14. DDR SDRAM DC Electrical Characteristics for GVDD(typ) = 2.5 V
Parameter/Condition Symbol Min Max Unit Notes
I/O supply voltage GVDD 2.375 2.625 V 1
I/O reference voltage MVREF 0.49 ×GVDD 0.51 ×GVDD V2
I/O termination voltage VTT MVREF –0.04 MV
REF +0.04 V 3
Input high voltage VIH MVREF +0.18 GV
DD +0.3 V
Input low voltage VIL –0.3 MVREF –0.18 V
Output leakage current IOZ –9.9 –9.9 μA4
Output high current (VOUT = 1.95 V) IOH –15.2 mA
Output low current (VOUT = 0.35 V) IOL 15.2 mA
Notes:
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.
2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak
noise on MVREF may not exceed ±2% of the DC value.
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be
equal to MVREF
. This rail should track variations in the DC level of MVREF.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD
.
Table 15. DDR SDRAM Capacitance for GVDD(typ) = 2.5 V
Parameter/Condition Symbol Min Max Unit Notes
Input/output capacitance: DQ, DQS CIO 68pF1
Delta input/output capacitance: DQ, DQS CDIO —0.5pF1
Note:
1. This parameter is sampled. GVDD = 2.5 V ± 0.125 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 17
DDR and DDR2 SDRAM
Table 16 provides t he current draw charact er isti cs f or MV REF.
6.2 DDR and DDR2 SDRAM AC Electrical Characteristics
This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.
6.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications
Table 17 provid es the input AC timing specifications for the DDR2 SDRAM when GVDD(typ) = 1.8 V.
Table 18 provid es the input AC timing specifications for the DDR SDRAM when GVDD(typ) = 2.5 V.
Table 19 provid es the input AC timing specifications for the DDR SDRAM interface.
Table 16. Current Draw Characteristics for MVREF
Parameter/Condition Symbol Min Max Unit Note
Current draw for MVREF IMVREF 500 μA1
Note:
1. The voltage regulator for MVREF must supply up to 500 μA current.
Table 17. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface
At recommended operating conditions with GVDD of 1.8 ± 5%.
Parameter Symbol Min Max Unit Notes
AC input low voltage VIL —MV
REF – 0.25 V
AC input high voltage VIH MVREF + 0.25 V
Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface
At recommended operating conditions with GVDD of 2.5 ± 5%.
Parameter Symbol Min Max Unit Notes
AC input low voltage VIL —MV
REF – 0.31 V
AC input high voltage VIH MVREF + 0.31 V
Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications
At recommended operating conditions with GVDD of (1.8 or 2.5 V) ± 5%.
Parameter Symbol Min Max Unit Notes
Controller Skew for MDQS—MDQ/MECC/MDM tCISKEW ps 1, 2
400 MHz –600 600 3
333 MHz –750 750
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
18 Freescale Semiconductor
DDR and DDR2 SDRAM
Figure 4 illustrates the DDR input timing diagram showing the tDISKEW timing parameter.
Figure 4. DDR Input Timing Diagram
6.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications
Table 20 shows the DDR and DDR2 output AC timing spec ifications.
266 MHz –750 750
200 MHz –750 750
Notes:
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that
will be captured with MDQS[n]. This should be subtracted from the total timing budget.
2. The amount of skew that can be tolerated from MDQS to a corrresponding MDQ signal is called tDISKEW. This can be
determined by the equation: tDISKEW = ± (T/4 – abs (tCISKEW)); where T is the clock period and abs (tCISKEW) is the absolute
value of tCISKEW.
3. This specification applies only to the DDR interface.
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications
At recommended operating conditions with GVDD of (1.8 or 2.5 V) ± 5%.
Parameter Symbol 1Min Max Unit Notes
MCK[n] cycle time, (MCK[n]/MCK[n] crossing) (PBGA
package)
tMCK 5—ns2
MCK[n] cycle time, (MCK[n]/MCK[n] crossing) (TBGA
package)
tMCK 7.5 ns 2
ADDR/CMD/MODT output setup with respect to MCK tDDKHAS ns 3
400 MHz 1.95
Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications (continued)
At recommended operating conditions with GVDD of (1.8 or 2.5 V) ± 5%.
Parameter Symbol Min Max Unit Notes
MCK[n]
MCK[n] tMCK
MDQ[x]
MDQS[n]
tDISKEW
D1D0
tDISKEW
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 19
DDR and DDR2 SDRAM
333 MHz 2.40
266 MHz 3.15
200 MHz 4.20
ADDR/CMD/MODT output hold with respect to MCK tDDKHAX ns 3
400 MHz 1.95
333 MHz 2.40
266 MHz 3.15
200 MHz 4.20
MCS(n) output setup with respect to MCK tDDKHCS ns 3
400 MHz 1.95
333 MHz 2.40
266 MHz 3.15
200 MHz 4.20
MCS(n) output hold with respect to MCK tDDKHCX ns 3
400 MHz 1.95
333 MHz 2.40
266 MHz 3.15
200 MHz 4.20
MCK to MDQS Skew tDDKHMH –0.6 0.6 ns 4
MDQ/MECC/MDM output setup with respect to
MDQS
tDDKHDS,
tDDKLDS
ps 5
400 MHz 700
333 MHz 775
266 MHz 1100
200 MHz 1200
MDQ/MECC/MDM output hold with respect to MDQS tDDKHDX,
tDDKLDX
ps 5
400 MHz 700
333 MHz 900
266 MHz 1100
200 MHz 1200
MDQS preamble start tDDKHMP –0.5 × tMCK – 0.6 –0.5 × tMCK + 0.6 ns 6
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications (continued)
At recommended operating conditions with GVDD of (1.8 or 2.5 V) ± 5%.
Parameter Symbol 1Min Max Unit Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
20 Freescale Semiconductor
DDR and DDR2 SDRAM
Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (tDDKHMH).
Figure 5. Timing Diagram for tDDKHMH
MDQS epilogue end tDDKHME –0.6 0.6 ns 6
Notes:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from
the rising or falling edge of the reference clock (KH or KL) until the output goes invalid (AX or DX). For example, tDDKHAS
symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs (A) are
set up (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes
low (L) until data outputs (D) are invalid (X) or data output hold time.
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the
ADDR/CMD setup and hold specifications, it is assumed that the clock control register is set to adjust the memory clocks by
1/2 applied cycle.
4. tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing (DD) from the
rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through control of the
DQSS override bits in the TIMING_CFG_2 registerand is typically set to the same delay as the clock adjust in the CLK_CNTL
register. The timing parameters listed in the table assume that these two parameters are set to the same adjustment value.
See the
MPC8349EA PowerQUICC II Pro Integrated Host Processor Family Reference Manual
for the timing modifications
enabled by use of these bits.
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC
(MECC), or data mask (MDM). The data strobe should be centered inside the data eye at the pins of the microprocessor.
6. All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that tDDKHMP follows the
symbol conventions described in note 1.
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications (continued)
At recommended operating conditions with GVDD of (1.8 or 2.5 V) ± 5%.
Parameter Symbol 1Min Max Unit Notes
MDQS
MCK[n]
MCK[n]
tMCK
MDQS
tDDKHMH(min) = –0.6 ns
tDDKHMHmax) = 0.6 ns
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 21
DUART
Figure 6 shows the DDR SDRAM output timing diagram.
Figure 6. DDR SDRAM Output Timing Diagram
Figure 7 provides the AC test load for the DDR bus.
Figure 7. DDR AC Test Load
7DUART
This section describes the DC and AC electrical specifications for the DUART inte rface of the
MPC8347EA.
7.1 DUART DC Electrical Characteristics
Table 21 provid es the DC electrical characteristics for the DUART interface of the MPC8347EA.
Table 21. DUART DC Electrical Characteristics
Parameter Symbol Min Max Unit
High-level input voltage VIH 2OV
DD + 0.3 V
Low-level input voltage VIL –0.3 0.8 V
Input current (0.8 V VIN 2 V) IIN —±5 μA
ADDR/CMD/MODT
tDDKHMH
tDDKLDS
tDDKHDS
MDQ[x]
MDQS[n]
MCK[n]
MCK[n] tMCK
tDDKLDX
tDDKHDX
D1D0
tDDKHAX,tDDKHCX
Write A0 NOOP
tDDKHMP
tDDKHAS,tDDKHCS
tDDKHME
Output Z0 = 50 Ω
RL = 50 Ω
GVDD/2
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
22 Freescale Semiconductor
Ethernet: Three-Speed Ethernet, MII Management
7.2 DUART AC Electrical Specifications
Table 22 provid es the AC timing parameters for the DUAR T interface of the MPC8347EA.
8 Ethernet: Three-Speed Ethernet, MII Management
This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and
MII management.
8.1 Three-Speed Ethernet Controller
(TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics
The electrical characteristics specified here apply to gigabit media independent interface (GMII),the media
independent interface (MII), ten-bit interface (TBI), reduced gigabit media inde pendent
inter face (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output
(MDIO) and management data clock (MDC). The MII, GMII , and TBI interfa ces are defined for 3.3 V,
and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the
Hewlett-Packard Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification,
Version 1.2a (9/22/2000) . The electrical char acteristics for MDIO and MDC are specified in Section 8.3,
“Etherne t Management Interface Electrical Char acter istics .”
High-level output voltage, IOH = –100 μAV
OH OVDD – 0.2 V
Low-level output voltage, IOL = 100 μAV
OL —0.2V
Table 22. DUART AC Timing Specifications
Parameter Value Unit Notes
Minimum baud rate 256 baud
Maximum baud rate > 1,000,000 baud 1
Oversample rate 16 2
Notes:
1. Actual attainable baud rate will be limited by the latency of interrupt processing.
2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are
sampled each 16th sample.
Table 21. DUART DC Electrical Characteristics (continued)
Parameter Symbol Min Max Unit
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 23
Ethernet: Three-Speed Ethernet, MII Management
8.1.1 TSEC DC Electrical Characteristics
GMII, MII, T BI, RGM II, and RTBI drive rs and receivers comply with the DC parametric attributes
specified in Table 23 and Table 24. The RGMII and R TBI signals in Table 24 are based on a 2.5-V CMOS
interface voltage as defined by JEDEC EIA/JESD8-5.
8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications
The AC timing spe cifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.
8.2.1 GMII Timing Specifications
This section describes the GMII transmit and receive AC timing specif ications.
Table 23. GMII/TBI and MII DC Electrical Characteristics
Parameter Symbol Conditions Min Max Unit
Supply voltage 3.3 V LVDD2 2.97 3.63 V
Output high voltage VOH IOH = –4.0 mA LVDD = Min 2.40 LVDD +0.3 V
Output low voltage VOL IOL = 4.0 mA LVDD = Min GND 0.50 V
Input high voltage VIH ——2.0LV
DD +0.3 V
Input low voltage VIL –0.3 0.90 V
Input high current IIH VIN1 = LVDD —40μA
Input low current IIL VIN1 = GND –600 μA
Notes:
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.
2. GMII/MII pins not needed for RGMII or RTBI operation are powered by the OVDD supply.
Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics
Parameters Symbol Conditions Min Max Unit
Supply voltage 2.5 V LVDD 2.37 2.63 V
Output high voltage VOH IOH = –1.0 mA LVDD = Min 2.00 LVDD +0.3 V
Output low voltage VOL IOL = 1.0 mA LVDD = Min GND – 0.3 0.40 V
Input high voltage VIH —LV
DD = Min 1.7 LVDD +0.3 V
Input low voltage VIL —LV
DD = Min –0.3 0.70 V
Input high current IIH VIN1 = LVDD —10μA
Input low current IIL VIN1 = GND –15 μA
Note:
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
24 Freescale Semiconductor
Ethernet: Three-Speed Ethernet, MII Management
8.2.1.1 GMII Transmit AC Timing Specifications
Table 25 provides the GMII transmit AC timing specifications.
Figure 8 shows the GMII transmit AC timing diagram.
Figure 8. GMII Transmit AC Timing Diagram
Table 25. GMII Transmit AC Timing Specifications
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.
Parameter/Condition Symbol1Min Typ Max Unit
GTX_CLK clock period tGTX —8.0 ns
GTX_CLK duty cycle tGTXH/tGTX 43.75 56.25 %
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay tGTKHDX 0.5 5.0 ns
GTX_CLK clock rise time (20%–80%) tGTXR ——1.0ns
GTX_CLK clock fall time (80%–20%) tGTXF ——1.0ns
GTX_CLK125 clock period tG1252—8.0 ns
GTX_CLK125 reference clock duty cycle measured at LVDD/2 tG125H/tG125 45 55 %
Notes:
1. The symbols for timing specifications follow the pattern t(first two letters of functional block)(signal)(state)(reference)(state) for inputs and
t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGTKHDV symbolizes GMII transmit timing (GT)
with respect to the tGTX clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the
valid state (V) to state or setup time. Also, tGTKHDX symbolizes GMII transmit timing (GT) with respect to the tGTX clock
reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. In general,
the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript
of tGTX represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate
letter: R (rise) or F (fall).
2. This symbol represents the external GTX_CLK125 signal and does not follow the original symbol naming convention.
GTX_CLK
TXD[7:0]
t
GTKHDX
t
GTX
t
GTXH
t
GTXR
t
GTXF
TX_EN
TX_ER
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 25
Ethernet: Three-Speed Ethernet, MII Management
8.2.1.2 GMII Receive AC Timing Specifications
Table 26 provides the GMII receive AC timing specifications.
Figure 9 shows the GMII receive AC timing diagram.
G
Figure 9. GMII Receive AC Timing Diagram
Table 26. GMII Receive AC Timing Specifications
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.
Parameter/Condition Symbol1Min Typ Max Unit
RX_CLK clock period tGRX —8.0—ns
RX_CLK duty cycle tGRXH/tGRX 40 60 %
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK tGRDVKH 2.0 ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK tGRDXKH 0.5 ns
RX_CLK clock rise (20%–80%) tGRXR ——1.0ns
RX_CLK clock fall time (80%–20%) tGRXF ——1.0ns
Note:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGRDVKH symbolizes GMII receive timing
(GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the tRX clock reference (K) going
to the high state (H) or setup time. Also, tGRDXKL symbolizes GMII receive timing (GR) with respect to the time data input
signals (D) went invalid (X) relative to the tGRX clock reference (K) going to the low (L) state or hold time. In general, the clock
reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of tGRX
represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter:
R (rise) or F (fall).
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
26 Freescale Semiconductor
Ethernet: Three-Speed Ethernet, MII Management
8.2.2 MII AC Timing Specifications
This section describes the MII transm it and recei ve AC timing specificati ons.
8.2.2.1 MII Transmit AC Timing Specifications
Table 27 provide s the MII transmit AC timing specifications.
Figure 10 shows the MII transmit AC timing diagra m.
Figure 10. MII Transmit AC Timing Diagram
Table 27. MII Transmit AC Timing Specifications
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.
Parameter/Condition Symbol1Min Typ Max Unit
TX_CLK clock period 10 Mbps tMTX —400—ns
TX_CLK clock period 100 Mbps tMTX —40—ns
TX_CLK duty cycle tMTXH/tMTX 35 65 %
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay tMTKHDX 1 5 15 ns
TX_CLK data clock rise (20%–80%) tMTXR 1.0 4.0 ns
TX_CLK data clock fall (80%–20%) tMTXF 1.0 4.0 ns
Note:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit timing
(MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference
symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of tMTX
represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter:
R (rise) or F (fall).
TX_CLK
TXD[3:0]
tMTKHDX
tMTX
tMTXH
tMTXR
tMTXF
TX_EN
TX_ER
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 27
Ethernet: Three-Speed Ethernet, MII Management
8.2.2.2 MII Receive AC Timing Specifications
Table 28 provides the MII re cei ve AC timing specificati ons.
Figure 11 provides the AC test load for TSEC.
Figure 11. TSEC AC Test Load
Figure 12 shows the MII rec eiv e AC timing diagram.
Figure 12. MII Receive AC Timing Diagram
Table 28. MII Receive AC Timing Specifications
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.
Parameter/Condition Symbol1Min Typ Max Unit
RX_CLK clock period 10 Mbps tMRX —400— ns
RX_CLK clock period 100 Mbps tMRX —40—ns
RX_CLK duty cycle tMRXH/tMRX 35 65 %
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK tMRDVKH 10.0 ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK tMRDXKH 10.0 ns
RX_CLK clock rise (20%–80%) tMRXR 1.0—4.0ns
RX_CLK clock fall time (80%–20%) tMRXF 1.0—4.0ns
Note:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH symbolizes MII receive timing
(MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock reference (K) going to
the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the time data input signals
(D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state or hold time. In general, the clock
reference symbol is based on three letters representing the clock of a particular functionl. For example, the subscript of tMRX
represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter:
R (rise) or F (fall).
Output Z0 = 50 ΩOVDD/2
RL = 50 Ω
RX_CLK
RXD[3:0]
tMRDXKH
tMRX
tMRXH
tMRXR
tMRXF
RX_DV
RX_ER tMRDVKH
Valid Data
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
28 Freescale Semiconductor
Ethernet: Three-Speed Ethernet, MII Management
8.2.3 TBI AC Timing Specifications
This section describes the TBI transmit and receive AC timing specifications.
8.2.3.1 TBI Transmit AC Timing Specifications
Table 29 provides the TBI transmit AC timing specifications.
Figure 13 shows the TBI trans mit AC timing diagram.
Figure 13. TBI Transmit AC Timing Diagram
Table 29. TBI Transmit AC Timing Specifications
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.
Parameter/Condition Symbol1Min Typ Max Unit
GTX_CLK clock period tTTX —8.0—ns
GTX_CLK duty cycle tTTXH/tTTX 40 60 %
GTX_CLK to TBI data TXD[7:0], TX_ER, TX_EN delay tTTKHDX 1.0 5.0 ns
GTX_CLK clock rise (20%–80%) tTTXR ——1.0ns
GTX_CLK clock fall time (80%–20%) tTTXF ——1.0ns
GTX_CLK125 reference clock period tG1252—8.0—ns
GTX_CLK125 reference clock duty cycle tG125H/tG125 45 55 ns
Notes:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTTKHDV symbolizes the TBI transmit
timing (TT) with respect to the time from tTTX (K) going high (H) until the referenced data signals (D) reach the valid state (V)
or setup time. Also, tTTKHDX symbolizes the TBI transmit timing (TT) with respect to the time from tTTX (K) going high (H) until
the referenced data signals (D) reach the invalid state (X) or hold time. In general, the clock reference symbol is based on
three letters representing the clock of a particular function. For example, the subscript of tTTX represents the TBI (T) transmit
(TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
2. This symbol represents the external GTX_CLK125 and does not follow the original symbol naming convention
GTX_CLK
TXD[7:0]
tTTX
tTTXH
tTTXR
tTTXF
tTTKHDX
TX_EN
TX_ER
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 29
Ethernet: Three-Speed Ethernet, MII Management
8.2.3.2 TBI Receive AC Timing Specifications
Table 30 provides the TBI receive AC timing spe cifications.
Figure 14 shows the TBI receive AC timing diagram.
Figure 14. TBI Receive AC Timing Diagram
Table 30. TBI Receive AC Timing Specifications
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.
Parameter/Condition Symbol1Min Typ Max Unit
PMA_RX_CLK clock period tTRX 16.0 ns
PMA_RX_CLK skew tSKTRX 7.5 8.5 ns
RX_CLK duty cycle tTRXH/tTRX 40 60 %
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) setup time to rising
PMA_RX_CLK tTRDVKH22.5 ns
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) hold time to rising
PMA_RX_CLK
tTRDXKH21.5 ns
RX_CLK clock rise time (20%–80%) tTRXR 0.7 2.4 ns
RX_CLK clock fall time (80%–20%) tTRXF 0.7 2.4 ns
Notes:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTRDVKH symbolizes TBI receive timing
(TR) with respect to the time data input signals (D) reach the valid state (V) relative to the tTRX clock reference (K) going to
the high (H) state or setup time. Also, tTRDXKH symbolizes TBI receive timing (TR) with respect to the time data input signals
(D) went invalid (X) relative to the tTRX clock reference (K) going to the high (H) state. In general, the clock reference symbol
is based on three letters representing the clock of a particular function. For example, the subscript of tTRX represents the TBI
(T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For
symbols representing skews, the subscript SK followed by the clock that is being skewed (TRX).
2. Setup and hold time of even numbered RCG are measured from the riding edge of PMA_RX_CLK1. Setup and hold times
of odd-numbered RCG are measured from the riding edge of PMA_RX_CLK0.
PMA_RX_CLK1
RCG[9:0]
tTRX
tTRXH
tTRXR
tTRXF
tTRDVKH
PMA_RX_CLK0
tTRDXKH
tTRDVKH
tTRDXKH
tTRXH
Even RCG Odd RCG
tSKTRX
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
30 Freescale Semiconductor
Ethernet: Three-Speed Ethernet, MII Management
8.2.4 RGMII and RTBI AC Timing Specifications
Table 31 pre s ents the RGMII and RTBI AC timing specifications .
Table 31. RGMII and RTBI AC Timing Specifications
At recommended operating conditions with LVDD of 2.5 V ± 5%.
Parameter/Condition Symbol1Min Typ Max Unit
Data to clock output skew (at transmitter) tSKRGT –0.5 0.5 ns
Data to clock input skew (at receiver)2tSKRGT 1.0 2.8 ns
Clock cycle duration3tRGT 7.2 8.0 8.8 ns
Duty cycle for 1000Base-T4, 5 tRGTH/tRGT 45 50 55 %
Duty cycle for 10BASE-T and 100BASE-TX3, 5 tRGTH/tRGT 40 50 60 %
Rise time (20%–80%) tRGTR 0.75 ns
Fall time (80%–20%) tRGTF 0.75 ns
GTX_CLK125 reference clock period tG126—8.0—ns
GTX_CLK125 reference clock duty cycle tG125H/tG125 47 53 %
Notes:
1. In general, the clock reference symbol for this section is based on the symbols RGT to represent RGMII and RTBI timing. For
example, the subscript of tRGT represents the TBI (T) receive (RX) clock. Also, the notation for rise (R) and fall (F) times
follows the clock symbol. For symbols representing skews, the subscript is SK followed by the clock being skewed (RGT).
2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added
to the associated clock signal.
3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet clock domains as long
as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned.
5. Duty cycle reference is LVDD/2.
6. This symbol represents the external GTX_CLK125 and does not follow the original symbol naming convention.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 31
Ethernet: Three-Speed Ethernet, MII Management
Figure 15 shows the RBMII and RTBI AC timing and multiplexing diagrams.
Figure 15. RGMII and RTBI AC Timing and Multiplexing Diagrams
8.3 Ethernet Management Interface Electrical Characteristics
The electrical char acter i stics specified here apply to the MII manageme nt inter fac e signals management
data input/output (MDIO) and manageme nt data clock (MDC) . The electri cal ch aract eris ti cs for GMII,
RGMII, TBI and RTBI are specif ied in Sectio n 8.1, “Three- Speed Ether net Controller
(TSEC)—G MII/MII/TBI/R G MII/RTBI Ele c t rical Char acte ristics .”
8.3.1 MII Management DC Electrical Characteristics
The MDC and MDIO are defined to operate at a supply voltage of 2.5 or 3.3 V. The DC electrical
characteristics for MDIO and MDC are provided in Table 32 and Table 33.
Table 32. MII Management DC Electrical Characteristics Powered at 2.5 V
Parameter Symbol Conditions Min Max Unit
Supply voltage (2.5 V) LVDD 2.37 2.63 V
Output high voltage VOH IOH = –1.0 mA LVDD = Min 2.00 LVDD +0.3 V
Output low voltage VOL IOL = 1.0 mA LVDD = Min GND 0.3 0.40 V
Input high voltage VIH —LV
DD = Min 1.7 V
Input low voltage VIL —LV
DD = Min –0.3 0.70 V
GTX_CLK
tRGT
tRGTH
tSKRGT
TX_CTL
TXD[8:5]
TXD[7:4]
TXD[9]
TXERR
TXD[4]
TXEN
TXD[3:0]
(At Transmitter)
TXD[8:5][3:0]
TXD[7:4][3:0]
TX_CLK
(At PHY)
RX_CTL
RXD[8:5]
RXD[7:4]
RXD[9]
RXERR
RXD[4]
RXDV
RXD[3:0]
RXD[8:5][3:0]
RXD[7:4][3:0]
RX_CLK
(At PHY)
tSKRGT
tSKRGT
tSKRGT
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
32 Freescale Semiconductor
Ethernet: Three-Speed Ethernet, MII Management
8.3.2 MII Management AC Electrical Specifications
Table 34 provides the MII ma nagement AC timing specifi cations.
Input high current IIH VIN1 = LVDD —10μA
Input low current IIL VIN = LVDD –15 μA
Note:
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.
Table 33. MII Management DC Electrical Characteristics Powered at 3.3 V
Parameter Symbol Conditions Min Max Unit
Supply voltage (3.3 V) LVDD —2.973.63V
Output high voltage VOH IOH = –1.0 mA LVDD = Min 2.10 LVDD +0.3 V
Output low voltage VOL IOL = 1.0 mA LVDD = Min GND 0.50 V
Input high voltage VIH —2.00V
Input low voltage VIL 0.80 V
Input high current IIH LVDD = Max VIN1 = 2.1 V 40 μA
Input low current IIL LVDD = Max VIN = 0.5 V –600 μA
Note:
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.
Table 34. MII Management AC Timing Specifications
At recommended operating conditions with LVDD is 3.3 V ± 10% or 2.5 V ± 5%.
Parameter/Condition Symbol1Min Typ Max Unit Notes
MDC frequency fMDC —2.5MHz2
MDC period tMDC —400—ns
MDC clock pulse width high tMDCH 32 ns
MDC to MDIO delay tMDKHDX 10 170 ns 3
MDIO to MDC setup time tMDDVKH 5—ns
MDIO to MDC hold time tMDDXKH 0—ns
MDC rise time tMDCR 10 ns
Table 32. MII Management DC Electrical Characteristics Powered at 2.5 V (continued)
Parameter Symbol Conditions Min Max Unit
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 33
Ethernet: Three-Speed Ethernet, MII Management
Figure 16 shows the MII management AC timing diagram.
Figure 16. MII Management Interface Timing Diagram
MDC fall time tMDHF 10 ns
Notes:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes management data
timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also,
tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V)
relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention
is used with the appropriate letter: R (rise) or F (fall).
2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz
and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum
frequency is 1.7 MHz).
3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the delay is 70 ns and for a csb_clk of
333 MHz, the delay is 58 ns).
Table 34. MII Management AC Timing Specifications (continued)
At recommended operating conditions with LVDD is 3.3 V ± 10% or 2.5 V ± 5%.
Parameter/Condition Symbol1Min Typ Max Unit Notes
MDC
tMDDXKH
tMDC
tMDCH
tMDCR
tMDCF
tMDDVKH
tMDKHDX
MDIO
MDIO
(Input)
(Output)
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
34 Freescale Semiconductor
USB
9USB
This section provides the AC and DC electrical specifications for the USB interface of the MPC8347EA.
9.1 USB DC Electrical Characteristics
Table 35 provides the DC electrical characteristics for the USB interface.
9.2 USB AC Electrical Specifications
Table 36 descr ibes the general timing parameters of the USB interface of the MPC8347EA.
Table 35. USB DC Electrical Characteristics
Parameter Symbol Min Max Unit
High-level input voltage VIH 2OV
DD +0.3 V
Low-level input voltage VIL –0.3 0.8 V
Input current IIN —±5 μA
High-level output voltage, IOH = –100 μAV
OH OVDD –0.2 V
Low-level output voltage, IOL = 100 μAV
OL —0.2V
Table 36. USB General Timing Parameters (ULPI Mode Only)
Parameter Symbol1Min Max Unit Notes
USB clock cycle time tUSCK 15 ns 2–5
Input setup to USB clock—all inputs tUSIVKH 4—ns25
Input hold to USB clock—all inputs tUSIXKH 1—ns25
USB clock to output valid—all outputs tUSKHOV —7ns25
Output hold from USB clock—all outputs tUSKHOX 2—ns25
Notes:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes USB timing (US) for
the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, tUSKHOX symbolizes
USB timing (US) for the USB clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold
time.
2. All timings are in reference to USB clock.
3. All signals are measured from OVDD/2 of the rising edge of the USB clock to 0.4 ×OVDD of the signal in question for 3.3 V
signaling levels.
4. Input timings are measured at the pin.
5. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the
component pin is less than or equal to that of the leakage current specification.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 35
Local Bus
Figure 17 and Figure 18 provide the AC test load and signals for the U SB, respectively.
Figure 17. USB AC Test Load
Figure 18. USB Signals
10 Local Bus
This section descr ibes t he DC and AC electrical speci f icat ions for the local bus interf ace of the
MPC8347EA.
10.1 Local Bus DC Electrical Characteristics
Table 37 provides the DC electrical characteristics for the local bus interface.
Table 37. Local Bus DC Electrical Characteristics
Parameter Symbol Min Max Unit
High-level input voltage VIH 2OV
DD +0.3 V
Low-level input voltage VIL –0.3 0.8 V
Input current IIN —±5μA
High-level output voltage, IOH = –100 μAV
OH OVDD –0.2 V
Low-level output voltage, IOL = 100 μAV
OL —0.2V
Output Z0 = 50 ΩOVDD/2
RL = 50 Ω
Output Signals:
tUSKHOV
USB0_CLK/USB1_CLK/DR_CLK
Input Signals
tUSIXKH
tUSIVKH
tUSKHOX
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
36 Freescale Semiconductor
Local Bus
10.2 Local Bus AC Electrical Specification
Table 38 and Table 39 describe the general timing paramete rs of the l ocal bus interfa ce of the
MPC8347EA.
Table 38. Local Bus General Timing Parameters—DLL On
Parameter Symbol1Min Max Unit Notes
Local bus cycle time tLBK 7.5 ns 2
Input setup to local bus clock (except LUPWAIT) tLBIVKH1 1.5 ns 3, 4
LUPWAIT input setup to local bus clock tLBIVKH2 2.2 ns 3, 4
Input hold from local bus clock (except LUPWAIT) tLBIXKH1 1.0 ns 3, 4
LUPWAIT Input hold from local bus clock tLBIXKH2 1.0 ns 3, 4
LALE output fall to LAD output transition (LATCH hold time) tLBOTOT1 1.5 ns 5
LALE output fall to LAD output transition (LATCH hold time) tLBOTOT2 3—ns6
LALE output fall to LAD output transition (LATCH hold time) tLBOTOT3 2.5 ns 7
Local bus clock to LALE rise tLBKHLR —4.5ns
Local bus clock to output valid (except LAD/LDP and LALE) tLBKHOV1 —4.5ns
Local bus clock to data valid for LAD/LDP tLBKHOV2 —4.5ns3
Local bus clock to address valid for LAD tLBKHOV3 —4.5ns3
Output hold from local bus clock (except LAD/LDP and LALE) tLBKHOX1 1—ns3
Output hold from local bus clock for LAD/LDP tLBKHOX2 1—ns3
Local bus clock to output high impedance for LAD/LDP tLBKHOZ —3.8ns8
Notes:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus timing (LB)
for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for clock one
(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect to the output
(O) going invalid (X) or output hold time.
2. All timings are in reference to the rising edge of LSYNC_IN.
3. All signals are measured from OVDD/2 of the rising edge of LSYNC_IN to 0.4 ×OVDD of the signal in question for 3.3 V
signaling levels.
4. Input timings are measured at the pin.
5. tLBOTOT1 should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than
the load on the LAD output pins.
6. tLBOTOT2 should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the
load on the LAD output pins.
7. tLBOTOT3 should be used when RCWH[LALE] is set and when the load on the LALE output pin equals the load on the LAD
output pins.
8. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the
component pin is less than or equal to that of the leakage current specification.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 37
Local Bus
Figure 19 provides the AC test load for the local bus.
Figure 19. Local Bus C Test Load
Table 39. Local Bus General Timing Parameters—DLL Bypass9
Parameter Symbol1Min Max Unit Notes
Local bus cycle time tLBK 15 ns 2
Input setup to local bus clock tLBIVKH 7—ns3, 4
Input hold from local bus clock tLBIXKH 1.0 ns 3, 4
LALE output fall to LAD output transition (LATCH hold time) tLBOTOT1 1.5 ns 5
LALE output fall to LAD output transition (LATCH hold time) tLBOTOT2 3—ns6
LALE output fall to LAD output transition (LATCH hold time) tLBOTOT3 2.5 ns 7
Local bus clock to output valid tLBKLOV —3ns3
Local bus clock to output high impedance for LAD/LDP tLBKHOZ —4ns8
Notes:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus timing (LB)
for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for clock one
(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect to the output
(O) going invalid (X) or output hold time.
2. All timings are in reference to the falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or the rising edge
of LCLK0 (for all other inputs).
3. All signals are measured from OVDD/2 of the rising/falling edge of LCLK0 to 0.4 ×OVDD of the signal in question for 3.3 V
signaling levels.
4. Input timings are measured at the pin.
5. tLBOTOT1 should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the
load on the LAD output pins.
6. tLBOTOT2 should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than
the load on the LAD output pins.the
7. tLBOTOT3 should be used when RCWH[LALE] is not set and when the load on the LALE output pin equals to the load on the
LAD output pins.
8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered
through the component pin is less than or equal to the leakage current specification.
9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.
Output Z0 = 50 ΩOVDD/2
RL = 50 Ω
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
38 Freescale Semiconductor
Local Bus
Figure 20 through Figure 25 show the local bus signals.
Figure 20. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)
Figure 21. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)
Output Signals:
LA[27:31]/LBCTL/LBCKE/LOE
LSDA10/LSDWE/LSDRAS/
LSDCAS/LSDDQM[0:3]
tLBKHOV
tLBKHOV
tLBKHOV
LSYNC_IN
Input Signals:
LAD[0:31]/LDP[0:3]
Output (Data) Signals:
LAD[0:31]/LDP[0:3]
Output (Address) Signal:
LAD[0:31]
LALE
tLBIXKH
tLBIVKH
tLBIXKH
tLBKHOX
tLBKHOZ
tLBKHLR
tLBOTOT
tLBKHOZ
tLBKHOX
Output Signals:
LSDA10/LSDWE/LSDRAS/
LSDCAS/LSDDQM[0:3]
LCLK[n]
Input Signals:
LAD[0:31]/LDP[0:3]
Output Signals:
LAD[0:31]/LDP[0:3]
LALE
Input Signal:
LGTA
tLBIXKH
tLBKLOV
tLBKHOZ
tLBOTOT
tLBIVKH
tLBIXKH
tLBKLOV
tLBKLOV
tLBIVKH
LA[27:31]/LBCTL/LBCKE/LOE
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 39
Local Bus
Figure 22. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)
Figure 23. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)
LSYNC_IN
UPM Mode Input Signal:
LUPWAIT
tLBIXKH2
tLBIVKH2
tLBIVKH1
tLBIXKH1
tLBKHOZ1
T1
T3
Input Signals:
LAD[0:31]/LDP[0:3]
UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]
GPCM Mode Output Signals:
LCS[0:7]/LWE
tLBKHOV1
tLBKHOV1
tLBKHOZ1
LCLK
UPM Mode Input Signal:
LUPWAIT
tLBIXKH
tLBIVKH
tLBIVKH
tLBIXKH
tLBKHOZ
T1
T3
Input Signals:
LAD[0:31]/LDP[0:3]
UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]
GPCM Mode Output Signals:
LCS[0:7]/LWE
tLBKLOV
tLBKLOV
tLBKHOZ
(DLL Bypass Mode)
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
40 Freescale Semiconductor
Local Bus
Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)
LCLK
UPM Mode Input Signal:
LUPWAIT
tLBIXKH
tLBIVKH
tLBIVKH
tLBIXKH
tLBKHOZ
T1
T3
UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]
GPCM Mode Output Signals:
LCS[0:7]/LWE
tLBKLOV
tLBKLOV
tLBKHOZ
T2
T4
Input Signals:
LAD[0:31]/LDP[0:3]
(DLL Bypass Mode)
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 41
JTAG
Figure 25. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Enabled)
11 JTAG
This section describes the DC and AC electrical specifications for the IEEE Std. 1 149.1 (JTAG) interface
of the MPC8347EA.
11.1 JTAG DC Electrical Characteristics
Table 40 provid es the DC electrical characteristics for the IEEE Std. 1 149.1 (JTAG) interface of the
MPC8347EA.
Table 40. JTAG Interface DC Electrical Characteristics
Characteristic Symbol Condition Min Max Unit
Input high voltage VIH —OV
DD –0.3 OV
DD +0.3 V
Input low voltage VIL –0.3 0.8 V
Input current IIN ——±5μA
Output high voltage VOH IOH = –8.0 mA 2.4 V
LSYNC_IN
UPM Mode Input Signal:
LUPWAIT
tLBIXKH2
tLBIVKH2
tLBIVKH1
tLBIXKH1
tLBKHOZ1
T1
T3
Input Signals:
LAD[0:31]/LDP[0:3]
UPM Mode Output Signals:
LCS[0:3]/LBS[0:3]/LGPL[0:5]
GPCM Mode Output Signals:
LCS[0:3]/LWE
tLBKHOV1
tLBKHOV1
tLBKHOZ1
T2
T4
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
42 Freescale Semiconductor
JTAG
11.2 JTAG AC Timing Specifications
This section describes the AC electrical specifications for the IEEE Std. 1 149. 1 (JTAG) interface of the
MPC8347EA. Table 41 provides the JTAG AC timing specifications as defined in Figure 27 through
Figure 30.
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
Table 41. JTAG AC Timing Specifications (Independent of CLKIN)1
At recommended operating conditions (see Ta bl e 2 ).
Parameter Symbol2Min Max Unit Notes
JTAG external clock frequency of operation fJTG 033.3MHz
JTAG external clock cycle time t JTG 30 ns
JTAG external clock pulse width measured at 1.4 V tJTKHKL 15 ns
JTAG external clock rise and fall times tJTGR, tJTGF 02ns
TRST assert time tTRST 25 ns 3
Input setup times:
Boundary-scan data
TMS, TDI
tJTDVKH
tJTIVKH
4
4
ns
4
Input hold times:
Boundary-scan data
TMS, TDI
tJTDXKH
tJTIXKH
10
10
ns
4
Valid times:
Boundary-scan data
TDO
tJTKLDV
tJTKLOV
2
2
11
11
ns
5
Output hold times:
Boundary-scan data
TDO
tJTKLDX
tJTKLOX
2
2
ns
5
Table 40. JTAG Interface DC Electrical Characteristics (continued)
Characteristic Symbol Condition Min Max Unit
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 43
JTAG
Figure 26 provides the AC test load for TDO and the boundary-scan outputs of the MPC8347EA.
Figure 26. AC Test Load for the JTAG Interface
Figure 27 provides the JTAG clock input timing diagram.
Figure 27. JTAG Clock Input Timing Diagram
Figure 28 provides the TRST timing diag ram.
Figure 28. TRST Timing Diagram
JTAG external clock to output high impedance:
Boundary-scan data
TDO
tJTKLDZ
tJTKLOZ
2
2
19
9
ns
5, 6
Notes:
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question.
The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see Figure 17).
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
2. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device timing
(JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K) going
to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals (D)
went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. In general, the clock reference symbol is
based on three letters representing the clock of a particular function. For rise and fall times, the latter convention is used with
the appropriate letter: R (rise) or F (fall).
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to tTCLK.
5. Non-JTAG signal output timing with respect to tTCLK.
6. Guaranteed by design and characterization.
Table 41. JTAG AC Timing Specifications (Independent of CLKIN)1 (continued)
At recommended operating conditions (see Ta bl e 2 ).
Parameter Symbol2Min Max Unit Notes
Output Z0 = 50 ΩOVDD/2
RL = 50 Ω
JTAG
tJTKHKL tJTGR
External Clock VMVMVM
tJTG tJTGF
VM = Midpoint Voltage (OVDD/2)
TRST
VM = Midpoint Voltage (OVDD/2)
VM VM
tTRST
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
44 Freescale Semiconductor
JTAG
Figure 29 provides the boundary-scan timing diagram.
Figure 29. Boundary-Scan Timing Diagram
Figure 30 provide s the test access port timing diagram.
Figure 30. Test Access Port Timing Diagram
VM = Midpoint Voltage (OVDD/2)
VM VM
tJTDVKH
tJTDXKH
Boundary
Data Outputs
Boundary
Data Outputs
JTAG
External Clock
Boundary
Data Inputs
Output Data Valid
tJTKLDX
tJTKLDZ
tJTKLDV
Input
Data Valid
Output Data Valid
VM = Midpoint Voltage (OVDD/2)
VM VM
tJTIVKH
tJTIXKH
JTAG
External Clock
Output Data Valid
tJTKLOX
tJTKLOZ
tJTKLOV
Input
Data Valid
Output Data Valid
TDI, TMS
TDO
TDO
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 45
I2C
12 I2C
This section describes the DC and AC electrical ch aracteristics for the I2C interface of the MP C8347EA.
12.1 I2C DC Electrical Characteristics
Table 42 provides the DC electrical characteristics for the I2C interface of the MPC8347EA.
12.2 I2C AC Electrical Specifications
Table 43 pr ovides the AC timing parameters for the I2C interface of the MPC8347EA. Note that all values
refer to V IH(min) and V IL(max) leve ls (s e e Table 42).
Table 42. I2C DC Electrical Characteristics
At recommended operating conditions with OVDD of 3.3 V ± 10%.
Parameter Symbol Min Max Unit Notes
Input high voltage level VIH 0.7 ×OVDD OVDD +0.3 V
Input low voltage level VIL –0.3 0.3 ×OVDD V
Low level output voltage VOL 00.2×OVDD V1
Output fall time from VIH(min) to VIL(max) with a bus
capacitance from 10 to 400 pF
tI2KLKV 20 + 0.1 ×CB250 ns 2
Pulse width of spikes which must be suppressed by the
input filter
tI2KHKL 050ns3
Input current each I/O pin (input voltage is between
0.1 ×OVDD and 0.9 ×OVDD(max)
II–10 10 μA4
Capacitance for each I/O pin CI—10pF
Notes:
1. Output voltage (open drain or open collector) condition = 3 mA sink current.
2. CB = capacitance of one bus line in pF.
3. Refer to the
MPC8349EA Integrated Host Processor Family Reference Manual,
for information on the digital filter used.
4. I/O pins obstruct the SDA and SCL lines if OVDD is switched off.
Table 43. I2C AC Electrical Specifications
Parameter Symbol1Min Max Unit
SCL clock frequency fI2C 0400kHz
Low period of the SCL clock tI2CL 1.3 μs
High period of the SCL clock tI2CH 0.6 μs
Setup time for a repeated START condition tI2SVKH 0.6 μs
Hold time (repeated) START condition (after this period, the first clock
pulse is generated)
tI2SXKL 0.6 μs
Data setup time tI2DVKH 100 ns
Data hold time:CBUS compatible masters
I2C bus devices
tI2DXKL
02
0.93
μs
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
46 Freescale Semiconductor
I2C
Figure 31 provides the AC test load for the I2C.
Figure 31. I2C AC Test Load
Figure 32 shows the AC timing diagram for the I2C bus.
Figure 32. I2C Bus AC Timing Diagram
Fall time of both SDA and SCL signals5tI2CF __ 300 ns
Setup time for STOP condition tI2PVKH 0.6 μs
Bus free time between a STOP and START condition tI2KHDX 1.3 μs
Noise margin at the LOW level for each connected device (including
hysteresis)
VNL 0.1 ×OVDD —V
Noise margin at the HIGH level for each connected device (including
hysteresis)
VNH 0.2 ×OVDD —V
Notes:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing (I2) with
respect to the time data input signals (D) reach the valid state (V) relative to the tI2C clock reference (K) going to the high (H)
state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the start condition (S)
goes invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH symbolizes I2C
timing (I2) for the time that the data with respect to the stop condition (P) reaches the valid state (V) relative to the tI2C clock
reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate
letter: R (rise) or F (fall).
2. The device provides a hold time of at least 300 ns for the SDA signal (referred to the VIH(min) of the SCL signal) to bridge
the undefined region of the falling edge of SCL.
3. The maximum tI2DVKH must be met only if the device does not stretch the LOW period (tI2CL) of the SCL signal.
4. CB = capacitance of one bus line in pF.
5.)The device does not follow the “I2C-BUS Specifications” version 2.1 regarding the tI2CF AC parameter.
Table 43. I2C AC Electrical Specifications (continued)
Parameter Symbol1Min Max Unit
Output Z0 = 50 ΩOVDD/2
RL = 50 Ω
SrS
SDA
SCL
tI2CF
tI2SXKL
tI2CL
tI2CH
tI2DXKL
tI2DVKH
tI2SXKL
tI2SVKH
tI2KHKL
tI2PVKH
tI2CR
tI2CF
PS
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 47
PCI
13 PCI
This section describes the DC and AC electrical specifications for the PCI bus of the MPC8347EA.
13.1 PCI DC Electrical Characteristics
Table 44 provid es the DC electrical characteristics for the PC I interface of the MPC8347EA.
13.2 PCI AC Electrical Specifications
This section describes the general AC ti ming parameters of the P CI bus of the MPC8347EA. Note that the
PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the device is
configured as a host or agent device. Table 45 prov ides the PCI AC timing specifi cations at 66 MHz.
Table 44. PCI DC Electrical Characteristics
Parameter Symbol Test Condition Min Max Unit
High-level input voltage VIH VOUT VOH (min) or 2 OVDD +0.3 V
Low-level input voltage VIL VOUT VOL (max) –0.3 0.8 V
Input current IIN VIN1= 0 V or VIN = OVDD —±5 μA
High-level output voltage VOH OVDD = min,
IOH = –100 μA
OVDD –0.2 V
Low-level output voltage VOL OVDD = min,
IOL = 100 μA
—0.2V
Note:
1. The symbol VIN, in this case, represents the OVIN symbol referenced in Ta b le 1 .
Table 45. PCI AC Timing Specifications at 66 MHz1
Parameter Symbol2Min Max Unit Notes
Clock to output valid tPCKHOV —6.0ns3
Output hold from clock tPCKHOX 1—ns3
Clock to output high impedance tPCKHOZ —14ns3, 4
Input setup to clock tPCIVKH 3.0 ns 3, 5
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
48 Freescale Semiconductor
PCI
Table 46 provides the PCI AC timing specific ations at 33 MHz.
Figure 33 provides the AC test load for PCI.
Figure 33. PCI AC Test Load
Input hold from clock tPCIXKH 0—ns3, 5
Notes:
1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a
description of M66EN.
2. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI timing (PC) with
respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference (K) going
to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset (R) went
high (H) relative to the frame signal (F) going to the valid (V) state.
3. See the timing measurement conditions in the
PCI 2.3 Local Bus Specifications
.
4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the
component pin is less than or equal to the leakage current specification.
5. Input timings are measured at the pin.
Table 46. PCI AC Timing Specifications at 33 MHz
Parameter Symbol1Min Max Unit Notes
Clock to output valid tPCKHOV —11ns2
Output hold from clock tPCKHOX 2—ns2
Clock to output high impedance tPCKHOZ —14ns2, 3
Input setup to clock tPCIVKH 3.0 ns 2, 4
Input hold from clock tPCIXKH 0—ns2, 4
Notes:
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI timing (PC) with
respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference (K) going
to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset (R) went
high (H) relative to the frame signal (F) going to the valid (V) state.
2. See the timing measurement conditions in the
PCI 2.3 Local Bus Specifications
.
3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the
component pin is less than or equal to the leakage current specification.
4. Input timings are measured at the pin.
Table 45. PCI AC Timing Specifications at 66 MHz1 (continued)
Parameter Symbol2Min Max Unit Notes
Output Z0 = 50 ΩOVDD/2
RL = 50 Ω
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 49
Timers
Figure 34 shows the PCI input AC timing diagram.
Figure 34. PCI Input AC Timing Diagram
Figure 35 shows the PCI output AC timing diagram.
Figure 35. PCI Output AC Timing Diagram
14 Timers
This section describes the DC and AC electrica l specific a tions for the timers.
14.1 Timer DC Electrical Characteristics
Table 47 provides the DC electrical characteristics for the MPC8347EA timer pins, including TIN, TOUT,
TGATE, and RTC_CLK.
Table 47. Timer DC Electrical Characteristics
Characteristic Symbol Condition Min Max Unit
Input high voltage VIH —2.0OV
DD +0.3 V
Input low voltage VIL –0.3 0.8 V
Input current IIN ——±5μA
Output high voltage VOH IOH = –8.0 mA 2.4 V
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
tPCIVKH
CLK
Input
tPCIXKH
CLK
Output Delay
tPCKHOV
High-Impedance
tPCKHOZ
Output
tPCKHOX
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
50 Freescale Semiconductor
GPIO
14.2 Timer AC Timing Specifications
Table 48 provid es the timer input and output AC timing specifications.
15 GPIO
This section describes the DC and AC electrical specifications for the GPIO.
15.1 GPIO DC Electrical Characteristics
Table 49 provid es the DC electrical characteristics for the MPC8347EA GPIO.
15.2 GPIO AC Timing Specifications
Table 50 provid es the GPIO input and output AC timing specifications.
Table 48. Timers Input AC Timing Specifications1
Characteristic Symbol2Min Unit
Timers inputs—minimum pulse width tTIWID 20 ns
Notes:
1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN.
Timings are measured at the pin.
2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external
synchronous logic. Timer inputs are required to be valid for at least tTIWID ns to ensure proper operation.
Table 49. GPIO DC Electrical Characteristics
Characteristic Symbol Condition Min Max Unit
Input high voltage VIH —2.0OV
DD +0.3 V
Input low voltage VIL –0.3 0.8 V
Input current IIN ——±5μA
Output high voltage VOH IOH = –8.0 mA 2.4 V
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
Table 50. GPIO Input AC Timing Specifications1
Characteristic Symbol2Min Unit
GPIO inputs—minimum pulse width tPIWID 20 ns
Notes:
1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN.
Timings are measured at the pin.
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external
synchronous logic. GPIO inputs must be valid for at least tPIWID ns to ensure proper operation.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 51
IPIC
16 IPIC
This section describes the DC and AC electrical specifications for the external interrupt pins.
16.1 IPIC DC Electrical Characteristics
Table 51 provides the DC electrical characteristics for the external interrupt pins.
16.2 IPIC AC Timing Specifications
Table 52 provid es the IPIC input and output AC timing specifications.
17 SPI
This section describes the SPI DC and AC electrical specific ations.
17.1 SPI DC Electrical Characteristics
Table 53 provide s th e SPI DC electr ical chara ct er ist ics.
Table 51. IPIC DC Electrical Characteristics1
Characteristic Symbol Condition Min Max Unit Notes
Input high voltage VIH —2.0OV
DD +0.3 V
Input low voltage VIL –0.3 0.8 V
Input current IIN ——±5μA—
Output low voltage VOL IOL = 8.0 mA 0.5 V 2
Output low voltage VOL IOL = 3.2 mA 0.4 V 2
Notes:
1. This table applies for pins IRQ[0:7], IRQ_OUT, and MCP_OUT.
2. IRQ_OUT and MCP_OUT are open-drain pins; thus VOH is not relevant for those pins.
Table 52. IPIC Input AC Timing Specifications1
Characteristic Symbol2Min Unit
IPIC inputs—minimum pulse width tPICWID 20 ns
Notes:
1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external
synchronous logic. IPIC inputs must be valid for at least tPICWID ns to ensure proper operation in edge triggered mode.
Table 53. SPI DC Electrical Characteristics
Characteristic Symbol Condition Min Max Unit
Input high voltage VIH —2.0OV
DD +0.3 V
Input low voltage VIL –0.3 0.8 V
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
52 Freescale Semiconductor
SPI
17.2 SPI AC Timing Specifications
Table 54 provides the SPI input and output AC timing specifica tions.
Figure 36 provides the AC test load for the SPI.
Figure 36. SPI AC Test Load
Input current IIN ——±5μA
Output high voltage VOH IOH = –8.0 mA 2.4 V
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
Table 54. SPI AC Timing Specifications1
Characteristic Symbol2Min Max Unit
SPI outputs valid—Master mode (internal clock) delay tNIKHOV —6ns
SPI outputs hold—Master mode (internal clock) delay tNIKHOX 0.5 ns
SPI outputs valid—Slave mode (external clock) delay tNEKHOV —8ns
SPI outputs hold—Slave mode (external clock) delay tNEKHOX 2—ns
SPI inputs—Master mode (internal clock input setup time tNIIVKH 4—ns
SPI inputs—Master mode (internal clock input hold time tNIIXKH 0—ns
SPI inputs—Slave mode (external clock) input setup time tNEIVKH 4—ns
SPI inputs—Slave mode (external clock) input hold time tNEIXKH 2—ns
Notes:
1. Output specifications are measured from the 50 percent level of the rising edge of CLKIN to the 50 percent level of the signal.
Timings are measured at the pin.
2. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOX symbolizes the internal timing
(NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).
Table 53. SPI DC Electrical Characteristics (continued)
Characteristic Symbol Condition Min Max Unit
Output Z0 = 50 ΩOVDD/2
RL = 50 Ω
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 53
Package and Pin Listings
Figure 37 and Figure 38 represe nt the AC timings from Table 54. Note that although the specifications
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge
is the active edge.
Figure 37 shows the SPI timings in slave mode (external clock).
Figure 37. SPI AC Timing in Slave Mode (External Clock) Diagram
Figure 38 shows the SPI timings in master mode (internal clock).
Figure 38. SPI AC Timing in Master Mode (Internal Clock) Diagram
18 Package and Pin Listings
This s ection details package par ameters, pin assignments , and dimensions. The MPC8347EA is available
in two packages—a tape ball grid array (TBGA) and a plastic ball grid array (PBGA). See Section 18.1,
“Package Parameters for the MPC8347EA TBGA,,” Section 18.2, “Mechanical Dimensions for the
MPC8347EA TBGA,Section 18.3, “Package Parameters for the MPC8347EA PBGA ,” and Section 18.4,
“Mechanical Dimensions for the MPC8347EA PBGA.
18.1 Package Parameters for the MPC8347EA TBGA
The package parameters are provided in the following list. The package type is 35 mm × 35 mm, 672 tape
ball grid array (TBGA).
Package outline 35 mm × 35 mm
Interconnects 672
SPICLK (Input)
tNEIXKH
tNEIVKH
tNEKHOX
Input Signals:
SPIMOSI
(See Note)
Output Signals:
SPIMISO
(See Note)
Note: The clock edge is selectable on SPI.
SPICLK (Output)
tNIIXKH
tNIKHOX
Input Signals:
SPIMISO
(See Note)
Output Signals:
SPIMOSI
(See Note)
Note: The clock edge is selectable on SPI.
tNIIVKH
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
54 Freescale Semiconductor
Package and Pin Listings
Pitch 1.00 mm
Module height (typical) 1.46 mm
Solder balls 62 Sn/36 Pb/2 Ag (ZU package)
96.5 Sn/3.5Ag (VV package)
Ball dia meter (typical) 0.64 mm
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 55
Package and Pin Listings
18.2 Mechanical Dimensions for the MPC8347EA TBGA
Figure 39 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347EA,
672-TBGA package.
Figure 39. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347EA TBGA
Notes:
1. All dimensions are in millimeters.
2. Dimensions and tolerances per ASME Y14.5M-1994.
3. Maximum solder ball diameter measured parallel to datum A.
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
5. Parallelism measurement must exclude any effect of mark on top surface of package.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
56 Freescale Semiconductor
Package and Pin Listings
18.3 Package Parameters for the MPC8347EA PBGA
The package parameters are as provided in the following list. The package type is 29 mm × 29 mm,
620 plas tic ball grid array (PB GA).
Package outline 29 mm × 29 mm
Interconnects 620
Pitch 1.00 mm
Module height (maximum) 2.46 mm
Module height (typical) 2.23 mm
Module height (minimum) 2.00 mm
Solder balls 62 Sn/36 Pb/2 Ag (ZQ package)
96.5 Sn/3.5Ag (VR package)
Ball dia meter (typical) 0.60 mm
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 57
Package and Pin Listings
18.4 Mechanical Dimensions for the MPC8347EA PBGA
Figure 40 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347EA,
620-PBGA package.
Notes:
1. All dimensions are in millimeters.
2. Dimensioning and tolerancing per ASME Y14. 5M-1994.
3. Maximum solder ball diameter measured parallel to datum A.
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
Figure 40. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347EA PBGA
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
58 Freescale Semiconductor
Package and Pin Listings
18.5 Pinout Listings
Table 55 provid es the pinout listing for the MPC8347EA, 672 TBGA package.
Table 55. MPC8347EA (TBGA) Pinout Listing
Signal Package Pin Number Pin Type Power
Supply Notes
PCI
PCI_INTA/IRQ_OUT B34 O OVDD 2
PCI_RESET_OUT C33 O OVDD
PCI_AD[31:0] G30, G32, G34, H31, H32, H33, H34,
J29, J32, J33, L30, K31, K33, K34,
L33, L34, P34, R29, R30, R33, R34,
T31, T32, T33, U31, U34, V31, V32,
V33, V34, W33, W34
I/O OVDD
PCI_C/BE[3:0] J30, M31, P33, T34 I/O OVDD
PCI_PAR P32 I/O OVDD
PCI_FRAME M32 I/O OVDD 5
PCI_TRDY N29 I/O OVDD 5
PCI_IRDY M34 I/O OVDD 5
PCI_STOP N31 I/O OVDD 5
PCI_DEVSEL N30 I/O OVDD 5
PCI_IDSEL J31 I OVDD
PCI_SERR N34 I/O OVDD 5
PCI_PERR N33 I/O OVDD 5
PCI_REQ[0] D32 I/O OVDD
PCI_REQ[1]/CPCI1_HS_ES D34 I OVDD
PCI_REQ[2:4] E34, F32, G29 I OVDD
PCI_GNT0 C34 I/O OVDD
PCI_GNT1/CPCI1_HS_LED D33 O OVDD
PCI_GNT2/CPCI1_HS_ENUM E33 O OVDD
PCI_GNT[3:4] F31, F33 O OVDD
M66EN A19 I OVDD
DDR SDRAM Memory Interface
MDQ[0:63] D5, A3, C3, D3, C4, B3, C2, D4, D2,
E5, G2, H6, E4, F3, G4, G3, H1, J2,
L6, M6, H2, K6, L2, M4, N2, P4, R2,
T4, P6, P3, R1, T2, AB5, AA3, AD6,
AE4, AB4, AC2, AD3, AE6, AE3, AG4,
AK5, AK4, AE2, AG6, AK3, AK2, AL2,
AL1, AM5, AP5, AM2, AN1, AP4, AN5,
AJ7, AN7, AM8, AJ9, AP6, AL7, AL9,
AN8
I/O GVDD
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 59
Package and Pin Listings
MECC[0:4]/MSRCID[0:4] W4, W3, Y3, AA6, T1 I/O GVDD
MECC[5]/MDVAL U1 I/O GVDD
MECC[6:7] Y1, Y6 I/O GVDD
MDM[0:8] B1, F1, K1, R4, AD4, AJ1, AP3, AP7,
Y4
OGV
DD
MDQS[0:8] B2, F5, J1, P2, AC1, AJ2, AN4, AL8,
W2
I/O GVDD
MBA[0:1] AD1, AA5 O GVDD
MA[0:14] W1, U4, T3, R3, P1, M1, N1, L3, L1,
K2, Y2, K3, J3, AP2, AN6
OGV
DD
MWE AF1 O GVDD
MRAS AF4 O GVDD
MCAS AG3 O GVDD
MCS[0:3] AG2, AG1, AK1, AL4 O GVDD
MCKE[0:1] H3, G1 O GVDD 3
MCK[0:5] U2, F4, AM3, V3, F2, AN3 O GVDD
MCK[0:5] U3, E3, AN2, V4, E1, AM4 O GVDD
MODT[0:3] AH3, AJ5, AH1, AJ4 O GVDD
MBA[2] H4 O GVDD
MDIC0 AB1 I/O 10
MDIC1 AA1 I/O 10
Local Bus Controller Interface
LAD[0:31] AM13, AP13, AL14, AM14, AN14,
AP14, AK15, AJ15, AM15, AN15,
AP15, AM16, AL16, AN16, AP16,
AL17, AM17, AP17, AK17, AP18,
AL18, AM18, AN18, AP19, AN19,
AM19, AP20, AK19, AN20, AL20,
AP21, AN21
I/O OVDD
LDP[0]/CKSTOP_OUT AM21 I/O OVDD
LDP[1]/CKSTOP_IN AP22 I/O OVDD
LDP[2]/LCS[4] AN22 I/O OVDD
LDP[3]/LCS[5] AM22 I/O OVDD
LA[27:31] AK21, AP23, AN23, AP24, AK22 O OVDD
LCS[0:3] AN24, AL23, AP25, AN25 O OVDD
LWE[0:3]/LSDDQM[0:3]/LBS[0:3] AK23, AP26, AL24, AM25 O OVDD
LBCTL AN26 O OVDD
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
60 Freescale Semiconductor
Package and Pin Listings
LALE AK24 O OVDD
LGPL0/LSDA10/cfg_reset_source0 AP27 I/O OVDD
LGPL1/LSDWE/cfg_reset_source1 AL25 I/O OVDD
LGPL2/LSDRAS/LOE AJ24 O OVDD
LGPL3/LSDCAS/cfg_reset_source2 AN27 I/O OVDD
LGPL4/LGTA/LUPWAIT/LPBSE AP28 I/O OVDD
LGPL5/cfg_clkin_div AL26 I/O OVDD
LCKE AM27 O OVDD
LCLK[0:2] AN28, AK26, AP29 O OVDD
LSYNC_OUT AM12 O OVDD
LSYNC_IN AJ10 I OVDD
General Purpose I/O Timers
GPIO1[0]/DMA_DREQ0/GTM1_TIN1/
GTM2_TIN2
F24 I/O OVDD
GPIO1[1]/DMA_DACK0/GTM1_TGATE1/
GTM2_TGATE2
E24 I/O OVDD
GPIO1[2]/DMA_DDONE0/GTM1_TOUT1 B25 I/O OVDD
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/
GTM2_TIN1
D24 I/O OVDD
GPIO1[4]/DMA_DACK1/GTM1_TGATE2/
GTM2_TGATE1
A25 I/O OVDD
GPIO1[5]/DMA_DDONE1/GTM1_TOUT2/
GTM2_TOUT1
B24 I/O OVDD
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/
GTM2_TIN4
A24 I/O OVDD
GPIO1[7]/DMA_DACK2/GTM1_TGATE3/
GTM2_TGATE4
D23 I/O OVDD
GPIO1[8]/DMA_DDONE2/GTM1_TOUT3 B23 I/O OVDD
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/
GTM2_TIN3
A23 I/O OVDD
GPIO1[10]/DMA_DACK3/GTM1_TGATE4/
GTM2_TGATE3
F22 I/O OVDD
GPIO1[11]/DMA_DDONE3/GTM1_TOUT4/
GTM2_TOUT3
E22 I/O OVDD
USB Port 1
MPH1_D0_ENABLEN/DR_D0_ENABLEN A26 I/O OVDD
MPH1_D1_SER_TXD/DR_D1_SER_TXD B26 I/O OVDD
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0 D25 I/O OVDD
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 61
Package and Pin Listings
MPH1_D3_SPEED/DR_D3_SPEED A27 I/O OVDD
MPH1_D4_DP/DR_D4_DP B27 I/O OVDD
MPH1_D5_DM/DR_D5_DM C27 I/O OVDD
MPH1_D6_SER_RCV/DR_D6_SER_RCV D26 I/O OVDD
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS E26 I/O OVDD
MPH1_NXT/DR_SESS_VLD_NXT D27 I OVDD
MPH1_DIR_DPPULLUP/
DR_XCVR_SEL_DPPULLUP
A28 I/O OVDD
MPH1_STP_SUSPEND/
DR_STP_SUSPEND
F26 O OVDD
MPH1_PWRFAULT/
DR_RX_ERROR_PWRFAULT
E27 I OVDD
MPH1_PCTL0/DR_TX_VALID_PCTL0 A29 O OVDD
MPH1_PCTL1/DR_TX_VALIDH_PCTL1 D28 O OVDD
MPH1_CLK/DR_CLK B29 I OVDD
USB Port 0
MPH0_D0_ENABLEN/DR_D8_CHGVBUS C29 I/O OVDD
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS A30 I/O OVDD
MPH0_D2_VMO_SE0/DR_D10_DPPD E28 I/O OVDD
MPH0_D3_SPEED/DR_D11_DMMD B30 I/O OVDD
MPH0_D4_DP/DR_D12_VBUS_VLD C30 I/O OVDD
MPH0_D5_DM/DR_D13_SESS_END A31 I/O OVDD
MPH0_D6_SER_RCV/DR_D14 B31 I/O OVDD
MPH0_D7_DRVVBUS/DR_D15_IDPULLUP C31 I/O OVDD
MPH0_NXT/DR_RX_ACTIVE_ID B32 I OVDD
MPH0_DIR_DPPULLUP/DR_RESET A32 I/O OVDD
MPH0_STP_SUSPEND/DR_TX_READY A33 I/O OVDD
MPH0_PWRFAULT/DR_RX_VALIDH C32 I OVDD
MPH0_PCTL0/DR_LINE_STATE0 D31 I/O OVDD
MPH0_PCTL1/DR_LINE_STATE1 E30 I/O OVDD
MPH0_CLK/DR_RX_VALID B33 I OVDD
Programmable Interrupt Controller
MCP_OUT AN33 O OVDD 2
IRQ0/MCP_IN/GPIO2[12] C19 I/O OVDD
IRQ[1:5]/GPIO2[13:17] C22, A22, D21, C21, B21 I/O OVDD
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
62 Freescale Semiconductor
Package and Pin Listings
IRQ[6]/GPIO2[18]/CKSTOP_OUT A21 I/O OVDD
IRQ[7]/GPIO2[19]/CKSTOP_IN C20 I/O OVDD
Ethernet Management Interface
EC_MDC A7 O LVDD1
EC_MDIO E9 I/O LVDD1 2
Gigabit Reference Clock
EC_GTX_CLK125 C8 I LVDD1
Three-Speed Ethernet Controller (Gigabit Ethernet 1)
TSEC1_COL/GPIO2[20] A17 I/O OVDD
TSEC1_CRS/GPIO2[21] F12 I/O LVDD1
TSEC1_GTX_CLK D10 O LVDD1 3
TSEC1_RX_CLK A11 I LVDD1
TSEC1_RX_DV B11 I LVDD1
TSEC1_RX_ER/GPIO2[26] B17 I/O OVDD
TSEC1_RXD[7:4]/GPIO2[22:25] B16, D16, E16, F16 I/O OVDD
TSEC1_RXD[3:0] E10, A8, F10, B8 I LVDD1
TSEC1_TX_CLK D17 I OVDD
TSEC1_TXD[7:4]/GPIO2[27:30] A15, B15, A14, B14 I/O OVDD
TSEC1_TXD[3:0] A10, E11, B10, A9 O LVDD1 11
TSEC1_TX_EN B9 O LVDD1
TSEC1_TX_ER/GPIO2[31] A16 I/O OVDD
Three-Speed Ethernet Controller (Gigabit Ethernet 2)
TSEC2_COL/GPIO1[21] C14 I/O OVDD
TSEC2_CRS/GPIO1[22] D6 I/O LVDD2
TSEC2_GTX_CLK A4 O LVDD2
TSEC2_RX_CLK B4 I LVDD2
TSEC2_RX_DV/GPIO1[23] E6 I/O LVDD2
TSEC2_RXD[7:4]/GPIO1[26:29] A13, B13, C13, A12 I/O OVDD
TSEC2_RXD[3:0]/GPIO1[13:16] D7, A6, E8, B7 I/O LVDD2
TSEC2_RX_ER/GPIO1[25] D14 I/O OVDD
TSEC2_TXD[7]/GPIO1[31] B12 I/O OVDD
TSEC2_TXD[6]/DR_XCVR_TERM_SEL C12 O OVDD
TSEC2_TXD[5]/DR_UTMI_OPMODE1 D12 O OVDD
TSEC2_TXD[4]/DR_UTMI_OPMODE0 E12 O OVDD
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 63
Package and Pin Listings
TSEC2_TXD[3:0]/GPIO1[17:20] B5, A5, F8, B6 I/O LVDD2
TSEC2_TX_ER/GPIO1[24] F14 I/O OVDD
TSEC2_TX_EN/GPIO1[12] C5 I/O LVDD2 3
TSEC2_TX_CLK/GPIO1[30] E14 I/O OVDD
DUART
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1] AK27, AN29 O OVDD
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3] AL28, AM29 I/O OVDD
UART_CTS[1]/MSRCID4/LSRCID4 AP30 I/O OVDD
UART_CTS[2]/MDVAL/ LDVAL AN30 I/O OVDD
UART_RTS[1:2] AP31, AM30 O OVDD
I2C interface
IIC1_SDA AK29 I/O OVDD 2
IIC1_SCL AP32 I/O OVDD 2
IIC2_SDA AN31 I/O OVDD 2
IIC2_SCL AM31 I/O OVDD 2
SPI
SPIMOSI/LCS[6] AN32 I/O OVDD
SPIMISO/LCS[7] AP33 I/O OVDD
SPICLK AK30 I/O OVDD
SPISEL AL31 I OVDD
Clocks
PCI_CLK_OUT[0:2] AN9, AP9, AM10 O OVDD
PCI_CLK_OUT[3]/LCS[6] AN10 O OVDD
PCI_CLK_OUT[4]/LCS[7] AJ11 O OVDD
PCI_SYNC_IN/PCI_CLOCK AK12 I OVDD
PCI_SYNC_OUT AP11 O OVDD 3
RTC/PIT_CLOCK AM32 I OVDD
CLKIN AM9 I OVDD
JTAG
TCK E20 I OVDD
TDI F20 I OVDD 4
TDO B20 O OVDD 3
TMS A20 I OVDD 4
TRST B19 I OVDD 4
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
64 Freescale Semiconductor
Package and Pin Listings
Test
TEST D22 I OVDD 6
TEST_SEL AL13 I OVDD 7
PMC
QUIESCE A18 O OVDD
System Control
PORESET C18 I OVDD
HRESET B18 I/O OVDD 1
SRESET D18 I/O OVDD 2
Thermal Management
THERM0 K32 I 9
Power and Ground Signals
AVDD1 L31 Power for e300
PLL (1.2 V)
nominal, 1.3 V
for 667 MHz)
AVDD1—
AVDD2 AP12 Power for
system PLL
(1.2 V)
nominal, 1.3 V
for 667 MHz)
AVDD2—
AVDD3 AE1 Power for DDR
DLL (1.2 V)
nominal, 1.3 V
for 667 MHz)
——
AVDD4 AJ13 Power for LBIU
DLL (1.2 V)
nominal, 1.3 V
for 667 MHz)
AVDD4—
GND A1, A34, C1, C7, C10, C11, C15, C23,
C25, C28, D1, D8, D20, D30, E7, E13,
E15, E17, E18, E21, E23, E25, E32,
F6, F19, F27, F30, F34, G31, H5, J4,
J34, K30, L5, M2, M5, M30, M33, N3,
N5, P30, R5, R32, T5, T30, U6, U29,
U33, V2, V5, V30, W6, W30, Y30,
AA2, AA30, AB2, AB6, AB30, AC3,
AC6, AD31, AE5, AF2, AF5, AF31,
AG30, AG31, AH4, AJ3, AJ19, AJ22,
AK7, AK13, AK14, AK16, AK18, AK20,
AK25, AK28, AL3, AL5, AL10, AL12,
AL22, AL27, AM1, AM6, AM7, AN12,
AN17, AN34, AP1, AP8, AP34
——
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 65
Package and Pin Listings
GVDD A2, E2, G5, G6, J5, K4, K5, L4, N4, P5,
R6, T6, U5, V1, W5, Y5, AA4, AB3,
AC4, AD5, AF3, AG5, AH2, AH5, AH6,
AJ6, AK6, AK8, AK9, AL6
Power for DDR
DRAM I/O
voltage
(2.5 V)
GVDD
LVDD1 C9, D11 Power for
three-speed
Ethernet #1
and for
Ethernet
management
interface I/O
(2.5 V, 3.3 V)
LVDD1—
LVDD2 C6, D9 Power for
three-speed
Ethernet #2
I/O (2.5 V,
3.3 V)
LVDD2—
VDD E19, E29, F7, F9, F11,F13, F15, F17,
F18, F21, F23, F25, F29, H29, J6,
K29, M29, N6, P29, T29, U30, V6,
V29, W29, AB29, AC5, AD29, AF6,
AF29, AH29, AJ8, AJ12, AJ14, AJ16,
AJ18, AJ20, AJ21, AJ23, AJ25, AJ26,
AJ27, AJ28, AJ29, AK10
Power for core
(1.2 V
nominal, 1.3 V
for 667 MHz)
VDD
OVDD B22, B28, C16, C17, C24, C26, D13,
D15, D19, D29, E31, F28, G33, H30,
L29, L32, N32, P31, R31, U32, W31,
Y29, AA29, AC30, AE31, AF30, AG29,
AJ17, AJ30, AK11, AL15, AL19, AL21,
AL29, AL30, AM20, AM23, AM24,
AM26, AM28, AN11, AN13
PCI, 10/100
Ethernet, and
other standard
(3.3 V)
OVDD
MVREF1 M3 I DDR
reference
voltage
MVREF2 AD2 I DDR
reference
voltage
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
66 Freescale Semiconductor
Package and Pin Listings
Table 56 provid es the pinout listing for the MPC8347EA, 620 PBGA package.
No Connection
NC W32, AA31, AA32, AA33, AA34,
AB31, AB32, AB33, AB34, AC29,
AC31, AC33, AC34, AD30, AD32,
AD33, AD34, AE29, AE30, AH32,
AH33, AH34, AM33, AJ31, AJ32,
AJ33, AJ34, AK32, AK33, AK34,
AM34, AL33, AL34, AK31, AH30,
AC32, AE32, AH31, AL32, AG34,
AE33, AF32, AE34, AF34, AF33,
AG33, AG32, AL11, AM11, AP10, Y32,
Y34, Y31, Y33
——
Notes:
1. This pin is an open-drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OVDD
.
2. This pin is an open-drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OVDD.
3. During reset, this output is actively driven rather than three-stated.
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.
6. This pin must always be tied to GND.
7. This pin must always be pulled up to OVDD
.
8. This pin must always be left not connected.
9. Thermal sensitive resistor.
10.It is recommended that MDIC0 be tied to GRD using an 18 Ω resistor and MDIC1 be tied to DDR power using an 18 Ω
resistor.
11.TSEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or
actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.
Table 56. MPC8347EA (PBGA) Pinout Listing
Signal Package Pin Number Pin Type Power
Supply Notes
PCI
PCI1_INTA/IRQ_OUT D20 O OVDD 2
PCI1_RESET_OUT B21 O OVDD
PCI1_AD[31:0] E19, D17, A16, A18, B17, B16, D16,
B18, E17, E16, A15, C16, D15, D14,
C14, A12, D12, B11, C11, E12, A10,
C10, A9, E11, E10, B9, B8, D9, A8,
C9, D8, C8
I/O OVDD
PCI1_C/BE[3:0] A17, A14, A11, B10 I/O OVDD
PCI1_PAR D13 I/O OVDD
PCI1_FRAME B14 I/O OVDD 5
PCI1_TRDY A13 I/O OVDD 5
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 67
Package and Pin Listings
PCI1_IRDY E13 I/O OVDD 5
PCI1_STOP C13 I/O OVDD 5
PCI1_DEVSEL B13 I/O OVDD 5
PCI1_IDSEL C17 I OVDD
PCI1_SERR C12 I/O OVDD 5
PCI1_PERR B12 I/O OVDD 5
PCI1_REQ[0] A21 I/O OVDD
PCI1_REQ[1]/CPCI1_HS_ES C19 I OVDD
PCI1_REQ[2:4] C18, A19, E20 I OVDD
PCI1_GNT0 B20 I/O OVDD
PCI1_GNT1/CPCI1_HS_LED C20 O OVDD
PCI1_GNT2/CPCI1_HS_ENUM B19 O OVDD
PCI1_GNT[3:4] A20, E18 O OVDD
M66EN L26 I OVDD
DDR SDRAM Memory Interface
MDQ[0:63] AC25, AD27, AD25, AH27, AE28,
AD26, AD24, AF27, AF25, AF28,
AH24, AG26, AE25, AG25, AH26,
AH25, AG22, AH22, AE21, AD19,
AE22, AF23, AE19, AG20, AG19,
AD17, AE16, AF16, AF18, AG18,
AH17, AH16, AG9, AD12, AG7, AE8,
AD11, AH9, AH8, AF6, AF8, AE6,
AF1, AE4, AG8, AH3, AG3, AG4, AH2,
AD7, AB4, AB3, AG1, AD5, AC2, AC1,
AC4, AA3, Y4, AA4, AB1, AB2, Y5, Y3
I/O GVDD
MECC[0:4]/MSRCID[0:4] AG13, AE14, AH12, AH10, AE15 I/O GVDD
MECC[5]/MDVAL AH14 I/O GVDD
MECC[6:7] AE13, AH11 I/O GVDD
MDM[0:8] AG28, AG24, AF20, AG17, AE9, AH5,
AD1, AA2, AG12
OGV
DD
MDQS[0:8] AE27, AE26, AE20, AH18, AG10, AF5,
AC3, AA1, AH13
I/O GVDD
MBA[0:1] AF10, AF11 O GVDD
MA[0:14] AF13, AF15, AG16, AD16, AF17,
AH20, AH19, AH21, AD18, AG21,
AD13, AF21, AF22, AE1, AA5
OGV
DD
MWE AD10 O GVDD
MRAS AF7 O GVDD
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
68 Freescale Semiconductor
Package and Pin Listings
MCAS AG6 O GVDD
MCS[0:3] AE7, AH7, AH4, AF2 O GVDD
MCKE[0:1] AG23, AH23 O GVDD 3
MCK[0:5] AH15, AE24, AE2, AF14, AE23, AD3 O GVDD
MCK[0:5] AG15, AD23, AE3, AG14, AF24, AD2 O GVDD
MODT[0:3] AG5, AD4, AH6, AF4 O GVDD
MBA[2] AD22 O GVDD
MDIC0 AG11 I/O 9
MDIC1 AF12 I/O 9
Local Bus Controller Interface
LAD[0:31] T4, T5, T1, R2, R3, T2, R1, R4, P1, P2,
P3, P4, N1, N4, N2, N3, M1, M2, M3,
N5, M4, L1, L2, L3, K1, M5, K2, K3, J1,
J2, L5, J3
I/O OVDD
LDP[0]/CKSTOP_OUT H1 I/O OVDD
LDP[1]/CKSTOP_IN K5 I/O OVDD
LDP[2]/LCS[4] H2 I/O OVDD
LDP[3]/LCS[5] G1 I/O OVDD
LA[27:31] J4, H3, G2, F1, G3 O OVDD
LCS[0:3] J5, H4, F2, E1 O OVDD
LWE[0:3]/LSDDQM[0:3]/LBS[0:3] F3, G4, D1, E2 O OVDD
LBCTL H5 O OVDD
LALE E3 O OVDD
LGPL0/LSDA10/cfg_reset_source0 F4 I/O OVDD
LGPL1/LSDWE/cfg_reset_source1 D2 I/O OVDD
LGPL2/LSDRAS/LOE C1 O OVDD
LGPL3/LSDCAS/cfg_reset_source2 C2 I/O OVDD
LGPL4/LGTA/LUPWAIT/LPBSE C3 I/O OVDD
LGPL5/cfg_clkin_div B3 I/O OVDD
LCKE E4 O OVDD
LCLK[0:2] D4, A3, C4 O OVDD
LSYNC_OUT U3 O OVDD
LSYNC_IN Y2 I OVDD
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 69
Package and Pin Listings
General Purpose I/O Timers
GPIO1[0]/DMA_DREQ0/GTM1_TIN1/
GTM2_TIN2
D27 I/O OVDD
GPIO1[1]/DMA_DACK0/GTM1_TGATE1/
GTM2_TGATE2
E26 I/O OVDD
GPIO1[2]/DMA_DDONE0/GTM1_TOUT1 D28 I/O OVDD
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/
GTM2_TIN1
G25 I/O OVDD
GPIO1[4]/DMA_DACK1/GTM1_TGATE2/
GTM2_TGATE1
J24 I/O OVDD
GPIO1[5]/DMA_DDONE1/GTM1_TOUT2/
GTM2_TOUT1
F26 I/O OVDD
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/
GTM2_TIN4
E27 I/O OVDD
GPIO1[7]/DMA_DACK2/GTM1_TGATE3/
GTM2_TGATE4
E28 I/O OVDD
GPIO1[8]/DMA_DDONE2/GTM1_TOUT3 H25 I/O OVDD
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/
GTM2_TIN3
F27 I/O OVDD
GPIO1[10]/DMA_DACK3/
GTM1_TGATE4/GTM2_TGATE3
K24 I/O OVDD
GPIO1[11]/DMA_DDONE3/
GTM1_TOUT4/GTM2_TOUT3
G26 I/O OVDD
USB Port 1
MPH1_D0_ENABLEN/DR_D0_ENABLEN C28 I/O OVDD
MPH1_D1_SER_TXD/DR_D1_SER_TXD F25 I/O OVDD
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0 B28 I/O OVDD
MPH1_D3_SPEED/DR_D3_SPEED C27 I/O OVDD
MPH1_D4_DP/DR_D4_DP D26 I/O OVDD
MPH1_D5_DM/DR_D5_DM E25 I/O OVDD
MPH1_D6_SER_RCV/DR_D6_SER_RCV C26 I/O OVDD
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS D25 I/O OVDD
MPH1_NXT/DR_SESS_VLD_NXT B26 I OVDD
MPH1_DIR_DPPULLUP/
DR_XCVR_SEL_DPPULLUP
E24 I/O OVDD
MPH1_STP_SUSPEND/
DR_STP_SUSPEND
A27 O OVDD
MPH1_PWRFAULT/
DR_RX_ERROR_PWRFAULT
C25 I OVDD
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
70 Freescale Semiconductor
Package and Pin Listings
MPH1_PCTL0/DR_TX_VALID_PCTL0 A26 O OVDD
MPH1_PCTL1/DR_TX_VALIDH_PCTL1 B25 O OVDD
MPH1_CLK/DR_CLK A25 I OVDD
USB Port 0
MPH0_D0_ENABLEN/DR_D8_CHGVBUS D24 I/O OVDD
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS C24 I/O OVDD
MPH0_D2_VMO_SE0/DR_D10_DPPD B24 I/O OVDD
MPH0_D3_SPEED/DR_D11_DMMD A24 I/O OVDD
MPH0_D4_DP/DR_D12_VBUS_VLD D23 I/O OVDD
MPH0_D5_DM/DR_D13_SESS_END C23 I/O OVDD
MPH0_D6_SER_RCV/DR_D14 B23 I/O OVDD
MPH0_D7_DRVVBUS/DR_D15_IDPULLUP A23 I/O OVDD
MPH0_NXT/DR_RX_ACTIVE_ID D22 I OVDD
MPH0_DIR_DPPULLUP/DR_RESET C22 I/O OVDD
MPH0_STP_SUSPEND/DR_TX_READY B22 I/O OVDD
MPH0_PWRFAULT/DR_RX_VALIDH A22 I OVDD
MPH0_PCTL0/DR_LINE_STATE0 E21 I/O OVDD
MPH0_PCTL1/DR_LINE_STATE1 D21 I/O OVDD
MPH0_CLK/DR_RX_VALID C21 I OVDD
Programmable Interrupt Controller
MCP_OUT E8 O OVDD 2
IRQ0/MCP_IN/GPIO2[12] J28 I/O OVDD
IRQ[1:5]/GPIO2[13:17] K25, J25, H26, L24, G27 I/O OVDD
IRQ[6]/GPIO2[18]/CKSTOP_OUT G28 I/O OVDD
IRQ[7]/GPIO2[19]/CKSTOP_IN J26 I/O OVDD
Ethernet Management Interface
EC_MDC Y24 O LVDD1
EC_MDIO Y25 I/O LVDD1 2
Gigabit Reference Clock
EC_GTX_CLK125 Y26 I LVDD1
Three-Speed Ethernet Controller (Gigabit Ethernet 1)
TSEC1_COL/GPIO2[20] M26 I/O OVDD
TSEC1_CRS/GPIO2[21] U25 I/O LVDD1
TSEC1_GTX_CLK V24 O LVDD1 3
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 71
Package and Pin Listings
TSEC1_RX_CLK U26 I LVDD1
TSEC1_RX_DV U24 I LVDD1
TSEC1_RX_ER/GPIO2[26] L28 I/O OVDD
TSEC1_RXD[7:4]/GPIO2[22:25] M27, M28, N26, N27 I/O OVDD
TSEC1_RXD[3:0] W26, W24, Y28, Y27 I LVDD1
TSEC1_TX_CLK N25 I OVDD
TSEC1_TXD[7:4]/GPIO2[27:30] N28, P25, P26, P27 I/O OVDD
TSEC1_TXD[3:0] V28, V27, V26, W28 O LVDD1 10
TSEC1_TX_EN W27 O LVDD1
TSEC1_TX_ER/GPIO2[31] N24 I/O OVDD
Three-Speed Ethernet Controller (Gigabit Ethernet 2)
TSEC2_COL/GPIO1[21] P28 I/O OVDD
TSEC2_CRS/GPIO1[22] AC28 I/O LVDD2
TSEC2_GTX_CLK AC27 O LVDD2
TSEC2_RX_CLK AB25 I LVDD2
TSEC2_RX_DV/GPIO1[23] AC26 I/O LVDD2
TSEC2_RXD[7:4]/GPIO1[26:29] R28, T24, T25, T26 I/O OVDD
TSEC2_RXD[3:0]/GPIO1[13:16] AA25, AA26, AA27, AA28 I/O LVDD2
TSEC2_RX_ER/GPIO1[25] R25 I/O OVDD
TSEC2_TXD[7]/GPIO1[31] T27 I/O OVDD
TSEC2_TXD[6]/DR_XCVR_TERM_SEL T28 O OVDD
TSEC2_TXD[5]/DR_UTMI_OPMODE1 U28 O OVDD
TSEC2_TXD[4]/DR_UTMI_OPMODE0 U27 O OVDD
TSEC2_TXD[3:0]/GPIO1[17:20] AB26, AB27, AA24, AB28 I/O LVDD2
TSEC2_TX_ER/GPIO1[24] R27 I/O OVDD
TSEC2_TX_EN/GPIO1[12] AD28 I/O LVDD2 3
TSEC2_TX_CLK/GPIO1[30] R26 I/O OVDD
DUART
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1] B4, A4 O OVDD
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3] D5, C5 I/O OVDD
UART_CTS[1]/MSRCID4/LSRCID4 B5 I/O OVDD
UART_CTS[2]/MDVAL/LDVAL A5 I/O OVDD
UART_RTS[1:2] D6, C6 O OVDD
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
72 Freescale Semiconductor
Package and Pin Listings
I2C interface
IIC1_SDA E5 I/O OVDD 2
IIC1_SCL A6 I/O OVDD 2
IIC2_SDA B6 I/O OVDD 2
IIC2_SCL E7 I/O OVDD 2
SPI
SPIMOSI/LCS[6] D7 I/O OVDD
SPIMISO/LCS[7] C7 I/O OVDD
SPICLK B7 I/O OVDD
SPISEL A7 I OVDD
Clocks
PCI_CLK_OUT[0:2] Y1, W3, W2 O OVDD
PCI_CLK_OUT[3]/LCS[6] W1 O OVDD
PCI_CLK_OUT[4]/LCS[7] V3 O OVDD
PCI_SYNC_IN/PCI_CLOCK U4 I OVDD
PCI_SYNC_OUT U5 O OVDD 3
RTC/PIT_CLOCK E9 I OVDD
CLKIN W5 I OVDD
JTAG
TCK H27 I OVDD
TDI H28 I OVDD 4
TDO M24 O OVDD 3
TMS J27 I OVDD 4
TRST K26 I OVDD 4
Test
TEST F28 I OVDD 6
TEST_SEL T3 I OVDD 6
PMC
QUIESCE K27 O OVDD
System Control
PORESET K28 I OVDD
HRESET M25 I/O OVDD 1
SRESET L27 I/O OVDD 2
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 73
Package and Pin Listings
Thermal Management
THERM0 B15 I 8
Power and Ground Signals
AVDD1 C15 Power for e300
PLL (1.2 V)
nominal, 1.3 V
for 667 MHz)
AVDD1—
AVDD2 U1 Power for
system PLL
(1.2 V)
nominal, 1.3 V
for 667 MHz)
AVDD2—
AVDD3 AF9 Power for DDR
DLL (1.2 V
nominal, 1.3 V
for 667 MHz)
AVDD4 U2 Power for LBIU
DLL (1.2 V
nominal, 1.3 V
for 667 MHz)
AVDD4—
GND A2, B1, B2, D10, D18, E6, E14, E22,
F9, F12, F15, F18, F21, F24, G5, H6,
J23, L4, L6, L12, L13, L14, L15, L16,
L17, M11, M12, M13, M14, M15, M16,
M17, M18, M23, N11, N12, N13, N14,
N15, N16, N17, N18, P6, P11, P12,
P13, P14, P15, P16, P17, P18, P24,
R5, R11, R12, R13, R14, R15, R16,
R17, R18, R23, T11, T12, T13, T14,
T15, T16, T17, T18, U6, U11, U12,
U13, U14, U15, U16, U17, U18, V12,
V13, V14, V15, V16, V17, V23, V25,
W4, Y6, AA23, AB24, AC5, AC8,
AC11, AC14, AC17, AC20, AD9,
AD15, AD21, AE12, AE18, AF3, AF26
——
GVDD U9, V9, W10, W19, Y11, Y12, Y14,
Y15, Y17, Y18, AA6, AB5, AC9, AC12,
AC15, AC18, AC21, AC24, AD6, AD8,
AD14, AD20, AE5, AE11, AE17, AG2,
AG27
Power for DDR
DRAM I/O
voltage
(2.5 V)
GVDD
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
74 Freescale Semiconductor
Package and Pin Listings
LVDD1 U20, W25 Power for
three-speed
Ethernet #1
and for
Ethernet
management
interface I/O
(2.5 V, 3.3 V)
LVDD1—
LVDD2 V20, Y23 Power for
three-speed
Ethernet #2
I/O (2.5 V,
3.3 V)
LVDD2—
VDD J11, J12, J15, K10, K11, K12, K13,
K14, K15, K16, K17, K18, K19, L10,
L11, L18, L19, M10, M19, N10, N19,
P9, P10, P19, R10, R19, R20, T10,
T19, U10, U19, V10, V11, V18, V19,
W11, W12, W13, W14, W15, W16,
W17, W18
Power for core
(1.2 V)
VDD
OVDD B27, D3, D11, D19, E15, E23, F5, F8,
F11, F14, F17, F20, G24, H23, H24,
J6, J14, J17, J18, K4, L9, L20, L23,
L25, M6, M9, M20, P5, P20, P23, R6,
R9, R24, U23, V4, V6
PCI, 10/100
Ethernet, and
other standard
(3.3 V)
OVDD
MVREF1 AF19 I DDR
reference
voltage
MVREF2 AE10 I DDR
reference
voltage
No Connection
NC V1, V2, V5
Notes:
1. This pin is an open-drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OVDD
.
2. This pin is an open-drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OVDD.
3. During reset, this output is actively driven rather than three-stated.
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.
6. This pin must always be tied to GND.
7. This pin must always be left not connected.
8. Thermal sensitive resistor.
9. It is recommended that MDIC0 be tied to GRD using an 18 Ω resistor and MDIC1 be tied to DDR power using an 18 Ω resistor.
10.TSEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or
actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 75
Clocking
19 Clocking
Figure 41 shows the internal distribution of the clocks.
Figure 41. MPC8347EA Clock Subsystem
The primary clock source can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device
is configured in PCI host or PCI agent mode. When the MPC8347EA is configured as a PCI host device,
CLKIN is its primary input clock. CLKIN fe eds the PCI clock divider (÷2) and the multiplexors for
PCI_SYNC_OUT and PC I_CLK_OUT. The CFG_CLKIN_DIV configuration input selec ts whether
CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICDn] parameters select
whether CLKIN or CLKI N/2 is driven out on the PCI_CLK_OUTn signals.
PCI_SYNC _OUT is connected externally to PCI_SYNC_IN to allow the internal c lock subsyste m to
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,
with equal delay to all PC I agent devic es in the sys tem, to allow the MPC8347EA to function. When the
device is configured as a PCI agent device, PCI_CLK is the primary input clock and the CLKIN signal
should be tied to GND.
Core PLL
System PLL
DDR
LBIU
LSYNC_IN
LSYNC_OUT
LCLK[0:2]
MCK[0:5]
MCK[0:5]
core_clk
e300 Core
csb_clk
to Rest
CLKIN
csb_clk
6
6
DDR
Memory
Local Bus
PCI_CLK_OUT[0:4]
PCI_SYNC_OUT
PCI_CLK/
Clock
Unit
of the Device
ddr_clk
lbiu_clk
CFG_CLKIN_DIV
PCI Clock
PCI_SYNC_IN
Device
Memory
Device
/n
To Loca l B us
Memory
Controller
To DDR
Memory
Controller
DLL
Clock
Div
/2
Divider
5
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
76 Freescale Semiconductor
Clocking
As shown in Figure 41, the primary clock input (frequency) is multiplied up by the system phase-locked
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal c loc k for the
DDR controller (ddr_clk), and the internal clock for the local bus interf ace uni t (lbiu_clk).
The csb_clk fr equency is derived from a complex set of factors that can be simplified into the following
equation:
csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF
In PCI host mode, PCI_S YNC_I N × (1 + CFG_CLKIN_DIV) is the CLKIN frequency.
The csb_clk s erves as the clock input to the e 300 core. A second PLL inside the e300 core multiplies the
csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL
multiplie rs a re s e lect ed by the SPMF and C O R EPLL fie lds in the reset configuration word low (RC WL),
which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset,
clocking, and initialization in the MPC8349E A Reference Manual for more inform ation on the c lock
subsystem.
The internal ddr_clk frequency is determined by the following equation:
ddr_clk = csb_clk × (1 + RCWL[DDRCM])
ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to
create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the
same frequency as ddr_clk.
The internal lbiu_clk frequency is determined by the following equation:
lbiu_clk = csb_clk × (1 + RCWL[LBIUCM])
lbiu_clk is not the external local bus frequency; lbiu_clk passes through the LBIU clock divider to create
the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is
controlled by LCCR[CLKDIV].
In addition, some of the internal units may have to be shut off or operate at lower frequen cy than the
csb_clk frequency. Those units have a default clock ratio that can be configured by a memory-mapped
register after the device exits reset . Table 57 specifies which units have a configurable clock frequency.
Table 58 provid es the operating frequencies for the MPC8347EA TBGA under recommended opera ting
conditions (see Table 2). All frequency combinations shown in the table below may not be available.
Maximum ope rating frequencies depend on the part ordered, see Secti on 22.1, “Part Numbers Fully
Table 57. Configurable Clock Units
Unit Default
Frequency Options
TSEC1
csb_clk/3
Off,
csb_clk, csb_clk/2, csb_clk/3
TSEC2, I2C1
csb_clk/3
Off,
csb_clk, csb_clk/2, csb_clk/3
Security core
csb_clk/3
Off,
csb_clk,
csb_clk/2,
csb_clk/3
USB DR, USB MPH
csb_clk/3
Off, csb_clk, csb_clk/2,
csb_clk/3
PCI and DMA complex
csb_clk
Off,
csb_clk
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 77
Clocking
Addressed by This Document,” for part ordering details and contact your Freescale Sales Representative
or authorized distributor for more information.
Table 59 provid es the operating frequencies for the MPC8347EA PBGA under recommended operating
conditions.
Table 58. Operating Frequencies for TBGA
Characteristic1
1The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting
csb_clk
, MCLK,
LCLK[0:2], and
core_clk
frequencies do not exceed their respective maximum or minimum operating frequencies. The value
of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal
operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.
400 MHz 533 MHz 667 MHz Unit
e300 core frequency (
core_clk
) 266–400 266–533 266–667 MHz
Coherent system bus frequency (
csb_clk
) 100–266 100–333 100–333 MHz
DDR1 memory bus frequency (MCK)2
2The DDR data rate is 2x the DDR memory bus frequency.
100–133 100–133 100–166.67 MHz
DDR2 memory bus frequency (MCK)3
3The DDR data rate is 2x the DDR memory bus frequency.
100–133 100–200 100–200 MHz
Local bus frequency (LCLK
n
)4
4The local bus frequency is 1/2, 1/4, or 1/8 of the
lbiu_clk
frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x
the
csb_clk
frequency (depending on RCWL[LBIUCM]).
16.67–133 16.67–133 16.67–133 MHz
PCI input frequency (CLKIN or PCI_CLK) 25–66 25–66 25–66 MHz
Security core maximum internal operating frequency 133 133 166 MHz
USB_DR, USB_MPH maximum internal operating
frequency
133 133 166 MHz
Table 59. Operating Frequencies for PBGA
Characteristic1
1The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting
csb_clk
, MCLK,
LCLK[0:2], and
core_clk
frequencies do not exceed their respective maximum or minimum operating frequencies. The value
of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal
operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.
266 MHz 333 MHz 400 MHz Unit
e300 core frequency (
core_clk
) 200–266 200–333 200–400 MHz
Coherent system bus frequency (
csb_clk
) 100–266 MHz
DDR1 memory bus frequency (MCK)2
2The DDR data rate is 2x the DDR memory bus frequency.
100–133 MHz
DDR2 memory bus frequency (MCK)3100–133 MHz
Local bus frequency (LCLK
n
)416.67–133 MHz
PCI input frequency (CLKIN or PCI_CLK) 25–66 MHz
Security core maximum internal operating frequency 133 MHz
USB_DR, USB_MPH maximum internal operating
frequency
133 MHz
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
78 Freescale Semiconductor
Clocking
19.1 System PLL Configuration
The system PLL is c ontrolled by the RCWL[SPMF] parameter. Table 60 shows the multiplication factor
encodings for the system PLL.
As described in Section 19, “Clocking,” the LBIU CM, DDRCM, and SPMF paramete rs in the reset
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the
primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (csb_clk). Table 61
3The DDR data rate is 2x the DDR memory bus frequency.
4The local bus frequency is 1/2, 1/4, or 1/8 of the
lbiu_clk
frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x
the
csb_clk
frequency (depending on RCWL[LBIUCM]).
Table 60. System PLL Multiplication Factors
RCWL[SPMF] System PLL Multiplication Factor
0000 × 16
0001 Reserved
0010 × 2
0011 × 3
0100 × 4
0101 × 5
0110 × 6
0111 × 7
1000 × 8
1001 × 9
1010 × 10
1011 × 11
1100 × 12
1101 × 13
1110 × 14
1111 × 15
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 79
Clocking
and Table 62 show the expected frequency values for the CSB frequency for select csb_clk to
CLKIN/PCI_SYNC_I N ratios.
Table 61. CSB Frequency Options for Host Mode
CFG_CLKIN_DIV
at Reset1
1CFG_CLKIN_DIV selects the ratio between CLKIN and PCI_SYNC_OUT.
SPMF
csb_clk
:
Input Clock
Ratio2
2CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.
DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation
at this frequency.
Input Clock Frequency (MHz)2
16.67 25 33.33 66.67
csb_clk
Frequency (MHz)
Low 0010 2 : 1 133
Low 0011 3 : 1 100 200
Low 0100 4 : 1 100 133 266
Low 0101 5 : 1 125 166 333
Low 0110 6 : 1 100 150 200
Low 0111 7 : 1 116 175 233
Low 1000 8 : 1 133 200 266
Low 1001 9 : 1 150 225 300
Low 1010 10 : 1 166 250 333
Low 1011 11 : 1 183 275
Low 1100 12 : 1 200 300
Low 1101 13 : 1 216 325
Low 1110 14 : 1 233
Low 1111 15 : 1 250
Low 0000 16 : 1 266
High 0010 2 : 1 133
High 0011 3 : 1 100 200
High 0100 4 : 1 133 266
High 0101 5 : 1 166 333
High 0110 6 : 1 200
High 0111 7 : 1 233
High 1000 8 : 1
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
80 Freescale Semiconductor
Clocking
19.2 Core PLL Configuration
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300
core clock (core_clk). Table 63 shows the encodings f or RCWL [ CORE P LL]. CORE PLL values that ar e
not listed in Table 63 should be considered as reserved.
Table 62. CSB Frequency Options for Agent Mode
CFG_CLKIN_DIV
at Reset1
1CFG_CLKIN_DIV doubles csb_clk if set high.
SPMF
csb_clk
:
Input Clock
Ratio2
2CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.
DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation
at this frequency.
Input Clock Frequency (MHz)2
16.67 25 33.33 66.67
csb_clk
Frequency (MHz)
Low 0010 2 : 1 133
Low 0011 3 : 1 100 200
Low 0100 4 : 1 100 133 266
Low 0101 5 : 1 125 166 333
Low 0110 6 : 1 100 150 200
Low 0111 7 : 1 116 175 233
Low 1000 8 : 1 133 200 266
Low 1001 9 : 1 150 225 300
Low 1010 10 : 1 166 250 333
Low 1011 11 : 1 183 275
Low 1100 12 : 1 200 300
Low 1101 13 : 1 216 325
Low 1110 14 : 1 233
Low 1111 15 : 1 250
Low 0000 16 : 1 266
High 0010 4 : 1 100 133 266
High 0011 6 : 1 100 150 200
High 0100 8 : 1 133 200 266
High 0101 10 : 1 166 250 333
High 0110 12 : 1 200 300
High 0111 14 : 1 233
High 1000 16 : 1 266
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 81
Clocking
NOTE
Core VCO frequency = core frequency × VCO divider
VCO divider must be set properly so that the core VCO frequency is in the
range of 800–1800 MHz.
Table 63. e300 Core PLL Configuration
RCWL[COREPLL]
core_clk
:
csb_clk
Ratio VCO Divider1
1Core VCO frequency = core frequency × VCO divider. The VCO divider must be set properly so that the core VCO frequency
is in the range of 800–1800 MHz.
0–1 2–5 6
nn 0000 n PLL bypassed
(PLL off,
csb_clk
clocks core directly)
PLL bypassed
(PLL off,
csb_clk
clocks core directly)
00 0001 01:1 2
01 0001 01:1 4
10 0001 01:1 8
11 0001 01:1 8
00 0001 1 1.5:1 2
01 0001 1 1.5:1 4
10 0001 1 1.5:1 8
11 0001 1 1.5:1 8
00 0010 02:1 2
01 0010 02:1 4
10 0010 02:1 8
11 0010 02:1 8
00 0010 1 2.5:1 2
01 0010 1 2.5:1 4
10 0010 1 2.5:1 8
11 0010 1 2.5:1 8
00 0011 03:1 2
01 0011 03:1 4
10 0011 03:1 8
11 0011 03:1 8
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
82 Freescale Semiconductor
Clocking
19.3 Suggested PLL Configurations
Table 64 s hows suggested PLL configurations for 33 and 66 MHz input clocks.
Table 64. Suggested PLL Configurations
Ref
No.1
RCWL 400 MHz Device 533 MHz Device 667 MHz Device
SPMF CORE
PLL
Input
Clock
Freq
(MHz)2
CSB
Freq
(MHz)
Core
Freq
(MHz)
Input
Clock
Freq
(MHz)2
CSB
Freq
(MHz)
Core
Freq
(MHz)
Input
Clock
Freq
(MHz)2
CSB
Freq
(MHz)
Core
Freq
(MHz)
33 MHz CLKIN/PCI_CLK Options
922 1001 0100010 —————f30033300300
723 0111 0100011 33 233 350 33 233 350 33 233 350
604 0110 0000100 33 200 400 33 200 400 33 200 400
624 0110 0100100 33 200 400 33 200 400 33 200 400
803 1000 0000011 33 266 400 33 266 400 33 266 400
823 1000 0100011 33 266 400 33 266 400 33 266 400
903 1001 0000011 3330045033300450
923 1001 0100011 3330045033300450
704 0111 0000011 3323346633233466
724 0111 0100011 3323346633233466
A03 1010 0000011 33 333 500 33 333 500
804 1000 0000100 3326653333266533
705 0111 0000101 33 233 583
606 0110 0000110 33 200 600
904 1001 0000100 33 300 600
805 1000 0000101 33 266 667
A04 1010 0000100 33 333 667
66 MHz CLKIN/PCI_CLK Options
304 0011 0000100 66 200 400 66 200 400 66 200 400
324 0011 0100100 66 200 400 66 200 400 66 200 400
403 0100 0000011 66 266 400 66 266 400 66 266 400
423 0100 0100011 66 266 400 66 266 400 66 266 400
305 0011 0000101 6620050066200500
503 0101 0000011 66 333 500 66 333 500
404 0100 0000100 6626653366266533
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 83
Thermal
20 Thermal
This section describes the thermal specifications of the MPC8347EA.
20.1 Thermal Characteristics
Table 65 provides the package thermal characteristics for the 672 35 ×35 mm TBGA of the MPC8347EA.
306 0011 0000110 66 200 600
405 0100 0000101 66 266 667
504 0101 0000100 66 333 667
1The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4–15 associated with the SPMF and
COREPLL settings given in the table.
2The input clock is CLKIN for PCI host mode or PCI_CLK for PCI agent mode.
Table 65. Package Thermal Characteristics for TBGA
Characteristic Symbol Value Unit Notes
Junction-to-ambient natural convection on single-layer board (1s) RθJA 14 °C/W 1, 2
Junction-to-ambient natural convection on four-layer board (2s2p) RθJMA 11 °C/W 1, 3
Junction-to-ambient (@ 200 ft/min) on single-layer board (1s) RθJMA 11 °C/W 1, 3
Junction-to-ambient (@ 200 ft/min) on four-layer board (2s2p) RθJMA 8°C/W 1, 3
Junction-to-ambient (@ 2 m/s) on single-layer board (1s) RθJMA 9°C/W 1, 3
Junction-to-ambient (@ 2 m/s) on four-layer board (2s2p) RθJMA 7°C/W 1, 3
Junction-to-board thermal RθJB 3.8 °C/W 4
Junction-to-case thermal RθJC 1.7 °C/W 5
Table 64. Suggested PLL Configurations (continued)
Ref
No.1
RCWL 400 MHz Device 533 MHz Device 667 MHz Device
SPMF CORE
PLL
Input
Clock
Freq
(MHz)2
CSB
Freq
(MHz)
Core
Freq
(MHz)
Input
Clock
Freq
(MHz)2
CSB
Freq
(MHz)
Core
Freq
(MHz)
Input
Clock
Freq
(MHz)2
CSB
Freq
(MHz)
Core
Freq
(MHz)
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
84 Freescale Semiconductor
Thermal
Table 66 provides th e package thermal characteristics for the 620 29 ×29 mm PBGA of the MPC8347EA.
20.2 Thermal Management Information
For the following sections, PD = (VDD ×IDD) + PI/O where PI/O is the p ower di ssipation of the I /O drivers.
See Table 5 for I/O power dissipation values.
Junction-to-package natural convection on top ψJT 1°C/W 6
Notes:
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
Table 66. Package Thermal Characteristics for PBGA
Characteristic Symbol Value Unit Notes
Junction-to-ambient natural convection on single-layer board (1s) RθJA 21 °C/W 1, 2
Junction-to-ambient natural convection on four-layer board (2s2p) RθJMA 15 °C/W 1, 3
Junction-to-ambient (@ 200 ft/min) on single-layer board (1s) RθJMA 17 °C/W 1, 3
Junction-to-ambient (@ 200 ft/min) on four-layer board (2s2p) RθJMA 12 °C/W 1, 3
Junction-to-board thermal RθJB 6°C/W 4
Junction-to-case thermal RθJC 5°C/W 5
Junction-to-package natural convection on top ψJT 5°C/W 6
Notes
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
Table 65. Package Thermal Characteristics for TBGA (continued)
Characteristic Symbol Value Unit Notes
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 85
Thermal
20.2.1 Estimation of Junction Temperature with Junction-to-Ambient
Thermal Resistance
An estimation of the chip junction temper ature , TJ, can be obtained from the equation:
TJ = TA + (R
θ
JA × PD)
where:
TJ = junction temperature (°C)
TA = ambi ent t emp erat ure for the package (°C)
R
θ
JA = junction-to-ambient thermal resistance (°C/W)
PD = powe r dissipation in the package (W)
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy
estimation of thermal performance. Generally, the value obtained on a single-layer boar d is appropriate for
a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually
appropriate if the board has low power dissipation and the components are well separated. Test cases have
demonstrate d that errors of a factor of two (in the quantity TJ–T
A) are possible.
20.2.2 Estimation of Junction Temperature with Junction-to-Board
Thermal Resistance
The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal
resistance. The thermal performance of any component is s trongly dependent on the power dissipation of
surrounding components. In addition, the ambient temperature varies widely within the application. For
many natural convection and especially closed box applications, the board temperature at the per imeter
(edge) of the package is approximat ely th e same as the local air temperatur e near the device. Specifying
the local ambient conditions e xplicitly a s the board temperature provides a more precise description of the
local ambient conditions that determine the temperature of the device.
At a known board temperature, the junction temperature is estimated using the following equation:
TJ = TA + (R
θ
JA × PD)
where:
TJ = junction temperature (°C)
TA = ambi ent t emp erat ure for the package (°C)
R
θ
JA = junction-to-ambient thermal resistance (°C/W)
PD = powe r dissipation in the package (W)
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction
temperature can be ma de. The application board should be similar to the thermal test condition: the
component is sol dered to a board with internal planes.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
86 Freescale Semiconductor
Thermal
20.2.3 Experimental Determination of Junction Temperature
To determine the junction temperature of the device in the application after prototypes are available, use
the thermal char acte rization parameter (
Ψ
JT) to determine the junction temperature and a measure of the
temperature at the top center of the package case using the following equation:
TJ = TT + (
Ψ
JT × PD)
where:
TJ = junction temperature (°C)
TT = thermocouple temperature on top of package (°C)
Ψ
JT = junction-to-ambient thermal resistance (°C/W)
PD = powe r dissipation in the package (W)
The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type
T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire
is placed flat against the package case to avoid measurement errors caus ed by cooling effects of the
ther mocouple wire.
20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance
Some application environments require a heat sink to provide the necessary thermal management of the
device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case
ther mal resist ance and a case-to-ambie nt thermal re sistan ce:
R
θ
JA = R
θ
JC + R
θ
CA
where:
R
θ
JA = junction-to-ambient thermal resistance (°C/W)
R
θ
JC = junction-to-case thermal resistance (°C/W)
R
θ
CA = case-to-ambient thermal resistance (°C/W)
R
θ
JC is device-related and cannot be influenced by the user. The user controls the ther mal environment to
change the case-to-ambient thermal resistance, R
θ
CA. For instance, the user can change the size of the heat
sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit
board, or change the thermal dissipation on the printed-circuit board surrounding the device.
The thermal performance of devices with heat sinks has been simulated with a few commercially available
heat sinks. The heat sink choice is determined by the application environment (temperature, air flow,
adjacent component power dissipation) and the physical spac e available. Beca use there is not a standard
application environment, a standard heat sink is not required.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 87
Thermal
Table 67 and Table 68 show heat sink the rmal resistance for TBGA and PBGA of the MPC8347EA.
f
Table 67. Heat Sink and Thermal Resistance of MPC8347EA (TBGA)
Heat Sink Assuming Thermal Grease Air Flow
35 ×35 mm TBGA
Thermal Resistance
AAVID 30 ×30 ×9.4 mm pin fin Natural convection 10
AAVID 30 ×30 ×9.4 mm pin fin 1 m/s 6.5
AAVID 30 ×30 ×9.4 mm pin fin 2 m/s 5.6
AAVID 31 ×35 ×23 mm pin fin Natural convection 8.4
AAVID 31 ×35 ×23 mm pin fin 1 m/s 4.7
AAVID 31 ×35 ×23 mm pin fin 2 m/s 4
Wakefield, 53 ×53 ×25 mm pin fin Natural convection 5.7
Wakefield, 53 ×53 ×25 mm pin fin 1 m/s 3.5
Wakefield, 53 ×53 ×25 mm pin fin 2 m/s 2.7
MEI, 75 ×85 ×12 no adjacent board, extrusion Natural convection 6.7
MEI, 75 ×85 ×12 no adjacent board, extrusion 1 m/s 4.1
MEI, 75 ×85 ×12 no adjacent board, extrusion 2 m/s 2.8
MEI, 75 ×85 ×12 mm, adjacent board, 40 mm side bypass 1 m/s 3.1
Table 68. Heat Sink and Thermal Resistance of MPC8347EA (PBGA)
Heat Sink Assuming Thermal Grease Air Flow
29 ×29 mm PBGA
Thermal Resistance
AAVID 30 ×30 ×9.4 mm pin fin Natural convection 13.5
AAVID 30 ×30 ×9.4 mm pin fin 1 m/s 9.6
AAVID 30 ×30 ×9.4 mm pin fin 2 m/s 8.8
AAVID 31 ×35 ×23 mm pin fin Natural convection 11.3
AAVID 31 ×35 ×23 mm pin fin 1 m/s 8.1
AAVID 31 ×35 ×23 mm pin fin 2 m/s 7.5
Wakefield, 53 ×53 ×25 mm pin fin Natural convection 9.1
Wakefield, 53 ×53 ×25 mm pin fin 1 m/s 7.1
Wakefield, 53 ×53 ×25 mm pin fin 2 m/s 6.5
MEI, 75 ×85 ×12 no adjacent board, extrusion Natural convection 10.1
MEI, 75 ×85 ×12 no adjacent board, extrusion 1 m/s 7.7
MEI, 75 ×85 ×12 no adjacent board, extrusion 2 m/s 6.6
MEI, 75 ×85 ×12 mm, adjacent board, 40 mm side bypass 1 m/s 6.9
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
88 Freescale Semiconductor
Thermal
Accurate thermal design requires thermal modeling of the application environment using computational
fluid dynamic s software which can model both the conduction cooling and the convection cooling of the
air moving through the application. Simplified thermal models of the packages can be assembled using the
junction- to-ca se and junction-to-boa rd thermal re si stanc es listed in the thermal resistanc e table. More
detailed thermal mode ls can be made available on request.
Heat sink vendors include the following list:
Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com
Alpha Novatech 408-567-8082
473 Sapena Ct. #12
Santa Clara, CA 95054
Internet: www.alphanovatech.com
International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com
Millennium Electronics (MEI) 408- 436-8770
Loroco Sites
671 East Brokaw Road
San Jose, CA 95112
Internet: www.mei-thermal.com
Tyco Electronics 800-522-2800
Chip Coolers™
P.O. Box 3668
Harrisbur g, PA 17105-3668
Internet: www.chipcoolers.com
Wakefield Engineering 603-635-5102
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com
Interface material vendors include the following:
Chomerics, Inc. 781-935-4850
77 Dragon Ct.
Woburn, MA 01801
Internet: www.chomerics.com
Dow-Corning Corpora tion 800-248-2481
Dow-Corning Electronic Materials
P.O. Box 994
Midland, MI 48686-0997
Internet: www.dowcorning.com
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 89
Thermal
Shin-Etsu MicroSi, Inc. 888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.c om
The Bergquist Company 800-347-4572
18930 West 78th St.
Chanhassen, MN 55317
Internet: www.bergquistcompany. com
20.3 Heat Sink Attachment
When heat sinks are attached, an interface material is required, preferably thermal grease and a spring clip.
The spring clip should connect to the printed-circuit board, either to the board itsel f, to hooks soldered to
the board, or to a plastic stiffener. Avoid attachment forces that can lift the edge of the package or peel the
package from the board. Such peeling forces reduc e the solder joint lifetime of the package. The
recommended maximum force on the top of the package is 10 lb force (4.5 kg force). Any adhesive
attachment should attach to painted or plastic surfaces, and its perf ormanc e should be verifi ed under the
application requirements.
20.3.1 Experimental Determination of the Junction Temperature with a
Heat Sink
When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the
interface between the case of the package and the interface material. A clearance slot or hole is normally
required in the heat sink. Minimize the size of the clearance to minimize the change in thermal
performance caused by removing part of the thermal interface to the heat sink. Because of the experimental
dif ficulties with this technique, many engineers measure the heat sink temperature and then back calculate
the case temperature using a separate measurement of the thermal resistance of the interface. From this
case temperat ur e, the junction temper at ure is determ ined from the junction-to-c ase t her mal resistance.
TJ = TC + (R
θ
JC × PD)
where:
TJ = junction temperature (°C)
TC = case t emp er ature of the package (°C)
R
θ
JC = junction-to-case thermal resistance (°C/W)
PD = powe r dissipation (W )
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
90 Freescale Semiconductor
System Design Information
21 System Design Information
This section provides electrical and thermal design recommendations for successful application of the
MPC8347EA.
21.1 System Clocking
The MPC8347E A includes two PLLs:
1. The platform PL L generates the platform clock from the externally supplied CLKIN input. The
frequency ratio between the platform and CLKIN is selected using the platform PLL ratio
configuration bits as described in Section 19. 1, “System PLL Configuration.”
2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio
between the e300 core clock and the platform clock is selected using the e300 PLL ratio
configuration bits as described in Section 19. 2, “Core PLL Configuration.”
21.2 PLL Power Supply Filtering
Each PLL gets power through independent power supply pins (AVDD1, AVDD2, respectively). The AVDD
level should always equal to VDD, and preferably these voltages are derived directly from VDD through a
low frequency filter scheme .
There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to
provide four independent filter circuits as illus trated in Figure 42, one to each of the four AVDD pins.
Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.
The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built
with surface mount capacitors with minimum ef fective series inductance (ESL). Consistent with the
recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic
(Prentice Hall, 1993), multiple sm al l capacitors of equal value are recommended over a single large value
capacitor.
To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the
specific AVDD pin being s upplied. It should be possible to r oute directly f rom the capacitors to the AVDD
pin, which is on the periphery of package, without the inductance of vias.
Figure 42 shows the PLL power supply filter circuit.
Figure 42. PLL Power Supply Filter Circuit
21.3 Decoupling Recommendations
Due to large address and da ta buses and high operati ng frequencies, the MPC8347EA can generate
transient power sur ges and high frequency noise in its power supply, especially while driving large
VDD AVDD (or L2AVDD)
2.2 µF 2.2 µF
GND Low ESL Surface Mount Capacitors
10 Ω
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 91
System Design Information
capacitive loads. This noise must be prevented from reaching other components in the MPC8347EA
system, and the device itself requires a cle an, tightly r egulated source of power. Therefore, the system
designer should place at least one decoupling capacitor at each VDD, OVDD, GVDD, and LVDD pin of the
device. These capacitors should receive their power from separate VDD, OV DD, G VDD, LVDD, and GND
power planes in the PCB, with short traces to minimize inductance. Capacitors can be placed directly under
the device using a standard escape patter n. Others can surround the part.
These capacitors should ha ve a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)
capacitors should be us ed to minimize lead inductance, preferably 0402 or 0603 sizes.
In addition, distribute several bulk storage capacitors around the PCB, fee ding the VDD, OVDD, G VDD,
and LVDD planes, to enable quick rechargi ng of the smaller chip capacitors. These bulk capacitors should
have a low ESR (equivalent series resistance) rating to ensure the quick response time. They should a lso
be connected to the power and ground pla nes through two vias to minimize inductance. Suggested bulk
capacitors are 100–330 µF (AVX TPS tantalum or Sanyo OSCON).
21.4 Connection Recommendations
To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low
inputs should be tied to OVDD, G V DD, o r LVDD as required. Unused active high inputs should be
connected to GND. A ll NC (no-connect) signals must remain unconnected.
Power and gr ound connections must be made to all external VDD, GVDD, LVDD, OVDD, and GND pins of
the MPC8347EA.
21.5 Output Buffer DC Impedance
The MPC8 347EA drivers are characterized over process, voltage, and temperature. For all buses, the
driver is a push-pull single-ended driver type (open drain for I2C).
To measure Z0 for the single-ended drivers, an external resistor is connected from the chip pad to OVDD
or GND. T hen the value of each re sistor is varied until the pad voltage is OVDD/2 (see Figure 43). The
output impedance is the average of two components, the resistances of the pull-up and pull -down devices.
When data is held high, SW1 is closed (SW2 is open) and RP is trimmed until the voltage at the pad equals
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
92 Freescale Semiconductor
System Design Information
OVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each
other in value. Then, Z0 = (RP + RN)/2.
Figure 43. Driver Impedance Measurement
Two measurements give the value of this resistance and the strength of the driver current source. First, the
output voltage is measured while driving logic 1 without an external dif ferential termination resistor . The
measured voltage is V1 = Rsource × Isource. Second, the output voltage is measured while driving logic 1
with an external precision diff e rential termination resistor of value Rterm. The meas ured voltage is
V2=(1/(1/R
1+1/R
2)) × Isource. Solving for the output impedance gives Rsource = Rterm × (V1/V2–1). The
drive current is then Isource =V
1/Rsource.
Table 69 summari zes the signal i mpedance targets. T he driver impedance are targeted at minimum VDD,
nominal OVDD, 105°C.
21.6 Configuration Pin Multiplexing
The MPC8347E A power-on configuration options can be set through e xternal pull-up or pull-down
resistors of 4.7 kΩ on certain output pins (see the customer-visible configuration pins). These pins are used
as output only pins in normal operation.
Table 69. Impedance Characteristics
Impedance
Local Bus, Ethernet,
DUART, Control,
Configuration, Power
Management
PCI Signals
(Not Including PCI
Output Clocks)
PCI Output Clocks
(Including
PCI_SYNC_OUT)
DDR DRAM Symbol Unit
RN42 Target 25 Target 42 Target 20 Target Z0W
RP42 Target 25 Target 42 Target 20 Target Z0W
Differential NA NA NA NA ZDIFF W
Note: Nominal supply voltages. See Ta bl e 1 , Tj = 105°C.
OVDD
OGND
RP
RN
Pad
Data
SW1
SW2
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 93
Ordering Information
However , while HRESET is asserted, these pins are treated as inputs, and the value on these pins is latched
when PORESET deass ert s. Then the input receiver is disabled and the I/O circuit takes on its normal
function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with
the large value of the pull-up/pull-down resist or should minimize the disr uption of signal quality or s peed
for the output pins.
21.7 Pull-Up Resistor Requirements
The MPC8347EA requires high resistance pull-up resistors (10 kΩ is recommended) on open-drain pins,
including I2C pins, the Ether net Management MDIO pin, and IPIC interrupt pins.
For more information on required pull-up re sistors and the connections required for the JTA G interface,
refer to application note AN2931, P ower QUIC C Design Check lis t.
22 Ordering Information
This section presents ordering information for the device discussed in this document, and it shows an
example of how the parts are marked.
NOTE
The information in this document is accurate for revis ion 3.x silicon and
later (in other words, for orderable part numbers ending in A or B). For
information on revis ion 1.1 silicon a nd earlier ve rsions, see the MPC8347E
PowerQUIC C II Pro Integrated Host Processor Hardware Specifications
(Document Order No. MPC8347EEC).
22.1 Part Numbers Fully Addressed by This Document
Table 70 s hows an analysis of the Freescale part numbering nomenclature for the MPC8347EA. The
individual part numbers correspond to a maximum processor core frequency. Each part number also
contains a revision code that refers to the die mask revision number . For available frequency configuration
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
94 Freescale Semiconductor
Ordering Information
parts including extended temperatures, refer to the device product summary page on our website listed on
the back cover of this document or , contact your local Freescale sales off ice.
Table 71 s hows the SVR settings by device and packag e type.
Table 70. Part Numbering Nomenclature
MPC nnnn e t pp aa a r
Product
Code
Part
Identifier
Encryption
Acceleration
Temperature1
Range Package2Processor
Frequency3Platform
Frequency
Revision
Level
MPC 8347 Blank = Not
included
E = included
Blank = 0 to 105°C
C = –40 to 105°C
ZU =TBGA
VV = PB free TBGA
ZQ = PBGA
VR = PB Free PBGA
e300 core
speed
AD = 266
AG = 400
AJ = 533
AL = 667
D = 266
F = 3334
B = 3.1
Notes:
1. For temperature range = C, processor frequency is limited to 400 (PBGA) with a platform frequency of 266 and up to 533
(TBGA) with a platform frequency of 333
2. See Section 18, “Package and Pin Listings, for more information on available package types.
3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other
maximum core frequencies.
4. ALF marked parts support DDR1 data rate up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 data rate
up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 data rate up to 333 MHz (at a CSB of 333
MHz).
Table 71. SVR Settings
Device Package SVR (Rev. 3.0)
MPC8347EA TBGA 8052_0030
MPC8347A TBGA 8053_0030
MPC8347EA PBGA 8054_0030
MPC8347A PBGA 8055_0030
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 95
Document Revision History
22.2 Part Marking
Parts are marked as in the example shown in Figure 44.
Figure 44. Freescale Part Marking for TBGA or PBGA Devices
23 Document Revision History
Table 72 provid es a revision history of this document.
Table 72. Document Revision History
Rev.
Number Date Substantive Change(s)
10 05/2010 In Ta bl e 2 5 through Table 30, changed VIL(min) to VIH(max) to (20%–80%).
Added Ta b l e 8 , “EC_GTX_CLK125 AC Timing Specifications.
95/2009In Section 18.3, “Package Parameters for the MPC8347EA PBGA, changed solder ball for TBGA
and PBGA from 95.5 Sn/0.5 Cu/4 Ag to 96.5 Sn/3.5 Ag.
•In Ta b le 5 8 , updated frequecy for DDR2, from 100-200 to 100-133 at core frequency = 533MHz.
•In Ta b l e 5 9 , added two columns for the DDR1 and DDR2 memory bus frequency.
•In Table 70, footnote 1, changed 667(TBGA) to 533(TBGA). footnote 4, added data rate for DDR1
and DDR2.
Notes:
ATWLYYWW is the traceability code.
MPCnnnnetppaaar
core/platform MHZ
ATWLYYWW
CCCCC
TBGA/PBGA
*MMMMM YWWLAZ
CCCCC is the country code.
MMMMM is the mask number.
YWWLAZ is the assembly traceability code.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
96 Freescale Semiconductor
Document Revision History
8 2/2009 Added footnote 6 to Ta ble 7.
•In Section 9.2, “USB AC Electrical Specifications, clarified that AC table is for ULPI only.
•In Ta b le 3 9 , corrected tLBKHOV parameter to tLBKLOV (output data is driven on falling edge of clock
in DLL bypass mode). Similarly, made the same correction to Figure 21, Figure 23, and Figure 24
for output signals.
Added footnote 10 and 11 to Table 55 and Ta b l e 5 6 .
•In Section 21.1, “System Clocking,” removed “(AVDD1)” and “(AVDD2”) from bulleted list.
•In Section 21.2, “PLL Power Supply Filtering,” in the second paragraph, changed “provide five
independent filter circuits,” and “the five AVDD pins” to provide four independent filter circuits,” and
“the four AVDD pins.
•In Ta b l e 5 8 , corrected the max csb_clk to 266 MHz.
•In Ta b l e 6 4 , added PLL configurations 903, 923, A03, A23, and 503 for 533 MHz
Added footnote 4 to Ta ble 7 0.
•In Table 70, updated note 1 to say the following: “For temperature range = C, processor frequency
is limited to 533 (TBGA) and 400 (PBGA) with a platform frequency of 266.
74/2007In Ta bl e 3 , Output Drive Capability, changed the values in the Output Impedance column and
added USB to the seventh row.
•In Ta b l e 4 , “Operating Frequencies for TBGA, added column for 400 MHz.
•In Section 21.7, “Pull-Up Resistor Requirements,“ deleted last two paragraphs and after first
paragraph, added a new paragraph.
Deleted Section 21.8, “JTAG Configuration Signals,” and Figure 43, “JTAG Interface Connection.
6 3/2007 Page 1, updated first paragraph to reflect PowerQUICC II Pro information.
In Table 18, “DDR and DDR2 SDRAM Input AC Timing Specifications, added note 2 to tCISKEW
and deleted original note 3; renumbered the remaining notes.
In Figure 43, “JTAG Interface Connection,” updated with new figure.
In Table 57, “Operating Frequencies for TBGA,” in the ‘Coherent system bus frequency (
csb_clk
)’
row, changed the value in the 533 MHz column to 100-333.
In Table 63, “Suggested PLL Configurations,” under the subhead, ‘33 MHz CLKIN/PCI_CLK
Options,’ added row A03 between Ref. No. 724 and 804. Under the subhead ‘66 MHz
CLKIN/PCI_CLK Options,’ added row 503 between Ref. No. 305 and 404. For Ref. No. 306,
changed the CORE PLL value to 0000110.
In Section 23, “Ordering Information,replaced first paragraph and added a note.
In Section 23.1, “Part Numbers Fully Addressed by this Document,” replaced first paragraph.
5 1/2007 In Table 1, “Absolute Maximum Ratings,” added (1.36 max for 667-MHz core frequency).
In Table 2, “Recommended Operating Conditions,” added a row showing nominal core supply
voltage of 1.3 V for 667-MHz parts.
In Table 4, “MPC8347EA Power Dissipation,” added two footnotes to 667-MHz row showing
nominal core supply voltage of 1.3 V for 667-MHz parts.
In Table 54, “MPC8347EA (TBGA) Pinout Listing,” updated VDD row to show nominal core supply
voltage of 1.3 V for 667-MHz parts.
4 12/2006 Table 19, “DDR and DDR2 SDRAM Output AC Timing Specifications,” modified Tddkhds for 333 MHz
from 900 ps to 775 ps.
Table 72. Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 10
Freescale Semiconductor 97
Document Revision History
3 11/2006 Updated note in introduction.
In the features list in Section 1, “Overview,” updated DDR data rate to show 266 MHz for PBGA
parts for all silicon revisions, and 400 MHz for DDR2 for TBGA parts for silicon Rev. 2 and 3.
In Table 5, “MPC8347EA Typical I/O Power Dissipation,” added GVDD 1.8-V values for DDR2;
added table footnote to designate rates that apply only to the TBGA package.
In Section 23, “Ordering Information,replicated note from document introduction.
2 8/2006 Changed all references to revision 2.0 silicon to revision 3.0 silicon.
Changed VIH minimum value in Table 39, “JTAG Interface DC Electrical Characteristics,” to
OVDD –0.3.
In Table 40, “PCI DC Electrical Characteristics,” changed high-level input voltage values to min
= 2 and max = OVDD + 0.3; changed low-level input voltage values to min = (–0.3) and max = 0.8.
In Table 44, “PCI DC Electrical Characteristics,” changed higl-level input voltage values to min = 2
and max = OVDD + 0.3; changed low-level input voltage values to min = (–0.3) and max = 0.8.
Updated DDR2 I/O power values in Table 5, “MPC8347EA Typical I/O Power Dissipation.
In Table 63, “Suggested PLL Configurations,” deleted reference-number rows 902 and 703.
1 4/2006 Removed Table 20, “Timing Parameters for DDR2-400.
Changed ADDR/CMD to ADDR/CMD/MODT in Table 9, “DDR and DDR2 SDRAM Output AC
Timing Specifications,” rows 2 and 3, and in Figure 2, “DDR SDRAM Output Timing Diagram.
Changed Min and Max values for VIH and VIL in Table 40,“PCI DC Electrical Characteristics.
In Table 51, “MPC8347EA (TBGA) Pinout Listing,” and Table 52, “MPC8347EA (PBGA) Pinout
Listing,” modified rows for MDICO and MDIC1 signals and added note ‘It is recommended that
MDICO be tied to GRD using an 18 Ω resistor and MCIC1 be tied to DDR power using an 18 Ω
resistor.
In Table 51, “MPC8347EA (TBGA) Pinout Listing,” and Table 52, “MPC8347EA (PBGA) Pinout
Listing,” in row AVDD3 changed power supply from “AVDD3” to ‘.
0 3/2006 Initial public release.
Table 72. Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
Document Number: MPC8347EAEC
Rev. 10
05/2010
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com
Freescale, the Freescale logo and PowerQUICC are trademarks of
Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. The Power
Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by
Power.org. IEEE 1588, 802.1, 802.3, and 1149.1 are registered trademarks
of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This
product is not endorsed or approved by the IEEE.
© 2010 Freescale Semiconductor, Inc.