INSULATED GATE BIPOLAR TRANSISTOR IRGP4066PbF
IRGP4066-EPbF
PD - 97577
1www.irf.com
10/8/2010
VCES = 600V
IC(Nominal) = 75A
tSC 5μs, TJ(max) = 175°C
VCE(on) typ. = 1.7V
G
C
E
Gate Collector Emitter
TO-247AC
IRGP4066PbF
TO-247AD
IRGP4066-EPbF
Features
Low VCE (ON) Trench IGBT Technology
Low Switching Losses
Maximum Junction Temperature 175 °C
•5 μS short circuit SOA
Square RBSOA
100% of The Parts Tested for ILM
Positive VCE (ON) Temperature Coefficient
Tight Parameter Distribution
Lead Free Package
Benefits
High Efficiency in a Wide Range of Applications
Suitable for a Wide Range of Switching Frequencies due to
Low VCE (ON) and Low Switching Losses
Rugged Transient Performance for Increased Reliability
Excellent Current Sharing in Parallel Operation
E
C
G
n-channel
GC
E
C
C
E
C
G
Absolute Maximum Ratings
Parameter Max. Units
V
CES
Collector-to-Emitter Voltage 600 V
I
C
@ T
C
= 25°C Continuous Collector Current 140
I
C
@ T
C
= 100°C Continuous Collector Current 90
I
NOMINAL
Nominal Current 75
I
CM
Pulse Collector Current, V
GE
= 15V 225 A
I
LM
Clamped Inductive Load Current, V
GE
= 20V
c
300
V
GE
Continuous Gate-to-Emitter Voltage ±20 V
Transient Gate-to-Emitter Voltage ±30
P
D
@ T
C
= 25°C Maximum Power Dissipation 454 W
P
D
@ T
C
= 100°C Maximum Power Dissipation 227
T
J
Operating Junction and -55 to +175
T
STG
Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter Min. Typ. Max. Units
R
θJC
Thermal Resistance Junction-to-Case
f
––– ––– 0.33 °C/W
R
θCS
Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 –––
R
θJA
Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– –– 40
IRGP4066PbF/IRGP4066-EPbF
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 20V, L = 10μH, RG = 10Ω.
Pulse width limited by max. junction temperature.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Rθ is measured at TJ of approximately 90°C.
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
600 V V
GE
= 0V, I
C
= 100μA
e
ΔV
(BR)CES
/ΔT
J
Temperature Coeff. of Breakdown Voltage
260 mVC V
GE
= 0V, I
C
= 2.0mA (25°C-175°C)
—1.72.1V
I
C
= 75A, V
GE
= 15V, T
J
= 25°C
d
V
CE(on)
Collector-to-Emitter Saturation Voltage 2.0 V I
C
= 75A, V
GE
= 15V, T
J
= 150°C
d
—2.1— I
C
= 75A, V
GE
= 15V, T
J
= 175°C
d
V
GE(th)
Gate Threshold Voltage 4.0 6.5 V V
CE
= V
GE
, I
C
= 2.1mA
ΔV
GE(th)
/ΔTJ
Threshold Voltage temp. coefficient -16 mV/°C V
CE
= V
GE
, I
C
= 2.1mA (2C - 17C)
gfe Forward Transconductance 50 S V
CE
= 50V, I
C
= 75A, PW = 60μs
I
CES
Collector-to-Emitter Leakage Current 1.0 100 μAV
GE
= 0V, V
CE
= 600V
1040 V
GE
= 0V, V
CE
= 600V, T
J
= 175°C
I
GES
Gate-to-Emitter Leakage Current ±200 nA V
GE
= ±20V
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
Q
g
Total Gate Charge (turn-on) 150 225 I
C
= 75A
Q
ge
Gate-to-Emitter Charge (turn-on) 40 60 nC V
GE
= 15V
Q
gc
Gate-to-Collector Charge (turn-on) 60 90 V
CC
= 400V
E
on
Turn-On Switching Loss 2465 3360 I
C
= 75A, V
CC
= 400V, V
GE
= 15V
E
off
Turn-Off Switching Loss 2155 3040 μJR
G
= 10
, L = 200μH, T
J
= 25°C
E
total
Total Switching Loss 4620 6400
Energy losses include tail & diode reverse recovery
t
d(on)
Turn-On delay time 50 70 I
C
= 75A, V
CC
= 400V, V
GE
= 15V
t
r
Rise time 70 90 ns R
G
= 10Ω, L = 200μH, T
J
= 25°C
t
d(off)
Turn-Off delay time 200 225
t
f
Fall time 60 80
E
on
Turn-On Switching Loss 3870 I
C
= 75A, V
CC
= 400V, V
GE
=15V
E
off
Turn-Off Switching Loss 2815 μJR
G
=10
, L=200μH,T
J
= 175°C
E
total
Total Switching Loss 6685
Energy losses include tail & diode reverse recovery
t
d(on)
Turn-On delay time 50 I
C
= 75A, V
CC
= 400V, V
GE
= 15V
t
r
Rise time 70 ns R
G
= 10Ω, L = 200μH
t
d(off)
Turn-Off delay time 240 T
J
= 175°C
t
f
Fall time 70
C
ies
Input Capacitance 4440 pF V
GE
= 0V
C
oes
Output Capacitance 245 V
CC
= 30V
C
res
Reverse Transfer Capacitance 130 f = 1.0Mhz
T
J
= 175°C, I
C
= 300A
RBSOA Reverse Bias Safe Operating Area FULL SQUARE V
CC
= 480V, Vp = 600V
Rg = 10Ω, V
GE
= +20V to 0V
SCSOA Short Circuit Safe Operating Area 5 μsV
CC
= 400V, Vp
600V
Rg = 10
, V
GE
= +15V to 0V
Conditions
IRGP4066PbF/IRGP4066-EPbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =20V
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 60μs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 60μs
25 50 75 100 125 150 175
TC (°C)
0
100
200
300
400
Ptot (W)
10 100 1000
VCE (V)
1
10
100
1000
IC (A)
0246810
VCE (V)
0
50
100
150
200
250
300
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0246810
VCE (V)
0
50
100
150
200
250
300
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
1 10 100 1000
VCE (V)
0.1
1
10
100
1000
IC (A)
10μsec
100μsec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
1msec
25 50 75 100 125 150 175
TC (°C)
0
20
40
60
80
100
120
140
IC (A)
IRGP4066PbF/IRGP4066-EPbF
4www.irf.com
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 60μs
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
Fig. 10 - Typical VCE vs. VGE
TJ = 175°C
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 60μs
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
0246810
VCE (V)
0
50
100
150
200
250
300
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 38A
ICE = 75A
ICE = 150A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 38A
ICE = 75A
ICE = 150A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 38A
ICE = 75A
ICE = 150A
4 6 8 1012141618
VGE, Gate-to-Emitter Voltage (V)
0
50
100
150
200
250
300
IC, Collector-to-Emitter Current (A)
TJ = 175°C
TJ = 25°C
0 25 50 75 100 125 150
IC (A)
0
2000
4000
6000
8000
10000
12000
Energy (μJ)
EOFF
EON
IRGP4066PbF/IRGP4066-EPbF
www.irf.com 5
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 75A; VGE = 15V
Fig. 15 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 75A; VGE = 15V
Fig. 16 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
050 100 150
IC (A)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
Fig. 13 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
0 255075100
Rg (Ω)
1000
3000
5000
7000
9000
11000
Energy (μJ)
EOFF
EON
020 40 60 80 100 120
RG (Ω)
10
100
1000
10000
Swiching Time (ns)
tR
tdOFF
tF
tdON
0100 200 300 400 500
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
8 1012141618
VGE (V)
0
5
10
15
20
Time (μs)
0
200
400
600
800
Current (A)
Tsc
Isc
IRGP4066PbF/IRGP4066-EPbF
6www.irf.com
Fig. 18 - Typical Gate Charge vs. VGE
ICE = 75A; L = 485μH
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
0 20 40 60 80 100 120 140 160
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES = 400V
VCES = 300V
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.00738 0.000009
0.09441 0.000179
0.13424 0.002834
0.09294 0.0182
IRGP4066PbF/IRGP4066-EPbF
www.irf.com 7
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
0
1K
VCCDUT
L
L
Rg
80 V
DUT VCC
+
-
Fig.C.T.5 - Resistive Load Circuit
Rg
VCC
DUT
R =
VCC
ICM
G force
C sens
e
100K
DUT
0.0075μF
D1 22K
E force
C force
E sense
Fig.C.T.6 - BVCES Filter Circuit
Fig.C.T.3 - S.C. SOA Circuit
DC
4X
DUT
VCC
SCSOA
Fig.C.T.4 - Switching Loss Circuit
L
Rg
VCC
DUT /
DRIVER
diode clamp /
DUT
-5V
IRGP4066PbF/IRGP4066-EPbF
8www.irf.com
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF3 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
-100
0
100
200
300
400
500
600
-3.0E-07 -1.0E-07 1.0E-07 3.0E-07
time(µs)
V
CE
(V)
-20
0
20
40
60
80
100
120
I
CE
(A)
90% I
CE
5% V
CE
5% I
CE
Eoff Loss
tf
-100
0
100
200
300
400
500
600
7.4E-06 7.7E-06 8.0E-06 8.3E-06
time (µs)
V
CE
(V)
-20
0
20
40
60
80
100
120
I
CE
(A )
TEST CURRENT
90% I
CE
5% V
CE
10% I
CE
Eon
Loss
-100
0
100
200
300
400
500
600
700
-3 0 3 6 9 12
Time (uS)
Vce (V)
-100
0
100
200
300
400
500
600
700
I
CE
(A)
VCE
ICE
IRGP4066PbF/IRGP4066-EPbF
www.irf.com 9
TO-247AC Part Marking Information
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
<($5 
'$7(&2'(
3$57180%(5
,17(51$7,21$/
/2*2
5(&7,),(5
$66(0%/<

,5)3(
+
/,1(+
LQGLFDWHV/HDG)UHH :((./27&2'(
,17+($66(0%/</,1(+
$66(0%/('21::
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
(;$03/( :,7+$66(0%/<
7+,6,6$1,5)3(
/27&2'(
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRGP4066PbF/IRGP4066-EPbF
10 www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2010
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
$66(0%/< <($5 
$66(0%/('21::
,17+($66(0%/</,1(+
(;$03/( 7+,6,6$1,5*3%.'(
/27&2'(
:,7+$66(0%/< 3$57180%(5
'$7(&2'(
,17(51$7,21$/
5(&7,),(5
/2*2
+

:((.
/,1(+
/27&2'(
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
TO-247AD Part Marking Information
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/