Datasheet RX230 Group, RX231 Group R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Renesas MCUs 54-MHz 32-bit RX MCUs, built-in FPU, 88.56 DMIPS, up to 512-KB flash memory, various communication functions including USB 2.0 full-speed host/function/OTG, CAN, SD host interface, serial sound interface, capacitive touch sensing unit, 12-bit A/D, 12-bit D/A, RTC, AES, MPU security functions Features 32-bit RXv2 CPU core Max. operating frequency: 54 MHz Capable of 88.56 DMIPS in operation at 54 MHz Enhanced DSP: 32-bit multiply-accumulate and 16-bit multiply-subtract instructions supported Built-in FPU: 32-bit single-precision floating point (compliant to IEEE754) Divider (fastest instruction execution takes two CPU clock cycles) Fast interrupt CISC Harvard architecture with 5-stage pipeline Variable-length instructions, ultra-compact code On-chip debugging circuit Memory protection unit (MPU) supported Low power design and architecture Operation from a single 1.8-V to 5.5-V supply RTC capable of operating on the battery backup power supply Three low power consumption modes Low power timer (LPT) that operates during the software standby state On-chip flash memory for code 128- to 512-Kbyte capacities On-board or off-board user programming Programmable at 1.8 V For instructions and operands On-chip data flash memory 8 Kbytes (1,000,000 program/erase cycles (typ.)) BGO (Background Operation) On-chip SRAM, no wait states 32- to 64-Kbyte size capacities Data transfer functions DMAC: Incorporates four channels DTC: Four transfer modes ELC Module operation can be initiated by event signals without using interrupts. Linked operation between modules is possible while the CPU is sleeping. Reset and supply management Eight types of reset, including the power-on reset (POR) Low voltage detection (LVD) with voltage settings Clock functions Main clock oscillator frequency: 1 to 20 MHz External clock input frequency: Up to 20 MHz Sub-clock oscillator frequency: 32.768 kHz PLL circuit input: 4 MHz to 12.5 MHz On-chip low- and high-speed oscillators, dedicated on-chip low-speed oscillator for the IWDT USB-dedicated PLL circuit: 4, 6, 8, or 12 MHz 54 MHz can be set for the system clock and 48 MHz for the USB clock Generation of a dedicated 32.768-kHz clock for the RTC Clock frequency accuracy measurement circuit (CAC) Realtime clock Adjustment functions (30 seconds, leap year, and error) Calendar count mode or binary count mode selectable Time capture function Time capture on event-signal input through external pins Independent watchdog timer 15-kHz on-chip oscillator produces a dedicated clock signal to drive IWDT operation. Useful functions for IEC60730 compliance Self-diagnostic and disconnection-detection assistance functions for the A/D converter, clock frequency accuracy measurement circuit, independent watchdog timer, RAM test assistance functions using the DOC, etc. External address space Four CS areas (4 x 16 Mbytes) 8- or 16-bit bus space is selectable per area MPC Input/output functions selectable from multiple pins R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 PLQP0100KB-B 14 x 14 mm, 0.5 mm pitch PLQP0064KB-C 10 x 10 mm, 0.5 mm pitch PLQP0048KB-B 7 x 7 mm, 0.5 mm pitch PWQN0064KC-A 9 x 9 mm, 0.5 mm pitch PWQN0048KB-A 7 x 7 mm, 0.5 mm pitch PTLG0100KA-A 5.5 x 5.5 mm, 0.5 mm pitch PWLG0064KA-A 5 x 5 mm, 0.5 mm pitch Up to 14 communication functions USB 2.0 host/function/On-The-Go (OTG) (one channel), full-speed = 12 Mbps, low-speed = 1.5 Mbps, isochronous transfer, and BC (Battery Charger) supported CAN (one channel) compliant to ISO11898-1: Transfer at up to 1 Mbps SCI with many useful functions (up to 7 channels) Asynchronous mode, clock synchronous mode, smart card interface Reduction of errors in communications using the bit modulation function IrDA interface (one channel, in cooperation with the SCI5) I2C bus interface: Transfer at up to 400 kbps, capable of SMBus operation (one channel) RSPI (one channel): Transfer at up to 16 Mbps Serial sound interface (one channel) SD host interface (optional: one channel) SD memory/ SDIO 1-bit or 4-bit SD bus supported Note: 48-pin packages support 1-bit mode only Up to 20 extended-function timers 16-bit MTU: input capture, output compare, complementary PWM output, phase counting mode (six channels) 16-bit TPU: input capture, output compare, phase counting mode (six channels) 8-bit TMR (four channels) 16-bit compare-match timers (four channels) 12-bit A/D converter Capable of conversion within 0.83 s 24 channels Sampling time can be set for each channel Self-diagnostic function and analog input disconnection detection assistance function 12-bit D/A converter Two channels Capacitive touch sensing unit Self-capacitance method: A single pin configures a single key, supporting up to 24 keys Mutual capacitance method: Matrix configuration with 24 pins, supporting up to 144 keys Analog comparator Two channels x two units General I/O ports 5-V tolerant, open drain, input pull-up, switching of driving capacity Security Functions (TSIP-Lite) Unauthorized access to the encryption engine is disabled and imposture and falsification of information are prevented Safe management of keys 128- or 256-bit key length of AES for ECB, CBC, GCM, others True random number generator Temperature sensor Operating temperature range 40 to +85C 40 to +105C Applications General industrial and consumer equipment Page 1 of 177 RX230 Group, RX231 Group 1. Overview 1. Overview 1.1 Outline of Specifications Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different packages. Table 1.1 is for products with the greatest number of functions, so the number of peripheral modules and channels will differ in accordance with the package type. For details, see Table 1.2, Comparison of Functions for Different Packages. Table 1.1 Outline of Specifications (1/4) Classification Module/Function Description CPU CPU Memory Maximum operating frequency: 54 MHz 32-bit RX CPU (RX v2) Minimum instruction execution time: One instruction per clock cycle Address space: 4-Gbyte linear Register set General purpose: Sixteen 32-bit registers Control: Ten 32-bit registers Accumulator: Two 72-bit registers Basic instructions: 75 (variable-length instruction format) Floating-point instructions: 11 DSP instructions: 23 Addressing modes: 10 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit multiplier: 32-bit x 32-bit 64-bit On-chip divider: 32-bit / 32-bit 32 bits Barrel shifter: 32 bits Memory protection unit (MPU) FPU Single precision (32-bit) floating point Data types and floating-point exceptions in conformance with the IEEE754 standard ROM Capacity: 128/256/384/512 Kbytes Up to 32 MHz: No-wait memory access 32 to 54 MHz: Wait state required. No wait state if the instruction is served by a ROM accelerator hit. Programming/erasing method: Serial programming (asynchronous serial communication/USB communication), self-programming RAM Capacity: 32/64 Kbytes 54 MHz, no-wait memory access E2 DataFlash Capacity: 8 Kbytes Number of erase/write cycles: 1,000,000 (typ) MCU operating mode Single-chip mode, on-chip ROM enabled expansion mode, and on-chip ROM disabled expansion mode (software switching) Clock Main clock oscillator, sub-clock oscillator, low-speed on-chip oscillator, high-speed on-chip oscillator, PLL frequency synthesizer, USB-dedicated PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator Oscillation stop detection: Available Clock frequency accuracy measurement circuit (CAC) Independent settings for the system clock (ICLK), peripheral module clock (PCLK), external bus clock (BCLK), and FlashIF clock (FCLK) The CPU and system sections such as other bus masters run in synchronization with the system clock (ICLK): 54 MHz (at max.) MTU2a runs in synchronization with the PCLKA: 54 MHz (at max.) The ADCLK for the S12AD runs in synchronization with the PCLKD: 54 MHz (at max.) Peripheral modules other than MTU2a and S12ADE run in synchronization with the PCLKB: 32 MHz (at max.) Devices connected to external buses run in synchronization with the BCLK: 32 MHz (at max.) The flash peripheral circuit runs in synchronization with the FCLK: 32 MHz (at max.) Clock generation circuit Resets Voltage detection RES# pin reset, power-on reset, voltage monitoring reset, watchdog timer reset, independent watchdog timer reset, and software reset Voltage detection circuit (LVDAb) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 When the voltage on VCC falls below the voltage detection level, an internal reset or internal interrupt is generated. Voltage detection circuit 0 is capable of selecting the detection voltage from 4 levels Voltage detection circuit 1 is capable of selecting the detection voltage from 14 levels Voltage detection circuit 2 is capable of selecting the detection voltage from 4 levels Page 2 of 177 RX230 Group, RX231 Group Table 1.1 1. Overview Outline of Specifications (2/4) Classification Module/Function Description Low power consumption Low power consumption functions Module stop function Three low power consumption modes Sleep mode, deep sleep mode, and software standby mode Low power timer that operates during the software standby state Function for lower operating power consumption Operating power control modes High-speed operating mode, middle-speed operating mode, and low-speed operating mode Interrupt controller (ICUb) Interrupt vectors: 167 External interrupts: 9 (NMI, IRQ0 to IRQ7 pins) Non-maskable interrupts: 7 (NMI pin, oscillation stop detection interrupt, voltage monitoring 1 interrupt, voltage monitoring 2 interrupt, WDT interrupt, IWDT interrupt, and VBATT power monitoring interrupt) 16 levels specifiable for the order of priority Interrupt External bus extension The external address space can be divided into four areas (CS0 to CS3), each with independent control of access settings. Capacity of each area: 16 Mbytes (CS0 to CS3) A chip-select signal (CS0# to CS3#) can be output for each area. Each area is specifiable as an 8-bit or 16-bit bus space The data arrangement in each area is selectable as little or big endian (only for data). Bus format: Separate bus, multiplex bus Wait control Write buffer facility DMA DMA controller (DMACA) 4 channels Three transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Software trigger, external interrupts, and interrupt requests from peripheral functions Data transfer controller (DTCa) Transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Interrupts Chain transfer function General I/O ports 100-pin /64-pin /48-pin I/O: 79/43/30 (RX231 Group), 83/47/34 (RX230 Group) Input: 1/1/1 Pull-up resistors: 79/43/30(RX231 Group), 83/47/34 (RX230 Group) Open-drain outputs: 58/34/26 5-V tolerance: 5/3/3 I/O ports Event link controller (ELC) Event signals of 61 types can be directly connected to the module Operations of timer modules are selectable at event input Capable of event link operation for port B and port E Multi-function pin controller (MPC) Capable of selecting the input/output function from multiple pins Timers 16-bit timer pulse unit (TPUa) Multi-function timer pulse unit 2 (MTU2a) (16 bits x 6 channels) x 1 unit Up to 16 pulse-input/output lines and three pulse-input lines are available based on the six 16-bit timer channels Select from among eight or seven counter-input clock signals for each channel (PCLK/1, PCLK/4, PCLK/16, PCLK/64, PCLK/256, PCLK/1024, MTCLKA, MTCLKB, MTCLKC, MTCLKD) other than channel 5, for which only four signals are available. Input capture function 21 output compare/input capture registers Pulse output mode Complementary PWM output mode Reset synchronous PWM mode Phase-counting mode Capable of generating conversion start triggers for the A/D converter Port output enable 2 (POE2a) Controls the high-impedance state of the MTU's waveform output pins Compare match timer (CMT) (16 bits x 2 channels) x 2 units Select from among four clock signals (PCLK/8, PCLK/32, PCLK/128, PCLK/512) Watchdog timer (WDTA) 14 bits x 1 channel Select from among six counter-input clock signals (PCLK/4, PCLK/64, PCLK/128, PCLK/512, PCLK/ 2048, PCLK/8192) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 (16 bits x 6 channels) x 1 unit Maximum of 16 pulse-input/output possible Select from among seven or eight counter-input clock signals for each channel Supports the input capture/output compare function Output of PWM waveforms in up to 15 phases in PWM mode Support for buffered operation, phase-counting mode (two-phase encoder input) and cascade connected operation (32 bits x 2 channels) depending on the channel. Capable of generating conversion start triggers for the A/D converters Signals from the input capture pins are input via a digital filter Clock frequency measuring method Page 3 of 177 RX230 Group, RX231 Group Table 1.1 1. Overview Outline of Specifications (3/4) Classification Module/Function Description Timers Independent watchdog timer (IWDTa) 14 bits x 1 channel Count clock: Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 1, 16, 32, 64, 128, or 256 Realtime clock (RTCe) Low power timer (LPT) 16 bits x 1 channel Clock source: Sub-clock, Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 2, 4, 8, 16, or 32 8-bit timer (TMR) (8 bits x 2 channels) x 2 units Seven internal clocks (PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, and PCLK/8192) and an external clock can be selected Pulse output and PWM output with any duty cycle are available Two channels can be cascaded and used as a 16-bit timer Serial communications interfaces (SCIg, SCIh) 7 channels (channel 0, 1, 5, 6, 8, 9: SCIg, channel 12: SCIh) SCIg Serial communications modes: Asynchronous, clock synchronous, and smart-card interface Multi-processor function On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Average transfer rate clock can be input from TMR timers for SCI5, SCI6, and SCI12 Start-bit detection: Level or edge detection is selectable. Simple I2C Simple SPI 9-bit transfer mode Bit rate modulation Event linking by the ELC (only on channel 5) SCIh (The following functions are added to SCIg) Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format IrDA interface (IRDA) 1 channel (SCI5 used) Supports encoding/decoding of waveforms conforming to IrDA standard 1.0 I2C bus interface (RIICa) Serial peripheral interface (RSPIa) 1 channel Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCK (RSPI clock) enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave Data formats Choice of LSB-first or MSB-first transfer The number of bits in each transfer can be changed to 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Double buffers for both transmission and reception USB 2.0 host/function module (USBd) CAN module (RSCAN) 1 channel Compliance with the ISO11898-1 specification (standard frame and extended frame) 16 Message boxes Communication functions R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Clock source: Sub-clock Time/calendar Interrupts: Alarm interrupt, periodic interrupt, and carry interrupt Time-capture facility for three values 1 channel Communications formats: I2C bus format/SMBus format Master mode or slave mode selectable Supports fast mode USB Device Controller (UDC) and transceiver for USB 2.0 are incorporated. Host/function module: 1 port Compliant with USB version 2.0 Transfer speed: Full-speed (12 Mbps), low-speed (1.5 Mbps) OTG (ON-The-Go) is supported. Isochronous transfer is supported. BC1.2 (Battery Charging Specification Revision 1.2) is supported. Internal power supply for USB (allows operation without external power input to the VCC_USB pin when VCC = 4.0 to 5.5V) Page 4 of 177 RX230 Group, RX231 Group Table 1.1 1. Overview Outline of Specifications (4/4) Classification Module/Function Description Communication Serial Sound Interface (SSI) SD Host Interface (SDHIa) functions 1 channel Capable of duplex communications Various serial audio formats supported Master/slave function supported Programmable word clock or bit clock generation function 8/16/18/20/22/24/32-bit data formats supported On-chip 8-stage FIFO for transmission/reception Supports WS continue mode in which the SSIWS signal is not stopped. 1 channel Transfer speed : Default speed mode (8MB/s) SD memory card interface (1 bit / 4bits SD bus) MMC, eMMC Backward-compatible are supported. SD Specifications Part 1: Compliant with Physical Layer Specification Ver.3.01 (Not support DDR) Part E1: SDIO Specification Ver. 3.00 Compliant with USB version 2.0 Error check function: CRC7 (command), CRC16 (data) Interrupt Source: Card access interrupt, SDIO access interrupt, Card detection interrupt, SD buffer access interrupt DMA transfer sources: SD_BUFwrite, SD_BUF read Card detection, Write protection Security functions Access management circuit Encryption engine 128- or 256-bit key sizes of AES Block cipher mode of operation: GCM, ECB, CBC, CMAC, XTS, CTR, GCTR Hash function True random number generator Unique ID 12-bit A/D converter (S12ADE) 12 bits (24 channels x 1 unit) 12-bit resolution Minimum conversion time: 0.83 s per channel when the ADCLK is operating at 54 MHz Operating modes Scan mode (single scan mode, continuous scan mode, and group scan mode) Group A priority control (only for group scan mode) Sampling variable Sampling time can be set up for each channel. Self-diagnostic function Double trigger mode (A/D conversion data duplicated) Detection of analog input disconnection A/D conversion start conditions A software trigger, a trigger from a timer (MTU, TPU), an external trigger signal, or ELC Event linking by the ELC Temperature sensor (TEMPSA) 1 channel The voltage output from the temperature sensor is converted into a digital value by the 12-bit A/D converter. 12-bit D/A converter (R12DAA) 2 channels 12-bit resolution Output voltage: 0.4 to AVCC0-0.5V CRC calculator (CRC) CRC code generation for arbitrary amounts of data in 8-bit units Select any of three generating polynomials: X8 + X2 + X + 1, X16 + X15 + X2 + 1, or X16 + X12 + X5 + 1 Generation of CRC codes for use with LSB-first or MSB-first communications is selectable. Comparator B (CMPBa) 2 channels x 2 units Function to compare the reference voltage and the analog input voltage Window comparator operation or standard comparator operation is selectable Capacitive touch sensing unit (CTSU) Detection pin: 24 channels Data operation circuit (DOC) Comparison, addition, and subtraction of 16-bit data Power supply voltages/Operating frequencies VCC = 1.8 to 2.4 V: 8 MHz, VCC = 2.4 to 2.7 V: 16 MHz, VCC = 2.7 to 5.5 V: 54 MHz Operating temperature range D version: 40 to +85C, G version: 40 to +105C Packages 100-pin TFLGA (PTLG0100KA-A) 5.5 x 5.5 mm, 0.5 mm pitch 100-pin LFQFP (PLQP0100KB-B) 14 x 14 mm, 0.5 mm pitch 64-pin WFLGA (PWLG0064KA-A) 5 x 5 mm, 0.5 mm pitch 64-pin HWQFN (PWQN0064KC-A) 9 x 9 mm, 0.5 mm pitch 64-pin LFQFP (PLQP0064KB-C) 10 x 10 mm, 0.5 mm pitch 48-pin HWQFN (PWQN0048KB-A) 7 x 7 mm, 0.5 mm pitch 48-pin LFQFP (PLQP0048KB-B) 7 x 7 mm, 0.5 mm pitch On-chip debugging system E1 emulator (FINE interface) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 5 of 177 RX230 Group, RX231 Group Table 1.2 1. Overview Comparison of Functions for Different Packages RX230 Group Module/Functions External bus External bus Interrupts External interrupts DMA DMA controller 100 Pins 16 bit NMI, IRQ0 to IRQ7 NMI, IRQ0 to IRQ2, IRQ4 to IRQ7 NMI, IRQ0, IRQ1, IRQ4 to IRQ7 100 Pins 64 Pins 16 bit 48 Pins Not supported NMI, IRQ0 to IRQ7 NMI, IRQ0 to IRQ2, IRQ4 to IRQ7 NMI, IRQ0, IRQ1, IRQ4 to IRQ7 4 channels (DMAC0 to DMAC3) 4 channels (DMAC0 to DMAC3) Available Available 16-bit timer pulse unit 6 channels (TPU0 to TPU5) 6 channels (TPU0 to TPU5) Multi-function timer pulse unit 2 6 channels (MTU0 to MTU5) 6 channels (MTU0 to MTU5) POE0# to POE3#, POE8# POE0# to POE3#, POE8# 8-bit timer 2 channelsx 2 units 2 channelsx 2 units Compare match timer 2 channelsx 2 units 2 channelsx 2 units 1 channel 1 channel Port output enable 2 Low power timer Realtime clock Available Watchdog timer Serial communications interfaces (SCIg) Not supported Available Available Independent watchdog timer Communication functions 48 Pins Not supported Data transfer controller Timers RX231 Group 64 Pins Available Available 6 channels (SCI0, 1, 5, 6, 8, 9) 5 channels (SCI1, 5, 6, 8, 9) Not supported Available 4 channels (SCI1, 5, 6, 8) 6 channels (SCI0, 1, 5, 6, 8, 9) 5 channels (SCI1, 5, 6, 8, 9) 4 channels (SCI1, 5, 6, 8) IrDA interface 1 channel (SCI5) 1 channel (SCI5) Serial communications interfaces (SCIh) 1 channel (SCI12) 1 channel (SCI12) 1 channel 1 channel I2C bus interface CAN module Serial peripheral interface USB 2.0 host/function module Serial sound interface SD Host Interface Not supported 1 channel 1 channel 1 channel Not supported 1 channel 1 channel 1 channel Not supported 1 channel Capacitive touch sensing unit 24 channels 10 channels 6 channels 24 channels 10 channels 6 channels 12-bit A/D converter (including high-precision channels) 24 channels 12 channels (8 (6 channels) channels) 8 channels (4 channels) 24 channels 12 channels (8 (6 channels) channels) 8 channels (4 channels) Temperature sensor D/A converter Available 2 channels CRC calculator Comparator B R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Not supported 2 channels Available Event link controller Packages Available 100-pin TFLGA 100-pin LFQFP Available Available Available 4 channels 4 channels 64-pin WFLGA 64-pin HWQFN 64-pin LFQFP Not supported 48-pin HWQFN 48-pin LFQFP 100-pin TFLGA 100-pin LFQFP 64-pin WFLGA 64-pin HWQFN 64-pin LFQFP 48-pin HWQFN 48-pin LFQFP Page 6 of 177 RX230 Group, RX231 Group 1.2 1. Overview List of Products Table 1.3 and Table 1.4 are a list of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package type. Table 1.3 List of Products: D Version (Ta = -40 to +85C) (1/2) Group Part No. Order Part No. Package ROM Capacity RAM Capacity E2 DataFlash Operating Frequency Security Function SDHI CAN Operating Temperature RX231 R5F52318ADLA R5F52318ADLA#20 PTLG0100KA-A 512 Kbytes 64 Kbytes 8 Kbytes 54 MHz Not available Not available Available 40 to +85C R5F52318BDLA R5F52318BDLA#20 R5F52318ADFP R5F52318ADFP#30 R5F52318BDFP R5F52318BDFP#30 R5F52318ADND R5F52318ADND#U0 R5F52318BDND R5F52318BDND#U0 R5F52318ADFM R5F52318ADFM#30 R5F52318BDFM R5F52318BDFM#30 R5F52318ADNE R5F52318ADNE#U0 R5F52318BDNE R5F52318BDNE#U0 R5F52318ADFL R5F52318ADFL#30 R5F52318BDFL R5F52318BDFL#30 R5F52317ADLA R5F52317ADLA#20 R5F52317BDLA R5F52317BDLA#20 R5F52317ADFP R5F52317ADFP#30 R5F52317BDFP R5F52317BDFP#30 R5F52317ADND R5F52317ADND#U0 R5F52317BDND R5F52317BDND#U0 R5F52317ADFM R5F52317ADFM#30 PLQP0100KB-B Available Available Available Not available Not available Available Available Available Available PWQN0064KC-A Not available Not available Available Available Available Available PLQP0064KB-C Not available Not available Available Available Available Available PWQN0048KB-A Not available Not available Available Available Available Available PLQP0048KB-B Not available Not available Available PTLG0100KA-A 384 Kbytes Available Available Available Not available Not available Available Available Available Available PLQP0100KB-B Not available Not available Available Available Available Available PWQN0064KC-A Not available Not available Available Available Available Available PLQP0064KB-C Not available Not available Available Available Available Available PWQN0048KB-A Not available Not available Available Available Available Available PLQP0048KB-B Not available Not available Available Available Available Available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available R5F52317BDFM R5F52317BDFM#30 R5F52317ADNE R5F52317ADNE#U0 R5F52317BDNE R5F52317BDNE#U0 R5F52317ADFL R5F52317ADFL#30 R5F52317BDFL R5F52317BDFL#30 R5F52316ADLA R5F52316ADLA#20 R5F52316CDLA R5F52316CDLA#20 R5F52316ADFP R5F52316ADFP#30 R5F52316CDFP R5F52316CDFP#30 R5F52316CDLF R5F52316CDLF#U0 PWLG0064KA-A Not available Not available Not available R5F52316ADND R5F52316ADND#U0 PWQN0064KC-A Not available Not available Available R5F52316CDND R5F52316CDND#U0 Not available Not available Not available R5F52316ADFM R5F52316ADFM#30 Not available Not available Available R5F52316CDFM R5F52316CDFM#30 Not available Not available Not available R5F52316ADNE R5F52316ADNE#U0 Not available Not available Available R5F52316CDNE R5F52316CDNE#U0 Not available Not available Not available R5F52316ADFL R5F52316ADFL#30 Not available Not available Available R5F52316CDFL R5F52316CDFL#30 Not available Not available Not available R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 PTLG0100KA-A PLQP0100KB-B PLQP0064KB-C PWQN0048KB-A PLQP0048KB-B 256 Kbytes 32 Kbytes Page 7 of 177 RX230 Group, RX231 Group Table 1.3 1. Overview List of Products: D Version (Ta = -40 to +85C) (2/2) Group Part No. Order Part No. Package ROM Capacity RAM Capacity E2 DataFlash Operating Frequency Security Function SDHI CAN Operating Temperature RX231 R5F52315ADLA R5F52315ADLA#20 PTLG0100KA-A 128 Kbytes 32 Kbytes 8 Kbytes 54 MHz Not available Not available Available 40 to +85C R5F52315CDLA R5F52315CDLA#20 Not available Not available Not available R5F52315ADFP R5F52315ADFP#30 Not available Not available Available R5F52315CDFP R5F52315CDFP#30 Not available Not available Not available R5F52315CDLF R5F52315CDLF#20 PWLG0064KA-A Not available Not available Not available R5F52315ADND R5F52315ADND#U0 PWQN0064KC-A Not available Not available Available R5F52315CDND R5F52315CDND#U0 Not available Not available Not available R5F52315ADFM R5F52315ADFM#30 Not available Not available Available R5F52315CDFM R5F52315CDFM#30 Not available Not available Not available R5F52315ADNE R5F52315ADNE#U0 Not available Not available Available R5F52315CDNE R5F52315CDNE#U0 Not available Not available Not available R5F52315ADFL R5F52315ADFL#30 Not available Not available Available R5F52315CDFL R5F52315CDFL#30 Not available Not available Not available R5F52306ADLA R5F52306ADLA#20 PTLG0100KA-A Not available Not available Not available R5F52306ADFP R5F52306ADFP#30 PLQP0100KB-B Not available Not available Not available R5F52306ADLF R5F52306ADLF#20 PWLG0064KA-A Not available Not available Not available R5F52306ADND R5F52306ADND#U0 PWQN0064KC-A Not available Not available Not available R5F52306ADFM R5F52306ADFM#30 PLQP0064KB-C Not available Not available Not available R5F52306ADNE R5F52306ADNE#U0 PWQN0048KB-A Not available Not available Not available R5F52306ADFL R5F52306ADFL#30 PLQP0048KB-B Not available Not available Not available R5F52305ADLA R5F52305ADLA#20 PTLG0100KA-A Not available Not available Not available R5F52305ADFP R5F52305ADFP#30 PLQP0100KB-B Not available Not available Not available R5F52305ADLF R5F52305ADLF#20 PWLG0064KA-A Not available Not available Not available R5F52305ADND R5F52305ADND#U0 PWQN0064KC-A Not available Not available Not available R5F52305ADFM R5F52305ADFM#30 PLQP0064KB-C Not available Not available Not available R5F52305ADNE R5F52305ADNE#U0 PWQN0048KB-A Not available Not available Not available R5F52305ADFL R5F52305ADFL#30 PLQP0048KB-B Not available Not available Not available RX230 R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 PLQP0100KB-B PLQP0064KB-C PWQN0048KB-A PLQP0048KB-B 256 Kbytes 128 Kbytes 32 Kbytes 8 Kbytes 54 MHz 40 to +85C Page 8 of 177 RX230 Group, RX231 Group Table 1.4 1. Overview List of Products: G Version (Ta = -40 to +105C) (1/2) Group Part No. Order Part No. Package ROM Capacity RAM Capacity E2 DataFlash Operating Frequency Security Function SDHI CAN RX231 R5F52318AGFP R5F52318AGFP#30 PLQP0100KB-B 512 Kbytes 64 Kbytes 8 Kbytes 54 MHz Not available Not available Available R5F52318BGFP R5F52318BGFP#30 R5F52318AGND R5F52318AGND#U0 R5F52318BGND R5F52318BGND#U0 R5F52318AGFM R5F52318AGFM#30 R5F52318BGFM R5F52318BGFM#30 R5F52318AGNE R5F52318AGNE#U0 R5F52318BGNE R5F52318BGNE#U0 R5F52318AGFL R5F52318AGFL#30 R5F52318BGFL R5F52318BGFL#30 R5F52317AGFP R5F52317AGFP#30 R5F52317BGFP R5F52317BGFP#30 R5F52317AGND R5F52317AGND#U0 R5F52317BGND R5F52317BGND#U0 R5F52317AGFM R5F52317AGFM#30 R5F52317BGFM R5F52317BGFM#30 R5F52317AGNE R5F52317AGNE#U0 R5F52317BGNE R5F52317BGNE#U0 R5F52317AGFL R5F52317AGFL#30 R5F52317BGFL R5F52317BGFL#30 R5F52316AGFP R5F52316AGFP#30 R5F52316CGFP R5F52316CGFP#30 R5F52316AGND R5F52316AGND#U0 R5F52316CGND R5F52316CGND#U0 R5F52316AGFM R5F52316AGFM#30 R5F52316CGFM R5F52316CGFM#30 R5F52316AGNE R5F52316AGNE#U0 R5F52316CGNE R5F52316CGNE#U0 R5F52316AGFL R5F52316AGFL#30 R5F52316CGFL R5F52316CGFL#30 R5F52315AGFP R5F52315AGFP#30 R5F52315CGFP R5F52315CGFP#30 R5F52315AGND R5F52315AGND#U0 R5F52315CGND R5F52315CGND#U0 R5F52315AGFM R5F52315AGFM#30 R5F52315CGFM R5F52315CGFM#30 R5F52315AGNE R5F52315AGNE#U0 R5F52315CGNE R5F52315CGNE#U0 R5F52315AGFL R5F52315AGFL#30 R5F52315CGFL R5F52315CGFL#30 R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Operating Temperature Available Available Available PWQN0064KC-A Not available Not available Available Available Available Available PLQP0064KB-C Not available Not available Available Available Available Available PWQN0048KB-A Not available Not available Available Available Available Available PLQP0048KB-B Not available Not available Available Available Available Available Not available Not available Available PLQP0100KB-B 384 Kbytes Available Available Available PWQN0064KC-A Not available Not available Available Available Available Available PLQP0064KB-C Not available Not available Available Available Available Available PWQN0048KB-A Not available Not available Available Available Available Available PLQP0048KB-B Not available Not available Available PLQP0100KB-B 256 Kbytes PWQN0064KC-A PLQP0064KB-C PWQN0048KB-A PLQP0048KB-B PLQP0100KB-B PWQN0064KC-A PLQP0064KB-C PWQN0048KB-A PLQP0048KB-B 128 Kbytes 32 Kbytes Available Available Available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available Not available Not available Available Not available Not available Not available 40 to +105C Page 9 of 177 RX230 Group, RX231 Group Table 1.4 1. Overview List of Products: G Version (Ta = -40 to +105C) (2/2) Group Part No. Order Part No. Package ROM Capacity RAM Capacity E2 DataFlash Operating Frequency Security Function SDHI CAN Operating Temperature RX230 R5F52306AGFP R5F52306AGFP#30 PLQP0100KB-B 256 Kbytes 32 Kbytes 8 Kbytes 54 MHz Not available Not available Not available 40 to +105C R5F52306AGND R5F52306AGND#U0 PWQN0064KC-A Not available Not available Not available R5F52306AGFM R5F52306AGFM#30 PLQP0064KB-C Not available Not available Not available R5F52306AGNE R5F52306AGNE#U0 PWQN0048KB-A Not available Not available Not available R5F52306AGFL R5F52306AGFL#30 PLQP0048KB-B Not available Not available Not available R5F52305AGFP R5F52305AGFP#30 PLQP0100KB-B Not available Not available Not available R5F52305AGND R5F52305AGND#U0 PWQN0064KC-A Not available Not available Not available R5F52305AGFM R5F52305AGFM#30 PLQP0064KB-C Not available Not available Not available R5F52305AGNE R5F52305AGNE#U0 PWQN0048KB-A Not available Not available Not available R5F52305AGFL R5F52305AGFL#30 PLQP0048KB-B Not available Not available Not available R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 128 Kbytes Page 10 of 177 RX230 Group, RX231 Group R 5 F 5 2 3 1. Overview 1 8 A D F M Package type, number of pins, and pin pitch FP: LFQFP/100/0.50 FM: LFQFP/64/0.50 FL: LFQFP/48/0.50 LA: TFLGA/100/0.50 LF: WFLGA/64/0.50 ND: HWQFN/64/0.50 NE: HWQFN/48/0.50 D: Operating ambient temperature: -40 to +85C G: Operating ambient temperature: -40 to +105C Chip versions RX231 Group A: Security function not included, SDHI module not included, CAN module included B: Security function included, SDHI module included, CAN module included C: Security function not included, SDHI module not included, CAN module not included RX230 Group A: USB module not included ROM, RAM, and E2 DataFlash capacity 8: 512 Kbytes/64 Kbytes/8 Kbytes 7: 384 Kbyte/64 Kbytes/8 Kbytes 6: 256 Kbytes/32 Kbytes/8 Kbytes 5: 128 Kbytes/32 Kbytes/8 Kbytes Group name 31: RX231 Group 30: RX230 Group Series name RX200 Series Type of memory F: Flash memory version Renesas MCU Renesas semiconductor product Figure 1.1 How to Read the Product Part Number R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 11 of 177 RX230 Group, RX231 Group 1.3 1. Overview Block Diagram Figure 1.2 shows a block diagram. SDHIa E2 DataFlash RSCAN WDTA CTSU IWDTa LPT ELC CRC SCIg x 6 channels (including IrDA x 1 channel) SCIh x 1 channel RSPIa x 1 channel RIICa x 1 channel Internal peripheral buses 1 to 6 SSI MTU2a x 6 channels POE2a TMR x 2 channels (unit 0) MPU Clock generation circuit Internal main bus 2 Internal main bus 1 RX CPU Port 1 CMT x 2 channels (unit 0) Port 2 CMT x 2 channels (unit 1) Port 3 RTCe Port 4 12-bit A/D converter x 24 channels Temperature sensor DMACA x 4 channels Interrupt controller Data transfer controller DMA controller Bus controller Watchdog timer Independent watchdog timer Event link controller CRC (cyclic redundancy check) calculator Serial communications interface Serial peripheral interface Serial sound interface I2C bus interface 16-bit timer pulse unit Port 0 TMR x 2 channels (unit 1) DTCa Operand bus Instruction bus RAM Figure 1.2 TPUa x 6 channels ICUb ROM ICUb: DTCa: DMACA: BSC: WDTA: IWDTa: ELC: CRC: SCIg/SCIh: RSPIa: SSI: RIICa: TPUa: USB 2.0 host/function module Port 5 Port A 12-bit D/A converter x 2 channels Port B DOC Comparator B x 4 channels CAC Port C Port D Port E Port H BSC MTU2a: POE2a: CMT: RTCe: DOC: CAC: CTSU: SDHIa: MPU: TMR: RSCAN: LPT: External bus Port J Multi-function timer pulse unit 2 Port output enable 2 Compare match timer Realtime clock Data operation circuit Clock frequency accuracy measurement circuit Capacitive touch sensing unit SD host interface Memory protection unit 8-bit timer CAN module Low power timer Block Diagram R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 12 of 177 RX230 Group, RX231 Group 1.4 1. Overview Pin Functions Table 1.5 lists the pin functions. Table 1.5 Pin Functions (1/4) Classifications Pin Name I/O Description Power supply VCC Input Power supply pin. Connect it to the system power supply. VCL -- Connect this pin to the VSS pin via the 4.7 F smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin. VSS Input Ground pin. Connect it to the system power supply (0 V). VBATT Input Backup power pin XTAL Output EXTAL Input Pins for connecting a crystal. An external clock can be input through the EXTAL pin. BCLK Output Outputs the external bus clock for external devices. XCIN Input XCOUT Output Input/output pins for the sub-clock oscillator. Connect a crystal between XCIN and XCOUT. CLKOUT Output Clock output pin. MD Input Pin for setting the operating mode. The signal levels on this pin must not be changed during operation. Clock Operating mode control System control UB Input Pin used for boot mode (USB interface). UPSEL Input Pin used for boot mode (USB interface). RES# Input Reset pin. This MCU enters the reset state when this signal goes low. CAC CACREF Input Input pin for the clock frequency accuracy measurement circuit. On-chip emulator FINED I/O FINE interface pin. Address bus A0 to A23 Output Output pins for the address. Data bus D0 to D15 I/O Input and output pins for the bidirectional data bus. Multiplexed bus A0/D0 to A15/D15 I/O Address/data multiplexed bus Bus control RD# Output Strobe signal which indicates that reading from the external bus interface space is in progress. WR# Output Strobe signal which indicates that writing to the external bus interface space is in progress, in single-write strobe mode. WR0#, WR1# Output Strobe signals which indicate that either group of data bus pins (D7 to D0, and D15 to D8) is valid in writing to the external bus interface space, in byte strobe mode. BC0#, BC1# Output Strobe signals which indicate that either group of data bus pins (D7 to D0 and D15 to D8) is valid in access to the external bus interface space, in single-write strobe mode. CS0# to CS3# Output Select signals for areas 0 to 3. WAIT# Input Input pin for wait request signals in access to the external space. ALE Output Address latch signal when address/data multiplexed bus is selected. LVD CMPA2 Input Detection target voltage pin for voltage detection 2. Interrupts NMI Input Non-maskable interrupt request pin. IRQ0 to IRQ7 Input Interrupt request pins. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 13 of 177 RX230 Group, RX231 Group Table 1.5 1. Overview Pin Functions (2/4) Classifications Pin Name I/O Description 16-bit timer pulse unit TIOCA0, TIOCB0 TIOCC0, TIOCD0 I/O The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins. TIOCA1, TIOCB1 I/O The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins. TIOCA2, TIOCB2 I/O The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins. TIOCA3, TIOCB3 TIOCC3, TIOCD3 I/O The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins. TIOCA4, TIOCB4 I/O The TGRA4 and TGRB4 input capture input/output compare output/PWM output pins. TIOCA5, TIOCB5 I/O The TGRA5 and TGRB5 input capture input/output compare output/PWM output pins. TCLKA, TCLKB TCLKC, TCLKD Input Input pins for external clock signals. Multi-function MTIOC0A, MTIOC0B timer pulse unit 2 MTIOC0C, MTIOC0D I/O The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins. MTIOC1A, MTIOC1B I/O The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins. MTIOC2A, MTIOC2B I/O The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins. MTIOC3A, MTIOC3B MTIOC3C, MTIOC3D I/O The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins. MTIOC4A, MTIOC4B MTIOC4C, MTIOC4D I/O The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins. MTIC5U, MTIC5V, MTIC5W Input The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input pins. MTCLKA, MTCLKB, MTCLKC, MTCLKD Input Input pins for the external clock. Port output enable 2 POE0# to POE3#, POE8# Input Input pins for request signals to place the MTU pins in the high impedance state. Realtime clock RTCOUT Output Output pin for the 1-Hz/64-Hz clock. RTCIC0 to RTCIC2 Input Time capture event input pins. TMO0 to TMO3 Output Compare match output pins. TMCI0 to TMCI3 Input Input pins for the external clock to be input to the counter. TMRI0 to TMRI3 Input Counter reset input pins. 8-bit timer Serial communications interface (SCIg) Asynchronous mode/clock synchronous mode SCK0, SCK1, SCK5, SCK6, SCK8, SCK9 I/O Input/output pins for the clock. RXD0, RXD1, RXD5, RXD6, RXD8, RXD9 Input Input pins for received data. TXD0, TXD1, TXD5, TXD6, TXD8, TXD9 Output Output pins for transmitted data. CTS0#, CTS1#, CTS5#, CTS6#, CTS8#, CTS9# Input Input pins for controlling the start of transmission and reception. RTS0#, RTS1#, RTS5#, RTS6#, RTS8#, RTS9# Output Output pins for controlling the start of transmission and reception. SSCL0, SSCL1, SSCL5, SSCL6, SSCL8, SSCL9 I/O Input/output pins for the I2C clock. SSDA0, SSDA1, SSDA5, SSDA6, SSDA8, SSDA9 I/O Input/output pins for the I2C data. Simple I2C mode R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 14 of 177 RX230 Group, RX231 Group Table 1.5 1. Overview Pin Functions (3/4) Classifications Pin Name Serial communications interface (SCIg) Simple SPI mode IrDA interface Serial communications interface (SCIh) I/O Description SCK0, SCK1, SCK5, SCK6, SCK8, SCK9 I/O Input/output pins for the clock. SMISO0, SMISO1, SMISO5, SMISO6, SMISO8, SMISO9 I/O Input/output pins for slave transmit data. SMOSI0, SMOSI1, SMOSI5, SMOSI6, SMOSI8, SMOSI9 I/O Input/output pins for master transmit data. SS0#, SS1#, SS5#, SS6#, SS8#, SS9# Input Slave-select input pins. IRTXD5 Output Data output pin in the IrDA format. IRRXD5 Input Data input pin in the IrDA format. Asynchronous mode/clock synchronous mode SCK12 I/O Input/output pin for the clock. RXD12 Input Input pin for receiving data. TXD12 Output Output pin for transmitting data. CTS12# Input Input pin for controlling the start of transmission and reception. RTS12# Output Output pin for controlling the start of transmission and reception. SSCL12 I/O Input/output pin for the I2C clock. SSDA12 I/O Input/output pin for the I2C data. Simple I2C mode Simple SPI mode SCK12 I/O Input/output pin for the clock. SMISO12 I/O Input/output pin for slave transmit data. SMOSI12 I/O Input/output pin for master transmit data. SS12# Input Slave-select input pin. Extended serial mode I2 C bus interface Serial peripheral interface Serial sound interface CAN module SD host interface RXDX12 Input Input pin for data reception by SCIf. TXDX12 Output Output pin for data transmission by SCIf. SIOX12 I/O Input/output pin for data reception or transmission by SCIf. SCL I/O Input/output pin for I2C bus interface clocks. Bus can be directly driven by the N-channel open drain output. SDA I/O Input/output pin for I2C bus interface data. Bus can be directly driven by the N-channel open drain output. RSPCKA I/O Input/output pin for the RSPI clock. MOSIA I/O Input/output pin for transmitting data from the RSPI master. MISOA I/O Input/output pin for transmitting data from the RSPI slave. SSLA0 I/O Input/output pin to select the slave for the RSPI. SSLA1 to SSLA3 Output Output pins to select the slave for the RSPI. SSISCK0 I/O SSI serial bit clock pin. SSIWS0 I/O Word selection pin. SSITXD0 Output Serial data output pin. SSIRXD0 Input Serial data input pin. AUDIO_MCLK Input Master clock pin for audio. CRXD0 Input Input pin CTXD0 Output Output pin SDHI_CLK Output SD clock output pin SDHI_CMD I/O SD command output, response input signal pin R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 15 of 177 RX230 Group, RX231 Group Table 1.5 1. Overview Pin Functions (4/4) Classifications Pin Name I/O Description SD host interface SDHI_D3 to SD_D0 I/O SD data bus pins USB 2.0 host/ function module 12-bit A/D converter 12-bit D/A converter Comparator B CTSU Analog power supply I/O ports SDHI_CD Input SD card detection pin SDHI_WP Input SD write-protect signal VCC_USB Input Power supply pin for USB. Connect this pin to VCC. VSS_USB Input Ground pin for USB. Connect this pin to VSS. USB0_DP I/O D+ I/O pin of the USB on-chip transceiver. USB0_DM I/O D- I/O pin of the USB on-chip transceiver. USB0_VBUS Input USB cable connection monitor pin. USB0_EXICEN Output Low-power control signal for the OTG chip. USB0_VBUSEN Output VBUS (5 V) supply enable signal for the OTG chip. USB0_OVRCURA, USB0_OVRCURB Input External overcurrent detection pins. USB0_ID Input Mini-AB connector ID input pin during operation in OTG mode. AN000 to AN007, AN016 to AN031 Input Input pins for the analog signals to be processed by the A/D converter. ADTRG0# Input Input pin for the external trigger signal that start the A/D conversion. DA0, DA1 Output Analog output pins of the D/A converter. CMPB0 to CMPB3 Input Input pin for the analog signal to be processed by comparator B. CVREFB0 to CVREFB3 Input Analog reference voltage supply pin for comparator B. CMPOB0 to CMPOB3 Output Output pin for comparator B. TS0 to TS9, TS12, TS13, TS15 to TS20, TS22, TS23, TS27, TS30, TS33, TS35 Output Electrostatic capacitance measurement pins (touch pins). TSCAP Output LPF connection pin. AVCC0 Input Analog voltage supply pin for the 12-bit A/D converter and D/A converter. Connect this pin to VCC when not using the 12-bit A/D converter and D/A converter. AVSS0 Input Analog ground pin for the 12-bit A/D converter and D/A converter. Connect this pin to VSS when not using the 12-bit A/D converter and D/A converter. VREFH0 Input Analog reference voltage supply pin for the 12-bit A/D converter. VREFL0 Input Analog reference ground pin for the 12-bit A/D converter. VREFH Input Analog reference voltage supply pin for the 12-bit D/A converter. VREFL Input Analog reference ground pin for the 12-bit D/A converter. P03, P05, P07 I/O 3-bit input/output pins. P12 to P17 I/O 6-bit input/output pins. P20 to P27 I/O 8-bit input/output pins. P30 to P37 I/O 8-bit input/output pins (P35 input pin). P40 to P47 I/O 8-bit input/output pins. P50 to P55 I/O 6-bit input/output pins. PA0 to PA7 I/O 8-bit input/output pins. PB0 to PB7 I/O 8-bit input/output pins. PC0 to PC7 I/O 8-bit input/output pins. PD0 to PD7 I/O 8-bit input/output pins. PE0 to PE7 I/O 8-bit input/output pins. PH0 to PH3 I/O 4-bit input/output pins. PJ3 I/O 1-bit input/output pin. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 16 of 177 RX230 Group, RX231 Group 1.5 1. Overview Pin Assignments Figure 1.3 to Figure 1.9 show the pin assignments. Table 1.6 to Table 1.10 show the lists of pins and pin functions. RX230 Group, RX231 Group PTLG0100KA-A (100-pin TFLGA) (Upper perspective view) 10 9 8 7 6 5 4 3 2 1 K PC2 PC3 PC5 P51 USB0_ DP/PH1 USB0_ DM/PH2 *1 *1 P14 P20 P22 P23 K J PC1 PC0 PC4 P50 VCC_ USB/PH3 VSS_ USB/PH0 *1 *1 P13 P17 P21 P24 J H PB7 PB6 PC6 PC7 P54 P55 P15 P16 P25 P26 H G VCC PB1 PB4 PB5 P52 P53 P27 P30 P31 P33 G F VSS PA7 PB0 PB2 PB3 P12 P32 P35 VCC P36/ EXTAL F E PA3 PA5 PA4 PA6 PA2 P41 P34 RES# VSS P37/ XTAL E D PA0 PA1 PE7 PE6 P46 P45 VBATT MD XCOUT XCIN D C PE4 PE5 PD5 PD2 P47 P42 VREFH0 PJ3 VREFL VCL C B PE3 PD7 PD6 PD3 PD1 P44 P40 AVCC0 AVSS0 P03 B A PE2 PE1 PE0 PD4 PD0 P43 VREFL0 P07 VREFH P05 A 10 9 8 7 6 5 4 3 2 1 Note: Note: This figure indicates the power supply pins and I/O port pins. For the pin configuration, see the table "List of Pins and Pin Functions (100-Pin TFLGA)". For the position of A1 pin in the package, see "Package Dimensions". Note 1. RX230: PH0, PH1, PH2, PH3 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB Figure 1.3 Pin Assignments of the 100-Pin TFLGA (Upper Perspective View) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 17 of 177 PE3 PE4 PE5 PE6 PE7 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 VSS PB0 VCC PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0 PC1 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 1. Overview 75 RX230 Group, RX231 Group PE2 76 50 PE1 77 49 PC2 PC3 PE0 78 48 PC4 PD7 79 47 PC5 PD6 80 46 PC6 PD5 81 45 PC7 PD4 82 44 P50 PD3 83 43 P51 PD2 84 42 P52 PD1 85 41 P53 PD0 86 40 P54 P47 87 39 P55 P46 88 38 VSS_USB/PH0*1 P45 89 37 USB0_DP/PH1*1 P44 90 36 USB0_DM/PH2*1 P43 91 35 VCC_USB/PH3*1 P42 92 34 P12 P41 93 33 P13 VREFL0 94 32 P14 P40 95 31 P15 VREFH0 96 30 P16 AVCC0 97 29 P17 P07 98 28 P20 AVSS0 99 27 P21 P05 100 26 P22 Note: 14 15 16 17 18 19 20 21 22 23 24 25 VCC P35 P34 P33 P32 P31 P30 P27 P26 P25 P24 P23 9 XCOUT 13 8 XCIN P36/EXTAL 7 MD 12 6 VBATT VSS 5 VCL 11 4 PJ3 P37/XTAL 3 VREFL 10 2 P03 RES# 1 VREFH RX230 Group, RX231 Group PLQP0100KB-B (100-pin LQFP) (Top view) This figure indicates the power supply pins and I /O port pins. For the pin configuration, see the table "List of Pins and Pin Functions (100-Pin LQFP)". Note 1. RX230: PH0, PH1, PH2, PH3 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB Figure 1.4 Pin Assignments of the 100-Pin LQFP R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 18 of 177 RX230 Group, RX231 Group 1. Overview RX230 Group, RX231 Group PWLG0064KA-A (64-pin WFLGA) (Upper perspective view) 8 PE3 PE4 PA0 PA3 PB0 PB3 PB6 PB7 7 PE2 PE1 PE5 PA1 VSS PB5 PC3 PC2 6 VREFL P46 PE0 PA4 VCC PB1 PC6 P54 5 VREFH P44 P43 PA6 PC4 P15 PC7 P55 4 VREFL0 P42 P41 P14 P16 PC5 VSS_ USB/PH0 USB0_ DP/PH1 *1 *1 VCC_ USB/PH3 USB0_ DM/PH2 *1 *1 3 Note: Note: VREFH0 P40 P03 P27 P30 P31 2 AVCC0 AVSS0 MD RES# VBATT P35 P26 P17 1 P05 VCL XCIN XCOUT VSS VCC P36/ EXTAL P37/ XTAL A B E F C D G H This figure indicates the power supply pins and I/O port pins. For the pin configuration, see the table "List of Pins and Pin Functions (64-Pin WFLGA)". For the position of A1 pin in the package, see "Package Dimensions". Note 1. RX230: PH0, PH1, PH2, PH3 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB Figure 1.5 Pin Assignments of the 64-Pin WFLGA R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 19 of 177 33 PB7 34 PB6 35 PB5 36 PB3 37 PB1 38 VCC 39 PB0 40 VSS 41 PA6 42 PA4 43 PA3 44 PA1 32 PC2 PE1 50 31 PC3 PE0 51 30 PC4 VREFL 52 29 PC5 RX230 Group, RX231 Group PWQN0064KC-A (64-pin HWQFN) (Top view) VREFH 54 P44 55 P43 56 P42 57 P41 58 VREFL0 59 P40 60 28 PC6 27 PC7 26 P54 25 P55 24 VSS_USB/PH0 23 USB0_DP/PH1 *1 21 VCC_USB/PH3 *1 P26 16 P27 15 P30 14 P31 13 VBATT 12 P35 11 VCC 10 P36/EXTAL 9 VSS 8 RES# P37/XTAL 7 6 XCOUT 17 P17 5 18 P16 AVSS0 64 XCIN 19 P15 P05 63 4 20 P14 AVCC0 62 MD 3 *1 *1 22 USB0_DM/PH2 VREFH0 61 P03 1 VCL 2 Note: 45 PA0 PE2 49 P46 53 Note: 46 PE5 47 PE4 1. Overview 48 PE3 RX230 Group, RX231 Group This figure indicates the power supply pins and I/O port pins. For the pin configuration, see the table "List of Pins and Pin Functions (64-Pin LQFP/HWQFN)". It is recommended to connect an exposed die pad to VSS. Note 1. RX230: PH0, PH1, PH2, PH3 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB Figure 1.6 Pin Assignments of the 64-Pin HWQFN R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 20 of 177 Note: VSS PB0 VCC PB1 PB3 PB5 PB6 PB7 39 38 37 36 35 34 33 PA3 40 PA1 43 PA4 PA0 44 PA6 PE5 45 41 PE4 46 42 PE3 47 1. Overview 48 RX230 Group, RX231 Group PE2 49 32 PC2 PE1 50 31 PC3 PE0 51 30 PC4 VREFL 52 29 PC5 P46 53 28 PC6 VREFH 54 27 PC7 P44 55 26 P54 P43 56 25 P55 P42 57 24 VSS_USB/PH0*1 P41 58 23 USB0_DP/PH1*1 VREFL0 59 22 USB0_DM/PH2*1 P40 60 21 VCC_USB/PH3*1 VREFH0 61 20 P14 AVCC0 62 19 P15 P05 63 18 P16 AVSS0 64 17 P17 12 13 14 15 16 P31 P30 P27 P26 8 VSS VBATT 7 P37/XTAL 11 6 RES# P35 5 XCOUT 9 4 XCIN 10 3 MD VCC 2 P36/EXTAL 1 P03 VCL RX230 Group, RX231 Group PLQP0064KB-C (64-pin LQFP) (Top view) This figure indicates the power supply pins and I/O port pins. For the pin configuration, see the table "List of Pins and Pin Functions (64-Pin LQFP/HWQFN)". Note 1. RX230: PH0, PH1, PH2, PH3 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB Figure 1.7 Pin Assignments of the 64-Pin LQFP R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 21 of 177 PA4 VSS PB0 VCC PB1 PB3 PB5 30 29 28 27 26 25 PA3 PA6 PA1 33 31 PE4 34 PE2 37 24 PC4 PE1 38 23 PC5 VREFL 39 22 PC6 P46 40 21 PC7 VREFH 41 20 VSS_USB/PH0*1 P42 42 19 USB0_DP/PH1*1 P41 43 18 USB0_DM/PH2*1 VREFL0 44 17 VCC_USB/PH3*1 16 P14 15 P15 RX230 Group, RX231 Group PLQP0048KB-B (48-pin LQFP) (Top view) 12 P26 11 10 P30 P27 9 P31 8 7 P35 VCC MD 6 P17 P36/EXTAL 13 5 48 VSS P16 AVSS0 4 14 P37/XTAL 47 3 AVCC0 RES# 46 2 VREFH0 1 P40 45 VCL Note: 32 PE3 35 1. Overview 36 RX230 Group, RX231 Group This figure indicates the power supply pins and I/O port pins. For the pin configuration, see the table "List of Pins and Pin Functions (48-Pin LQFP/HWQFN)". Note 1. RX230: PH0, PH1, PH2, PH3 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB 25 PB5 26 PB3 27 PB1 28 VCC 29 PB0 30 VSS 31 PA6 32 PA4 33 PA3 34 PA1 PE2 37 24 PC4 PE1 38 23 PC5 VREFL 39 22 PC6 RX230 Group, RX231 Group PWQN0048KB-A (48-pin HWQFN) (Top view) P46 40 VREFH 41 P42 42 P41 43 VREFL0 44 P40 45 VREFH0 46 21 PC7 20 VSS_USB/PH0*1 19 USB0_DP/PH1*1 18 USB0_DM/PH2*1 17 VCC_USB/PH3*1 16 P14 15 P15 P26 12 P27 11 P30 10 P31 9 P35 8 VCC 7 P36/EXTAL 6 VSS 5 13 P17 P37/XTAL 4 14 P16 AVSS0 48 RES# 3 AVCC0 47 VCL 1 Note: Note: 35 PE4 36 PE3 Pin Assignments of the 48-Pin LQFP MD 2 Figure 1.8 It is recommended to connect an exposed die pad to VSS. This figure indicates the power supply pins and I/O port pins. For the pin configuration, see the table "List of Pins and Pin Functions (48-Pin LQFP/HWQFN)". Note 1. RX230: PH0, PH1, PH2, PH3 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB Figure 1.9 Pin Assignments of the 48-Pin HWQFN R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 22 of 177 RX230 Group, RX231 Group Table 1.6 Pin No. A2 I/O Port External Bus Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) Memory Interface (SDHI) Touch sensing Others P05 DA1 P07 ADTRG0# VREFH A3 A4 List of Pins and Pin Functions (100-Pin TFLGA) (1/3) Power Supply, Clock, System Control A1 1. Overview VREFL0 A5 P43 A6 PD0 D0[A0/D0] AN003 A7 PD4 D4[A4/D4] IRQ0/AN024 POE3# IRQ4/AN028 A8 PE0 D8[A8/D8] SCK12 AN016 A9 PE1 D9[A9/D9] MTIOC4C TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12 AN017/ CMPB0 A10 PE2 D10[A10/D10] MTIOC4A RXD12/RXDX12/ SMISO12/SSCL12 IRQ7/AN018/ CVREFB0 B1 P03 B2 AVSS0 B3 AVCC0 DA0 B4 P40 AN000 B5 P44 AN004 B6 PD1 D1[A1/D1] MTIOC4B IRQ1/AN025 B7 PD3 D3[A3/D3] POE8# IRQ3/AN027 B8 PD6 D6[A6/D6] MTIC5V/POE1# IRQ6/AN030 B9 PD7 D7[A7/D7] MTIC5U/POE0# IRQ7/AN031 B10 PE3 D11[A11/D11] MTIOC4B/POE8# CTS12#/RTS12#/SS12#/ AUDIO_MCLK MTIOC3C CTS6#/RTS6#/SS6# C1 VCL C2 VREFL C3 C4 PJ3 AN019/ CLKOUT VREFH0 C5 P42 AN002 C6 P47 AN007 C7 PD2 D2[A2/D2] MTIOC4D IRQ2/AN026 C8 PD5 D5[A5/D5] MTIC5W/POE2# IRQ5/AN029 C9 PE5 D13[A13/D13] MTIOC4C/MTIOC2B IRQ5/AN021/ CMPOB0 C10 PE4 D12[A12/D12] MTIOC4D/MTIOC1A AN020/ CMPA2/ CLKOUT D1 XCIN D2 XCOUT D3 MD D4 VBATT FINED D5 P45 D6 P46 D7 PE6 AN005 AN006 D14[A14/D14] IRQ6/AN022 D8 PE7 D15[A15/D15] D9 PA1 A1 MTIOC0B/MTCLKC/ TIOCB0 SCK5/SSLA2/SSISCK0 PA0 A0/BC0# MTIOC4A/TIOCA0 SSLA1 MTIOC0A/TMCI3/POE2# SCK6 D10 E1 XTAL E2 VSS E3 RES# IRQ7/AN023 CACREF P37 E4 P34 E5 P41 E6 PA2 A2 E7 PA6 A6 TS0 IRQ4 AN001 R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 RXD5/SMISO5/SSCL5/ SSLA3/IRRXD5 MTIC5V/MTCLKB/TMCI3/ POE2#/TIOCA2 CTS5#/RTS5#/SS5#/ MOSIA/SSIWS0 Page 23 of 177 RX230 Group, RX231 Group Table 1.6 Pin No. 1. Overview List of Pins and Pin Functions (100-Pin TFLGA) (2/3) Power Supply, Clock, System Control Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) TXD5/SMOSI5/SSDA5/ SSLA0/SSITXD0/IRTXD5 Memory Interface (SDHI) Touch sensing I/O Port External Bus E8 PA4 A4 MTIC5U/MTCLKA/TMRI0/ TIOCA1 E9 PA5 A5 TIOCB1 RSPCKA E10 PA3 A3 MTIOC0D/MTCLKD/ TIOCD0/TCLKB RXD5/SMISO5/SSCL5/ SSIRXD0/IRRXD5 IRQ6 /CMPB1 MTIOC0C/TMO3/TIOCC0/ RTCOUT/RTCIC2 TXD6/SMOSI6/SSDA6/ USB0_VBUSEN IRQ2 TMCI1 SCL F1 EXTAL F2 VCC P36 F3 P35 F4 P32 NMI F5 P12 F6 PB3 A11 MTIOC0A/MTIOC4A/TMO0/ SCK6 POE3#/TIOCD3/TCLKD F7 PB2 A10 TIOCC3/TCLKC CTS6#/RTS6#/SS6# F8 PB0 A8 MTIC5W/TIOCA3 RXD6/SMISO6/SSCL6/ RSPCKA PA7 A7 TIOCB2 MISOA F9 F10 Others IRQ5 / CVREFB1 IRQ2 SDHI_W P SDHI_C MD VSS G1 P33 MTIOC0D/TMRI3/POE3#/ TIOCD0 RXD6/SMISO6/SSCL6 G2 P31 MTIOC4D/TMCI2/RTCIC1 CTS1#/RTS1#/SS1#/ SSISCK0 IRQ1 G3 P30 MTIOC4B/TMRI3/POE8#/ RTCIC0 RXD1/SMISO1/SSCL1/ AUDIO_MCLK IRQ0/ CMPOB3 MTIOC2B/TMCI3 SCK1/ SSIWS0 G4 G5 P27 BCLK CS3# TS1 TS2 P53 P52 RD# G7 PB5 A13 TS18 MTIOC2A/MTIOC1B/ TMRI1/POE1#/TIOCB4 SCK9 SDHI_CD G8 PB4 A12 TIOCA4 CTS9#/RTS9#/SS9# G9 PB1 A9 MTIOC0C/MTIOC4C/ TMCI0/TIOCB3 TXD6/SMOSI6/SSDA6 H1 P26 CS2# MTIOC2A/TMO1 TXD1/SMOSI1/SSDA1/ SSIRXD0 H2 P25 CS1# MTIOC4C/MTCLKB/ TIOCA4 H3 P16 MTIOC3C/MTIOC3D/ TMO2/TIOCB1/TCLKC/ RTCOUT TXD1/SMOSI1/SSDA1/ MOSIA/SCL USB0_VBUS/ USB0_VBUSEN/ USB0_OVRCURB H4 P15 MTIOC0B/MTCLKB/TMCI2/ TIOCB2/TCLKB RXD1/SMISO1/SSCL1/ CRXD0 H5 P55 WAIT# MTIOC4D/TMO3 CRXD0 TS15 H6 P54 ALE MTIOC4B/TMCI1 CTXD0 TS16 PC7 A23/CS0# MTIOC3A/MTCLKB/TMO2 TXD8/SMOSI8/SSDA8/ MISOA H8 PC6 A22/CS1# MTIOC3C/MTCLKA/TMCI2 RXD8/SMISO8/SSCL8/ MOSIA H7 CVREFB3 TS17 G6 G10 IRQ3 SDHI_CL K IRQ4/ CMPOB1 VCC UB TS3 CMPB3 TS4 ADTRG0# IRQ6/ ADTRG0# TS12 IRQ5/CMPB2 CACREF TS22 H9 PB6 A14 MTIOC3D/TIOCA5 RXD9/SMISO9/SSCL9 SDHI_D1 H10 PB7 A15 MTIOC3B/TIOCB5 TXD9/SMOSI9/SSDA9 SDHI_D2 J1 P24 CS0# MTIOC4A/MTCLKA/TMRI1/ TIOCB4 USB0_VBUSEN TS5 J2 P21 MTIOC1B/TMCI0/TIOCA3 RXD0/SMISO0/SSCL0/ USB0_EXICEN/SSIWS0 TS8 J3 P17 MTIOC3A/MTIOC3B/TMO1/ SCK1/MISOA/SDA/ POE8#/TIOCB0/TCLKD SSITXD0 IRQ7/ CMPOB2 P13 MTIOC0B/TMO3/TIOCA5 IRQ3 J4 J5 VSS_USB*1 PH0*1 R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 SDA CACREF*1 Page 24 of 177 RX230 Group, RX231 Group Table 1.6 1. Overview List of Pins and Pin Functions (100-Pin TFLGA) (3/3) Pin No. Power Supply, Clock, System Control I/O Port J6 VCC_USB*1 PH3*1 External Bus Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) Memory Interface (SDHI) Touch sensing SDHI_D1 TSCAP Others TMCI0*1 J7 P50 WR0#/WR# J8 PC4 A20/CS3# MTIOC3D/MTCLKC/TMCI1/ SCK5/CTS8#/RTS8#/ POE0# SS8#/SSLA0 TS20 J9 PC0 A16 MTIOC3C/TCLKC CTS5#/RTS5#/SS5#/ SSLA1 TS35 A17 J10 PC1 MTIOC3A/TCLKD SCK5/SSLA2 TS33 K1 P23 MTIOC3D/MTCLKD/ TIOCD3 CTS0#/RTS0#/SS0#/ SSISCK0 TS6 K2 P22 MTIOC3B/MTCLKC/TMO0/ TIOCC3 SCK0/ USB0_OVRCURB/ AUDIO_MCLK TS7 K3 P20 MTIOC1A/TMRI0/TIOCB3 TXD0/SMOSI0/SSDA0/ USB0_ID/SSIRXD0 TS9 K4 P14 MTIOC3A/MTCLKA/TMRI2/ TIOCB5/TCLKA CTS1#/RTS1#/SS1#/ CTXD0/USB0_OVRCURA TS13 K5 PH2*1 TMRI0*1 USB0_DM*1 IRQ1*1 K6 PH1*1 TMO0*1 USB0_DP*1 IRQ0*1 K7 P51 WR1#/BC1#/ WAIT# K8 PC5 A21/CS2#/ WAIT# MTIOC3B/MTCLKD/TMRI2 SCK8/RSPCKA K9 PC3 A19 MTIOC4D/TCLKB TXD5/SMOSI5/SSDA5/ IRTXD5 SDHI_D0 TS27 K10 PC2 A18 MTIOC4B/TCLKA RXD5/SMISO5/SSCL5/ SSLA3/ IRRXD5 SDHI_D3 TS30 IRQ4/ CVREFB2 TS19 TS23 Note 1. RX230: PH0/CACREF, PH1/IRQ0/TMO0, PH2/IRQ1/TMRI0, PH3/TMCI0 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 25 of 177 RX230 Group, RX231 Group Table 1.7 List of Pins and Pin Functions (100-Pin LFQFP) (1/3) Pin No. Power Supply, Clock, System Control 1 VREFH 2 3 I/O Port External Bus Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) Memory Interface (SDHI) Touch sensing P03 Others DA0 VREFL 4 5 1. Overview PJ3 MTIOC3C CTS6#/RTS6#/SS6# VCL 6 VBATT 7 MD 8 XCIN 9 XCOUT 10 RES# 11 XTAL 12 VSS 13 EXTAL 14 VCC FINED P37 P36 15 P35 16 P34 MTIOC0A/TMCI3/POE2# SCK6 TS0 NMI IRQ4 17 P33 MTIOC0D/TMRI3/POE3#/ TIOCD0 RXD6/SMISO6/SSCL6 TS1 IRQ3 18 P32 MTIOC0C/TMO3/TIOCC0/ RTCOUT/RTCIC2 TXD6/SMOSI6/SSDA6/ USB0_VBUSEN IRQ2 19 P31 MTIOC4D/TMCI2/RTCIC1 CTS1#/RTS1#/SS1#/ SSISCK0 IRQ1 20 P30 MTIOC4B/TMRI3/POE8#/ RTCIC0 RXD1/SMISO1/SSCL1/ AUDIO_MCLK IRQ0/ CMPOB3 21 P27 CS3# MTIOC2B/TMCI3 SCK1/ SSIWS0 TS2 CVREFB3 22 P26 CS2# MTIOC2A/TMO1 TXD1/SMOSI1/SSDA1/ SSIRXD0 TS3 CMPB3 23 P25 CS1# MTIOC4C/MTCLKB/ TIOCA4 TS4 ADTRG0# 24 P24 CS0# MTIOC4A/MTCLKA/TMRI1/ TIOCB4 USB0_VBUSEN TS5 25 P23 MTIOC3D/MTCLKD/ TIOCD3 CTS0#/RTS0#/SS0#/ SSISCK0 TS6 26 P22 MTIOC3B/MTCLKC/TMO0/ TIOCC3 SCK0/ USB0_OVRCURB/ AUDIO_MCLK TS7 27 P21 MTIOC1B/TMCI0/TIOCA3 RXD0/SMISO0/SSCL0/ USB0_EXICEN/SSIWS0 TS8 28 P20 MTIOC1A/TMRI0/TIOCB3 TXD0/SMOSI0/SSDA0/ USB0_ID/SSIRXD0 TS9 29 P17 MTIOC3A/MTIOC3B/TMO1/ SCK1/MISOA/SDA/ POE8#/TIOCB0/TCLKD SSITXD0 IRQ7/ CMPOB2 30 P16 MTIOC3C/MTIOC3D/ TMO2/TIOCB1/TCLKC/ RTCOUT TXD1/SMOSI1/SSDA1/ MOSIA/SCL/USB0_VBUS/ USB0_VBUSEN/ USB0_OVRCURB IRQ6/ ADTRG0# 31 P15 MTIOC0B/MTCLKB/TMCI2/ TIOCB2/TCLKB RXD1/SMISO1/SSCL1/ CRXD0 TS12 IRQ5/CMPB2 32 P14 MTIOC3A/MTCLKA/TMRI2/ TIOCB5/TCLKA CTS1#/RTS1#/SS1#/ CTXD0/USB0_OVRCURA TS13 IRQ4/ CVREFB2 33 P13 MTIOC0B/TMO3/TIOCA5 SDA IRQ3 34 P12 TMCI1 SCL IRQ2 PH3*1 TMCI0*1 36 PH2*1 TMRI0*1 USB0_DM*1 IRQ1*1 37 PH1*1 TMO0*1 USB0_DP*1 IRQ0*1 35 38 VCC_USB*1 VSS_USB*1 PH0*1 CACREF*1 39 P55 WAIT# MTIOC4D/TMO3 CRXD0 TS15 40 P54 ALE MTIOC4B/TMCI1 CTXD0 TS16 41 BCLK P53 R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 TS17 Page 26 of 177 RX230 Group, RX231 Group Table 1.7 Pin No. 1. Overview List of Pins and Pin Functions (100-Pin LFQFP) (2/3) Power Supply, Clock, System Control Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) Memory Interface (SDHI) Touch sensing I/O Port External Bus 42 P52 RD# TS18 43 P51 WR1#/BC1#/ WAIT# TS19 P50 WR0#/WR# PC7 A23/CS0# MTIOC3A/MTCLKB/TMO2 TXD8/SMOSI8/SSDA8/ MISOA 46 PC6 A22/CS1# MTIOC3C/MTCLKA/TMCI2 RXD8/SMISO8/SSCL8/ MOSIA TS22 47 PC5 A21/CS2#/ WAIT# MTIOC3B/MTCLKD/TMRI2 SCK8/RSPCKA TS23 48 PC4 A20/CS3# MTIOC3D/MTCLKC/TMCI1/ SCK5/CTS8#/RTS8#/ POE0# SS8#/SSLA0 SDHI_D1 TSCAP 49 PC3 A19 MTIOC4D/TCLKB TXD5/SMOSI5/SSDA5/ IRTXD5 SDHI_D0 TS27 50 PC2 A18 MTIOC4B/TCLKA RXD5/SMISO5/SSCL5/ SSLA3/ IRRXD5 SDHI_D3 TS30 51 PC1 A17 MTIOC3A/TCLKD SCK5/SSLA2 TS33 52 PC0 A16 MTIOC3C/TCLKC CTS5#/RTS5#/SS5#/ SSLA1 TS35 53 PB7 A15 MTIOC3B/TIOCB5 TXD9/SMOSI9/SSDA9 54 PB6 A14 MTIOC3D/TIOCA5 RXD9/SMISO9/SSCL9 SDHI_D1 55 PB5 A13 MTIOC2A/MTIOC1B/ TMRI1/POE1#/TIOCB4 SCK9/USB0_VBUS SDHI_CD 56 PB4 A12 TIOCA4 CTS9#/RTS9#/SS9# 57 PB3 A11 MTIOC0A/MTIOC4A/TMO0/ SCK6 POE3#/TIOCD3/TCLKD 44 45 UB TS20 CACREF SDHI_D2 SDHI_W P 58 PB2 A10 TIOCC3/TCLKC CTS6#/RTS6#/SS6# 59 PB1 A9 MTIOC0C/MTIOC4C/ TMCI0/TIOCB3 TXD6/SMOSI6/SSDA6 SDHI_CL K PB0 A8 MTIC5W/TIOCA3 RXD6/SMISO6/SSCL6/ RSPCKA SDHI_C MD 63 PA7 A7 TIOCB2 MISOA 64 PA6 A6 MTIC5V/MTCLKB/TMCI3/ POE2#/TIOCA2 CTS5#/RTS5#/SS5#/ MOSIA/SSIWS0 60 IRQ4/ CMPOB1 VCC 61 62 Others VSS 65 PA5 A5 TIOCB1 RSPCKA 66 PA4 A4 MTIC5U/MTCLKA/TMRI0/ TIOCA1 TXD5/SMOSI5/SSDA5/ SSLA0/SSITXD0/IRTXD5 IRQ5 / CVREFB1 67 PA3 A3 MTIOC0D/MTCLKD/ TIOCD0/TCLKB RXD5/SMISO5/SSCL5/ SSIRXD0/IRRXD5 IRQ6 /CMPB1 68 PA2 A2 69 PA1 A1 MTIOC0B/MTCLKC/ TIOCB0 SCK5/SSLA2/SSISCK0 MTIOC4A/TIOCA0 SSLA1 RXD5/SMISO5/SSCL5/ SSLA3/IRRXD5 70 PA0 A0/BC0# 71 PE7 D15[A15/D15] 72 PE6 D14[A14/D14] 73 PE5 D13[A13/D13] MTIOC4C/MTIOC2B IRQ5/AN021/ CMPOB0 74 PE4 D12[A12/D12] MTIOC4D/MTIOC1A AN020/ CMPA2/ CLKOUT 75 PE3 D11[A11/D11] MTIOC4B/POE8# CTS12#/RTS12#/SS12#/ AUDIO_MCLK AN019/ CLKOUT 76 PE2 D10[A10/D10] MTIOC4A RXD12/RXDX12/ SMISO12/SSCL12 IRQ7/AN018/ CVREFB0 77 PE1 D9[A9/D9] MTIOC4C TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12 AN017/ CMPB0 78 PE0 D8[A8/D8] SCK12 AN016 R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 CACREF IRQ7/AN023 IRQ6/AN022 Page 27 of 177 RX230 Group, RX231 Group Table 1.7 Pin No. List of Pins and Pin Functions (100-Pin LFQFP) (3/3) Power Supply, Clock, System Control 79 1. Overview I/O Port External Bus Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) PD7 D7[A7/D7] MTIC5U/POE0# Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) Memory Interface (SDHI) Touch sensing Others IRQ7/AN031 80 PD6 D6[A6/D6] MTIC5V/POE1# IRQ6/AN030 81 PD5 D5[A5/D5] MTIC5W/POE2# IRQ5/AN029 82 PD4 D4[A4/D4] POE3# IRQ4/AN028 83 PD3 D3[A3/D3] POE8# IRQ3/AN027 84 PD2 D2[A2/D2] MTIOC4D IRQ2/AN026 85 PD1 D1[A1/D1] MTIOC4B IRQ1/AN025 86 PD0 D0[A0/D0] 87 P47 AN007 88 P46 AN006 89 P45 AN005 90 P44 AN004 91 P43 AN003 92 P42 AN002 93 P41 AN001 P40 AN000 P07 ADTRG0# P05 DA1 94 VREFL0 95 96 VREFH0 97 AVCC0 98 99 100 IRQ0/AN024 AVSS0 Note 1. RX230: PH0/CACREF, PH1/IRQ0/TMO0, PH2/IRQ1/TMRI0, PH3/TMCI0 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 28 of 177 RX230 Group, RX231 Group Table 1.8 Pin No. List of Pins and Pin Functions (64-Pin WFLGA) (1/2) Power Supply, Clock, System Control A1 1. Overview I/O Port Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) Memory Interface (SDHI) Touch sensing P05 A2 AVCC0 A3 VREFH0 A4 VREFL0 A5 VREFH A6 VREFL Others DA1 A7 PE2 MTIOC4A RXD12/RXDX12/SMISO12/ SSCL12 IRQ7/AN018/ CVREFB0 A8 PE3 MTIOC4B/POE8# CTS12#/RTS12#/SS12#/ AUDIO_MCLK AN019/CLKOUT B1 VCL B2 AVSS0 B3 P40 AN000 B4 P42 AN002 B5 P44 AN004 B6 P46 AN006 B7 PE1 MTIOC4C B8 PE4 MTIOC4D/MTIOC1A C1 XCIN C2 MD TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12 AN017/CMPB0 AN020/CMPA2/ CLKOUT FINED C3 P03 DA0 C4 P41 AN001 C5 P43 C6 PE0 C7 PE5 MTIOC4C/MTIOC2B PA0 MTIOC4A/TIOCA0 SSLA1 D3 P27 MTIOC2B/TMCI3 SCK1/ SSIWS0 TS2 CVREFB3 D4 P14 MTIOC3A/MTCLKA/TMRI2/ TIOCB5/TCLKA CTS1#/RTS1#/SS1#/CTXD0/ USB0_OVRCURA TS13 IRQ4/CVREFB2 D5 PA6 MTIC5V/MTCLKB/TMCI3/POE2#/ TIOCA2 CTS5#/RTS5#/SS5#/MOSIA/ SSIWS0 D6 PA4 MTIC5U/MTCLKA/TMRI0/TIOCA1 TXD5/SMOSI5/SSDA5/SSLA0/ SSITXD0/IRTXD5 D7 PA1 MTIOC0B/MTCLKC/TIOCB0 SCK5/SSLA2/SSISCK0 D8 PA3 MTIOC0D/MTCLKD/TIOCD0/ TCLKB RXD5/SMISO5/SSCL5/SSIRXD0/ IRRXD5 IRQ6 /CMPB1 E3 P30 MTIOC4B/TMRI3/POE8#/RTCIC0 RXD1/SMISO1/SSCL1/ AUDIO_MCLK IRQ0/CMPOB3 E4 P16 MTIOC3C/MTIOC3D/TMO2/ TIOCB1/TCLKC/RTCOUT TXD1/SMOSI1/SSDA1/MOSIA/ SCL/USB0_VBUS/ USB0_VBUSEN/ USB0_OVRCURB IRQ6/ADTRG0# E5 PC4 MTIOC3D/MTCLKC/TMCI1/ POE0# SCK5/CTS8#/RTS8#/SS8#/ SSLA0 SDHI_D1 PB0 MTIC5W/TIOCA3 RXD6/SMISO6/SSCL6/RSPCKA SDHI_C MD MTIOC4D/TMCI2/RTCIC1 CTS1#/RTS1#/SS1#/SSISCK0 C8 D1 XCOUT D2 RES# E1 VSS E2 VBATT E6 VCC E7 VSS E8 F1 AN003 SCK12 AN016 IRQ5/AN021/ CMPOB0 CACREF IRQ5 /CVREFB1 TSCAP VCC F2 P35 F3 P31 NMI R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 IRQ1 Page 29 of 177 RX230 Group, RX231 Group Table 1.8 1. Overview List of Pins and Pin Functions (64-Pin WFLGA) (2/2) I/O Port Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) F4 PC5 MTIOC3B/MTCLKD/TMRI2 SCK8/RSPCKA/USB0_ID F5 P15 MTIOC0B/MTCLKB/TMCI2/ TIOCB2/TCLKB RXD1/SMISO1/SSCL1/CRXD0 F6 PB1 MTIOC0C/MTIOC4C/TMCI0/ TIOCB3 TXD6/SMOSI6/SSDA6 SDHI_CL K F7 PB5 MTIOC2A/MTIOC1B/TMRI1/ POE1#/TIOCB4 SCK9 SDHI_CD F8 PB3 MTIOC0A/MTIOC4A/TMO0/ POE3#/TIOCD3/TCLKD SCK6 SDHI_W P P26 MTIOC2A/TMO1 TXD1/SMOSI1/SSDA1/ USB0_VBUSEN/SSIRXD0 TMCI0*1 Pin No. G1 Power Supply, Clock, System Control EXTAL G2 VCC_USB*1 PH3*1 G4 VSS_USB*1 PH0*1 G5 UB PC7 MTIOC3A/MTCLKB/TMO2 TXD8/SMOSI8/SSDA8/MISOA PC6 MTIOC3C/MTCLKA/TMCI2 RXD8/SMISO8/SSCL8/MOSIA/ USB0_EXICEN IRQ5/CMPB2 IRQ4/ CMPOB1 TS3 CMPB3 CACREF*1 CACREF TS22 G7 PC3 MTIOC4D/TCLKB TXD5/SMOSI5/SSDA5/IRTXD5 SDHI_D0 PB6/PC0 MTIOC3D/TIOCA5 RXD9/SMISO9/SSCL9 SDHI_D1 XTAL Others TS23 TS12 G8 H1 Touch sensing P36 G3 G6 Memory Interface (SDHI) TS27 P37 H2 P17 MTIOC3A/MTIOC3B/TMO1/ POE8#/TIOCB0/TCLKD SCK1/MISOA/SDA/SSITXD0 IRQ7/ CMPOB2 H3 PH2*1 TMRI0*1 USB0_DM*1 IRQ1*1 H4 PH1*1 TMO0*1 USB0_DP*1 H5 P55 MTIOC4D/TMO3 CRXD0 IRQ0*1 TS15 H6 P54 MTIOC4B/TMCI1 CTXD0 H7 PC2 MTIOC4B/TCLKA RXD5/SMISO5/SSCL5/SSLA3/ IRRXD5 SDHI_D3 TS16 H8 PB7/PC1 MTIOC3B/TIOCB5 TXD9/SMOSI9/SSDA9 SDHI_D2 TS30 Note 1. RX230: PH0/CACREF, PH1/IRQ0/TMO0, PH2/IRQ1/TMRI0, PH3/TMCI0 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 30 of 177 RX230 Group, RX231 Group Table 1.9 Pin No. List of Pins and Pin Functions (64-Pin LQFP/HWQFN) (1/2) Power Supply, Clock, System Control 1 I/O Port Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) Memory Interface (SDHI) Touch sensing P03 2 VCL 3 MD 4 XCIN 5 XCOUT 6 RES# 7 XTAL 8 VSS 9 EXTAL 10 VCC 11 12 1. Overview Others DA0 FINED P37 P36 P35 NMI VBATT 13 P31 MTIOC4D/TMCI2/RTCIC1 CTS1#/RTS1#/SS1#/SSISCK0 IRQ1 14 P30 MTIOC4B/TMRI3/POE8#/RTCIC0 RXD1/SMISO1/SSCL1/ AUDIO_MCLK IRQ0/CMPOB3 15 P27 MTIOC2B/TMCI3 SCK1/SSIWS0 TS2 CVREFB3 16 P26 MTIOC2A/TMO1 TXD1/SMOSI1/SSDA1/ USB0_VBUSEN/SSIRXD0 TS3 CMPB3 17 P17 MTIOC3A/MTIOC3B/TMO1/ POE8#/TIOCB0/TCLKD SCK1/MISOA/SDA/SSITXD0 IRQ7/ CMPOB2 18 P16 MTIOC3C/MTIOC3D/TMO2/ TIOCB1/TCLKC/RTCOUT TXD1/SMOSI1/SSDA1/MOSIA/ SCL/USB0_VBUS/ USB0_VBUSEN/ USB0_OVRCURB IRQ6/ADTRG0# 19 P15 MTIOC0B/MTCLKB/TMCI2/ TIOCB2/TCLKB RXD1/SMISO1/SSCL1/CRXD0 TS12 IRQ5/CMPB2 20 P14 MTIOC3A/MTCLKA/TMRI2/ TIOCB5/TCLKA CTS1#/RTS1#/SS1#/CTXD0/ USB0_OVRCURA TS13 IRQ4/CVREFB2 PH3*1 TMCI0*1 22 PH2*1 TMRI0*1 USB0_DM*1 IRQ1*1 23 PH1*1 TMO0*1 USB0_DP*1 IRQ0*1 P55 MTIOC4D/TMO3 CRXD0 TS15 TS16 21 24 VCC_USB*1 VSS_USB*1 25 26 27 UB 28 PH0*1 CACREF*1 P54 MTIOC4B/TMCI1 CTXD0 PC7 MTIOC3A/MTCLKB/TMO2 TXD8/SMOSI8/SSDA8/MISOA PC6 MTIOC3C/MTCLKA/TMCI2 RXD8/SMISO8/SSCL8/MOSIA/ USB0_EXICEN 29 PC5 MTIOC3B/MTCLKD/TMRI2 SCK8/RSPCKA/USB0_ID 30 PC4 MTIOC3D/MTCLKC/TMCI1/ POE0# SCK5/CTS8#/RTS8#/SS8#/ SSLA0 CACREF TS22 TS23 SDHI_D1 TSCAP 31 PC3 MTIOC4D/TCLKB TXD5/SMOSI5/SSDA5/ IRTXD5 SDHI_D0 TS27 32 PC2 MTIOC4B/TCLKA RXD5/SMISO5/SSCL5/SSLA3/ IRRXD5 SDHI_D3 TS30 33 PB7/PC1 MTIOC3B/TIOCB5 TXD9/SMOSI9/SSDA9 SDHI_D2 34 PB6/PC0 MTIOC3D/TIOCA5 RXD9/SMISO9/SSCL9 SDHI_D1 35 PB5 MTIOC2A/MTIOC1B/TMRI1/ POE1#/TIOCB4 SCK9 SDHI_CD 36 PB3 MTIOC0A/MTIOC4A/TMO0/ POE3#/TIOCD3/TCLKD SCK6 SDHI_W P 37 PB1 MTIOC0C/MTIOC4C/TMCI0/ TIOCB3 TXD6/SMOSI6/SSDA6 SDHI_CL K PB0 MTIC5W/TIOCA3 RXD6/SMISO6/SSCL6/RSPCKA SDHI_C MD PA6 MTIC5V/MTCLKB/TMCI3/POE2#/ TIOCA2 CTS5#/RTS5#/SS5#/MOSIA/ SSIWS0 38 VCC 39 40 41 IRQ4/ CMPOB1 VSS R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 31 of 177 RX230 Group, RX231 Group Table 1.9 1. Overview List of Pins and Pin Functions (64-Pin LQFP/HWQFN) (2/2) I/O Port Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) 42 PA4 MTIC5U/MTCLKA/TMRI0/TIOCA1 TXD5/SMOSI5/SSDA5/SSLA0/ SSITXD0/IRTXD5 IRQ5 /CVREFB1 43 PA3 MTIOC0D/MTCLKD/TIOCD0/ TCLKB RXD5/SMISO5/SSCL5/SSIRXD0/ IRRXD5 IRQ6 /CMPB1 Pin No. Power Supply, Clock, System Control Memory Interface (SDHI) Touch sensing Others 44 PA1 MTIOC0B/MTCLKC/TIOCB0 SCK5/SSLA2/SSISCK0 45 PA0 MTIOC4A/TIOCA0 SSLA1 46 PE5 MTIOC4C/MTIOC2B IRQ5/AN021/ CMPOB0 47 PE4 MTIOC4D/MTIOC1A AN020/CMPA2/ CLKOUT 48 PE3 MTIOC4B/POE8# CTS12#/RTS12#/SS12#/ AUDIO_MCLK AN019/CLKOUT 49 PE2 MTIOC4A RXD12/RXDX12/SMISO12/ SSCL12 IRQ7/AN018/ CVREFB0 50 PE1 MTIOC4C TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12 AN017/CMPB0 SCK12 AN016 51 52 PE0 CACREF VREFL 53 P46 AN006 55 P44 AN004 56 P43 AN003 57 P42 AN002 58 P41 AN001 P40 AN000 P05 DA1 54 59 VREFH VREFL0 60 61 VREFH0 62 AVCC0 63 64 AVSS0 Note 1. RX230: PH0/CACREF, PH1/IRQ0/TMO0, PH2/IRQ1/TMRI0, PH3/TMCI0 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 32 of 177 RX230 Group, RX231 Group Table 1.10 List of Pins and Pin Functions (48-Pin LQFP/HWQFN) (1/2) Pin No. Power Supply, Clock, System Control 1 VCL 2 MD 3 RES# 4 XTAL 5 VSS 6 EXTAL 7 VCC 1. Overview I/O Port Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) Memory Interface (SDHI) Touch sensing Others FINED P37 P36 8 P35 9 P31 MTIOC4D/TMCI2 CTS1#/RTS1#/SS1#/SSISCK0 IRQ1 10 P30 MTIOC4B/TMRI3/POE8# RXD1/SMISO1/SSCL1/ AUDIO_MCLK IRQ0/CMPOB3 11 P27 MTIOC2B/TMCI3 SCK1/SSIWS0 TS2 CVREFB3 12 P26 MTIOC2A/TMO1 TXD1/SMOSI1/SSDA1/ USB0_VBUSEN/SSIRXD0 TS3 CMPB3 13 P17 MTIOC3A/MTIOC3B/TMO1/ POE8#/TIOCB0/TCLKD SCK1/MISOA/SDA/ SSITXD0 IRQ7/ CMPOB2 14 P16 MTIOC3C/MTIOC3D/TMO2/ TIOCB1/TCLKC TXD1/SMOSI1/SSDA1/MOSIA/ SCL/USB0_VBUS/ USB0_VBUSEN/ USB0_OVRCURB IRQ6/ADTRG0# 15 P15 MTIOC0B/MTCLKB/TMCI2/ TIOCB2/TCLKB RXD1/SMISO1/SSCL1/CRXD0 TS12 IRQ5/CMPB2 16 P14 MTIOC3A/MTCLKA/TMRI2/ TIOCB5/TCLKA CTS1#/RTS1#/SS1#/CTXD0/ USB0_OVRCURA TS13 IRQ4/CVREFB2 PH3*1 TMCI0*1 18 PH2*1 TMRI0*1 USB0_DM*1 IRQ1*1 19 PH1*1 TMO0*1 USB0_DP*1 IRQ0*1 CACREF 17 VCC_USB*1 NMI 20 VSS_USB*1 PH0*1 21 UB PC7 MTIOC3A/MTCLKB/TMO2 TXD8/SMOSI8/SSDA8/MISOA PC6 MTIOC3C/MTCLKA/TMCI2 RXD8/SMISO8/SSCL8/MOSIA/ USB0_EXICEN 22 CACREF*1 TS22 23 PC5 MTIOC3B/MTCLKD/TMRI2 SCK8/RSPCKA/USB0_ID 24 PC4 MTIOC3D/MTCLKC/TMCI1/ POE0# SCK5/CTS8#/RTS8#/SS8#/ SSLA0 25 PB5/PC3 MTIOC2A/MTIOC1B/TMRI1/ POE1#/TIOCB4 26 PB3/PC2 MTIOC0A/MTIOC4A/TMO0/ POE3#/TIOCD3/TCLKD SCK6 SDHI_W P 27 PB1/PC1 MTIOC0C/MTIOC4C/TMCI0/ TIOCB3 TXD6/SMOSI6/SSDA6 SDHI_CL K PB0/PC0 MTIC5W/TIOCA3 RXD6/SMISO6/SSCL6/RSPCKA SDHI_C MD 31 PA6 MTIC5V/MTCLKB/TMCI3/POE2#/ TIOCA2 CTS5#/RTS5#/SS5#/MOSIA/ SSIWS0 32 PA4 MTIC5U/MTCLKA/TMRI0/TIOCA1 TXD5/SMOSI5/SSDA5/SSLA0/ SSITXD0/IRTXD5 IRQ5 /CVREFB1 33 PA3 MTIOC0D/MTCLKD/TIOCD0/ TCLKB RXD5/SMISO5/SSCL5/SSIRXD0/ IRRXD5 IRQ6 /CMPB1 SCK5/SSLA2/SSISCK0 28 TSCAP SDHI_CD IRQ4/ CMPOB1 VCC 29 30 TS23 SDHI_D1 VSS 34 PA1 MTIOC0B/MTCLKC/TIOCB0 35 PE4 MTIOC4D/MTIOC1A AN020/CMPA2/ CLKOUT 36 PE3 MTIOC4B/POE8# CTS12#/RTS12#/AUDIO_MCLK AN019/CLKOUT 37 PE2 MTIOC4A RXD12/RXDX12/SSCL12 IRQ7/AN018/ CVREFB0 PE1 MTIOC4C TXD12/TXDX12/SIOX12/SSDA12 AN017/CMPB0 38 39 40 VREFL P46 R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 AN006 Page 33 of 177 RX230 Group, RX231 Group Table 1.10 1. Overview List of Pins and Pin Functions (48-Pin LQFP/HWQFN) (2/2) Pin No. Power Supply, Clock, System Control 41 VREFH I/O Port Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) Memory Interface (SDHI) Touch sensing Others 42 P42 AN002 43 P41 AN001 P40 AN000 44 VREFL0 45 46 VREFH0 47 AVCC0 48 AVSS0 Note 1. RX230: PH0/CACREF, PH1/IRQ0/TMO0, PH2/IRQ1/TMRI0, PH3/TMCI0 RX231: VSS_USB, USB0_DP, USB0_DM, VCC_USB R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 34 of 177 RX230 Group, RX231 Group 2. 2. CPU CPU Figure 2.1 shows register set of the CPU. Control register General-purpose register b31 b0 R0 (SP) b31 *1 b0 ISP (Interrupt stack pointer) USP (User stack pointer) R1 R2 INTB (Interrupt table register) R3 R4 PC (Program counter) R5 PSW (Processor status word) R6 R7 BPC (Backup PC) R8 BPSW (Backup PSW) R9 R10 FINTV (Fast interrupt vector register) R11 FPSW (Floating-point status word) R12 R13 EXTB (Exception table register) R14 R15 DSP instruction register b71 b0 ACC0 (Accumulator 0) ACC1 (Accumulator 1) Note 1. The stack pointer (SP) can be the interrupt stack pointer (ISP) or user stack pointer (USP), according to the value of the U bit in the PSW. Figure 2.1 Register Set of the CPU R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 35 of 177 RX230 Group, RX231 Group 2.1 2. CPU General-Purpose Registers (R0 to R15) This CPU has sixteen 32-bit general-purpose registers (R0 to R15). R0 to R15 can be used as data registers or address registers. R0, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor status word (PSW). 2.2 Control Registers (1) Interrupt stack pointer (ISP) and user stack pointer (USP) The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP). Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the processor status word (PSW). Set the ISP or USP to a multiple of 4 to reduce the number of cycles required to execute interrupt sequences and instructions entailing stack manipulation. (2) Exception table register (EXTB) The exception table register (EXTB) specifies the address where the exception vector table starts. Set the EXTB to a multiple of 4 to reduce the number of cycles required to execute interrupt sequences and instructions entailing stack manipulation. (3) Interrupt table register (INTB) The interrupt table register (INTB) specifies the address where the interrupt vector table starts. Set the INTB to a multiple of 4 to reduce the number of cycles required to execute interrupt sequences and instructions entailing stack manipulation. (4) Program counter (PC) The program counter (PC) indicates the address of the instruction being executed. (5) Processor status word (PSW) The processor status word (PSW) indicates the results of instruction execution or the state of the CPU. (6) Backup PC (BPC) The backup PC (BPC) is provided to speed up response to interrupts. After a fast interrupt has been generated, the contents of the program counter (PC) are saved in the BPC register. (7) Backup PSW (BPSW) The backup PSW (BPSW) is provided to speed up response to interrupts. After a fast interrupt has been generated, the contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to that in the PSW. (8) Fast interrupt vector register (FINTV) The fast interrupt vector register (FINTV) is provided to speed up response to interrupts. The FINTV register specifies a branch destination address when a fast interrupt has been generated. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 36 of 177 RX230 Group, RX231 Group (9) 2. CPU Floating-point status word (FPSW) The floating-point status word (FPSW) indicates the results of floating-point operations. When an exception handling enable bit (Ej) enables the exception handling (Ej = 1), the exception cause can be identified by checking the corresponding Cj flag in the exception handling routine. If the exception handling is masked (Ej = 0), the occurrence of exception can be checked by reading the Fj flag at the end of a series of processing. Once the Fj flag has been set to 1, this value is retained until it is cleared to 0 by software (j = X, U, Z, O, or V). 2.3 Accumulator The accumulator (ACC0 or ACC1) is a 72-bit register used for DSP instructions. The accumulator is handled as a 96-bit register for reading and writing. At this time, when bits 95 to 72 of the accumulator are read, the value where the value of bit 71 is sign extended is read. Writing to bits 95 to 72 of the accumulator is ignored. ACC0 is also used for the multiply and multiply-and-accumulate instructions; EMUL, EMULU, FMUL, MUL, and RMPA, in which case the prior value in ACC0 is modified by execution of the instruction. Use the MVTACGU, MVTACHI, and MVTACLO instructions for writing to the accumulator. The MVTACGU, MVTACHI, and MVTACLO instructions write data to bits 95 to 64, the higher-order 32 bits (bits 63 to 32), and the lower-order 32 bits (bits 31 to 0), respectively. Use the MVFACGU, MVFACHI, MVFACMI, and MVFACLO instructions for reading data from the accumulator. The MVFACGU, MVFACHI, MVFACMI, and MVFACLO instructions read data from the guard bits (bits 95 to 64), higherorder 32 bits (bits 63 to 32), the middle 32 bits (bits 47 to 16), and the lower-order 32 bits (bits 31 to 0), respectively. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 37 of 177 RX230 Group, RX231 Group 3. Address Space 3.1 Address Space 3. Address Space This LSI has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4 Gbytes is possible, and this contains both program and data areas. Figure 3.1 shows the memory maps in the respective operating modes. Accessible areas will differ according to the operating mode and states of control bits. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 38 of 177 RX230 Group, RX231 Group 3. Address Space On-chip ROM disabled extended mode On-chip ROM enabled extended mode Single-chip mode*1 0000 0000h RAM*2 0000 0000h RAM*2 0000 0000h RAM*2 0001 0000h Reserved area *3 0001 0000h Reserved area *3 0001 0000h Reserved area *3 0008 0000h 0008 0000h 0008 0000h Peripheral I/O registers 0010 0000h On-chip ROM (E2DataFlash) 0010 2000h Peripheral I/O registers Peripheral I/O registers 0010 0000h On-chip ROM (E2DataFlash) 0010 0000h 0010 2000h Reserved area *3 007F C000h 007F C500h Peripheral I/O registers 007F FC00h 0080 0000h Peripheral I/O registers Reserved area *3 Reserved area *3 007F C000h 007F C500h Peripheral I/O registers 007F FC00h Peripheral I/O registers Reserved area Reserved area *3 *3 0080 0000h Reserved area *3 0500 0000h 0500 0000h External address space (CS area) 0800 0000h External address space (CS area) 0800 0000h Reserved area *3 Reserved area *3 Reserved area*3 FF00 0000h External address space FFF8 0000h FFFF FFFFh On-chip ROM (program ROM) (read only)*2 FFF8 0000h FFFF FFFFh On-chip ROM (program ROM) (read only)*2 FFFF FFFFh Note 1. The address space in boot mode and USB boot mode is the same as the address space in single-chip mode. Note 2. The capacity of ROM/RAM differs depending on the products. ROM (bytes) RAM (bytes) Capacity Address Capacity Address 512 Kbytes FFF8 0000h to FFFF FFFFh 64 Kbytes 0000 0000h to 0000 FFFFh 384 Kbytes FFFA 0000h to FFFF FFFFh 32 Kbytes 0000 0000h to 0000 7FFFh 256 Kbytes FFFC 0000h to FFFF FFFFh 128 Kbytes FFFE 0000h to FFFF FFFFh Note: See Table 1.3 and Table 1.4 List of Products, for the product type name. Note 3. Reserved areas should not be accessed. Figure 3.1 Memory Map in Each Operating Mode R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 39 of 177 RX230 Group, RX231 Group 3.2 3. Address Space External Address Space The external address space is divided into up to four CS areas (CS0 to CS3), each corresponding to the CSn# signal output from a CSn# (n = 0 to 3) pin. Figure 3.2 shows the address ranges corresponding to the individual CS areas (CS0 to CS3) in on-chip ROM disabled extended mode. 0000 0000h RAM 0001 0000h Reserved area*1 0008 0000h Peripheral I/O registers 0010 0000h Reserved area*1 0500 0000h CS3 (16 Mbytes) 0500 0000h 05FF FFFFh 0600 0000h External address space (CS area) CS2 (16 Mbytes) 06FF FFFFh 0700 0000h 0800 0000h CS1 (16 Mbytes) 07FF FFFFh Reserved area*1 FF00 0000h FF00 0000h 2 External address space* (CS area) FFFF FFFFh CS0 (16 Mbytes) FFFF FFFFh Note 1. Reserved areas should not be accessed. Note 2. The CS0 area is disabled in on-chip ROM enabled extended mode. In this mode, the address space for addresses above 1000 0000h is as shown in figure on this section, Memory Map in Each Operating Mode. Figure 3.2 Correspondence between External Address Spaces and CS Areas (In On-Chip ROM Disabled Extended Mode) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 40 of 177 RX230 Group, RX231 Group 4. 4. I/O Registers I/O Registers This section provides information on the on-chip I/O register addresses and bit configuration. The information is given as shown below. Notes on writing to registers are also given below. (1) I/O register addresses (address order) Registers are listed from the lower allocation addresses. Registers are classified according to module symbols. Numbers of cycles for access indicate numbers of cycles of the given base clock. Among the internal I/O register area, addresses not listed in the list of registers are reserved. Reserved addresses must not be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and subsequent operations cannot be guaranteed. (2) Notes on writing to I/O registers When writing to an I/O register, the CPU starts executing the subsequent instruction before completing I/O register write. This may cause the subsequent instruction to be executed before the post-update I/O register value is reflected on the operation. As described in the following examples, special care is required for the cases in which the subsequent instruction must be executed after the post-update I/O register value is actually reflected. [Examples of cases requiring special care] The subsequent instruction must be executed while an interrupt request is disabled with the IENj bit in IERn of the ICU (interrupt request enable bit) cleared to 0. A WAIT instruction is executed immediately after the preprocessing for causing a transition to the low power consumption state. In the above cases, after writing to an I/O register, wait until the write operation is completed using the following procedure and then execute the subsequent instruction. (a) (b) (c) (d) Write to an I/O register. Read the value from the I/O register to a general register. Execute the operation using the value read. Execute the subsequent instruction. [Instruction examples] Byte-size I/O registers MOV.L #SFR_ADDR, R1 MOV.B #SFR_DATA, [R1] CMP [R1].UB, R1 ;; Next process Word-size I/O registers MOV.L #SFR_ADDR, R1 MOV.W #SFR_DATA, [R1] CMP [R1].W, R1 ;; Next process R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 41 of 177 RX230 Group, RX231 Group 4. I/O Registers Longword-size I/O registers MOV.L #SFR_ADDR, R1 MOV.L #SFR_DATA, [R1] CMP [R1].L, R1 ;; Next process If multiple registers are written to and a subsequent instruction should be executed after the write operations are entirely completed, only read the I/O register that was last written to and execute the operation using the value; it is not necessary to read or execute operation for all the registers that were written to. (3) Number of Access Cycles to I/O Registers For numbers of clock cycles for access to I/O registers, see Table 4.1, List of I/O Registers (Address Order). The number of access cycles to I/O registers is obtained by following equation.*1 Number of access cycles to I/O registers = Number of bus cycles for internal main bus 1 + Number of divided clock synchronization cycles + Number of bus cycles for internal peripheral bus 1 to 6 The number of bus cycles of internal peripheral bus 1 to 6 differs according to the register to be accessed. When peripheral functions connected to internal peripheral bus 2 to 6 or registers for the external bus control unit (except for bus error related registers) are accessed, the number of divided clock synchronization cycles is added. The number of divided clock synchronization cycles differs depending on the frequency ratio between ICLK and PCLK (or FCLK, BCLK) or bus access timing. In the peripheral function unit, when the frequency ratio of ICLK is equal to or greater than that of PCLK (or FCLK), the sum of the number of bus cycles for internal main bus 1 and the number of the divided clock synchronization cycles will be one cycle of PCLK (or FCLK) at a maximum. Therefore, one PCLK (or FCLK) has been added to the number of access cycles shown in Table 4.1. When the frequency ratio of ICLK is lower than that of PCLK (or FCLK), the subsequent bus access is started from the ICLK cycle following the completion of the access to the peripheral functions. Therefore, the access cycles are described on an ICLK basis. In the external bus control unit, the sum of the number of bus cycles for internal main bus 1 and the number of divided clock synchronization cycles will be one cycle of BCLK at a maximum. Therefore, one BCLK is added to the number of access cycles shown in Table 4.1. Note 1. This applies to the number of cycles when the access from the CPU does not conflict with the instruction fetching to the external memory or bus access from the different bus master (DMAC or DTC). (4) Restrictions in Relation to RMPA and String-Manipulation Instructions The allocation of data to be handled by RMPA or string-manipulation instructions to I/O registers is prohibited, and operation is not guaranteed if this restriction is not observed. (5) Notes on Sleep Mode and Mode Transitions During sleep mode or mode transitions, do not write to the system control related registers (indicated by 'SYSTEM' in the Module Symbol column in Table 4.1, List of I/O Registers (Address Order)). R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 42 of 177 RX230 Group, RX231 Group 4.1 4. I/O Registers I/O Register Addresses (Address Order) Table 4.1 List of I/O Registers (Address Order) (1 / 42) Number of Access Cycles Address Module Symbol Register Name Register Symbol Number of Bits Access Size 0008 0000h SYSTEM Mode Monitor Register MDMONR 16 16 3 ICLK 0008 0006h SYSTEM 0008 0008h SYSTEM System Control Register 0 SYSCR0 16 16 3 ICLK System Control Register 1 SYSCR1 16 16 0008 000Ch 3 ICLK SYSTEM Standby Control Register SBYCR 16 16 3 ICLK 0008 0010h SYSTEM Module Stop Control Register A MSTPCRA 32 32 3 ICLK 0008 0014h SYSTEM Module Stop Control Register B MSTPCRB 32 32 3 ICLK 0008 0018h SYSTEM Module Stop Control Register C MSTPCRC 32 32 3 ICLK 0008 001Ch SYSTEM Module Stop Control Register D MSTPCRD 32 32 3 ICLK 0008 0020h SYSTEM System Clock Control Register SCKCR 32 32 3 ICLK 0008 0026h SYSTEM System Clock Control Register 3 SCKCR3 16 16 3 ICLK 0008 0028h SYSTEM PLL Control Register PLLCR 16 16 3 ICLK 0008 002Ah SYSTEM PLL Control Register 2 PLLCR2 8 8 3 ICLK 0008 002Ch SYSTEM USB-dedicated PLL Control Register UPLLCR 16 16 3 ICLK 0008 002Eh SYSTEM USB-dedicated PLL Control Register 2 UPLLCR2 8 8 3 ICLK 0008 0030h SYSTEM External Bus Clock Control Register BCKCR 8 8 3 ICLK 0008 0031h SYSTEM Memory Wait Cycle Setting Register MEMWAIT 8 8 3 ICLK 0008 0032h SYSTEM Main Clock Oscillator Control Register MOSCCR 8 8 3 ICLK 0008 0033h SYSTEM Sub-Clock Oscillator Control Register SOSCCR 8 8 3 ICLK 0008 0034h SYSTEM Low-Speed On-Chip Oscillator Control Register LOCOCR 8 8 3 ICLK 0008 0035h SYSTEM IWDT-Dedicated On-Chip Oscillator Control Register ILOCOCR 8 8 3 ICLK 0008 0036h SYSTEM High-Speed On-Chip Oscillator Control Register HOCOCR 8 8 3 ICLK 0008 0037h SYSTEM High-Speed On-Chip Oscillator Control Register 2 HOCOCR2 8 8 3 ICLK 0008 003Ch SYSTEM Oscillation Stabilization Flag Register OSCOVFSR 8 8 3 ICLK 0008 003Eh SYSTEM CLKOUT Output Control Register CKOCR 16 16 3 ICLK 0008 0040h SYSTEM Oscillation Stop Detection Control Register OSTDCR 8 8 3 ICLK 0008 0041h SYSTEM Oscillation Stop Detection Status Register OSTDSR 8 8 3 ICLK ICLK PCLK ICLK 200 ns tNMICK x 3 200 ns tNMICK x 3 > 200 ns tPcyc x 2 200 ns tPcyc x 2 > 200 ns tIRQCK x 3 200 ns tIRQCK x 3 > 200 ns 200 ns minimum in software standby mode. tPcyc indicates the cycle of PCLKB. tNMICK indicates the cycle of the NMI digital filter sampling clock. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7). NMI tNMIW Figure 5.36 NMI Interrupt Input Timing IRQ tIRQW Figure 5.37 IRQ Interrupt Input Timing R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 120 of 177 RX230 Group, RX231 Group 5.3.5 5. Electrical Characteristics Bus Timing Table 5.34 Bus Timing (1) Conditions: 2.7 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, fBCLK 32 MHz (BCLK pin output frequency 16 MHz), Ta = -40 to +105C, VOH = VCC x 0.5, VOL = VCC x 0.5, IOH = -1.0 mA, IOL = 1.0 mA, CL = 30 pF, when normal output is selected by the drive capacity control register Symbol Min. Max. Unit Address delay time Item tAD -- 55 ns Byte control delay time tBCD -- 55 ns CS# delay time tCSD -- 55 ns RD# delay time tRSD -- 55 ns Read data setup time tRDS 40 -- ns Read data hold time tRDH 0 -- ns WR# delay time tWRD -- 55 ns Write data delay time tWDD -- 55 ns Write data hold time tWDH 0 -- ns WAIT# setup time tWTS 40 -- ns WAIT# hold time tWTH 0 -- ns Table 5.35 Test Conditions Figure 5.38 to Figure 5.41 Figure 5.42 Bus Timing (2) Conditions: 1.8 V VCC = VCC_USB = AVCC0 < 2.7 V, VSS = AVSS0 = VSS_USB = 0 V, fBCLK 16 MHz (BCLK pin output frequency 8 MHz), Ta = -40 to +105C, VOH = VCC x 0.5, VOL = VCC x 0.5, IOH = -1.0 mA, IOL = 1.0 mA, CL = 30 pF, when normal output is selected by the drive capacity control register Symbol Min. Max. Unit Address delay time Item tAD -- 90 ns Byte control delay time tBCD -- 90 ns CS# delay time tCSD -- 90 ns RD# delay time tRSD -- 90 ns Read data setup time tRDS 60 -- ns Read data hold time tRDH 0 -- ns WR# delay time tWRD -- 90 ns Write data delay time tWDD -- 90 ns Write data hold time tWDH 0 -- ns WAIT# setup time tWTS 60 -- ns WAIT# hold time tWTH 0 -- ns R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Test Conditions Figure 5.38 to Figure 5.41 Figure 5.42 Page 121 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics CSRWAIT:2 RDON:1 CSROFF:2 CSON:0 TW1 TW2 Tend Tn1 Tn2 BCLK Byte-write strobe mode tAD tAD tAD tAD tBCD tBCD tCSD tCSD A23 to A0 1-write strobe mode A23 to A1 BC1#, BC0# Common to byte-write strobe mode and 1-write strobe mode CS3# to CS0# tRSD tRSD RD# (Read) tRDS tRDH D15 to D0 (Read) Figure 5.38 External Bus Timing/Normal Read Cycle (Bus Clock Synchronization) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 122 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics CSWWAIT:2 WRON:1 WDON:1*1 CSWOFF:2 WDOFF:1*1 CSON:0 TW1 TW2 Tend Tn1 Tn2 BCLK Byte-write strobe mode tAD tAD tAD tAD tBCD tBCD tCSD tCSD A23 to A0 1-write strobe mode A23 to A1 BC1#, BC0# Common to byte-write strobe mode and 1-write strobe mode CS3# to CS0# tWRD tWRD WR1#, WR0#, WR# (Write) tWDD tWDH D15 to D0 (Write) Note 1. Be sure to specify WDON and WDOFF as at least one cycle of BCLK. Figure 5.39 External Bus Timing/Normal Write Cycle (Bus Clock Synchronization) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 123 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics CSRWAIT:2 CSON:0 CSPRWAIT:2 CSPRWAIT:2 RDON:1 RDON:1 TW1 TW2 Tend CSPRWAIT:2 RDON:1 Tpw1 Tpw2 Tend RDON:1 Tpw1 Tpw2 Tend CSROFF:1 Tpw1 Tpw2 Tend Tn1 Th BCLK Byte-write strobe mode tAD tAD tAD tAD tAD tAD tAD tAD tAD tAD A23 to A0 1-write strobe mode A23 to A1 tBCD tBCD tCSD tCSD BC1#, BC0# Common to byte-write strobe mode and 1-write strobe mode CS3# to CS0# tRSD tRSD tRSD tRSD tRSD tRSD tRSD tRSD RD# (Read) tRDS tRDH tRDS tRDH tRDS tRDH tRDS tRDH D15 to D0 (Read) Figure 5.40 External Bus Timing/Page Read Cycle (Bus Clock Synchronization) CSPWWAIT:2 CSWWAIT:2 WRON:1 WDON:1*1 *1 WDOFF:1 CSON:0 TW1 TW2 Tend Tdw1 WRON:1 WDON:1*1 Tpw1 CSPWWAIT:2 WDOFF:1 Tpw2 Tend *1 Tdw1 CSWOFF:1 WDOFF:1*1 WRON:1 WDON:1*1 Tpw1 Tpw2 Tend Tn1 Th BCLK Byte-write strobe mode tAD tAD tAD tAD tAD tAD tAD tAD A23 to A0 1-write strobe mode A23 to A1 tBCD tBCD tCSD tCSD BC1#, BC0# Common to byte-write strobe mode and 1-write strobe mode CS3# to CS0# tWRD tWRD tWRD tWRD tWRD tWRD WR1#, WR0#, WR# (Write) tWDD tWDH tWDD tWDH tWDD tWDH D15 to D0 (Write) Note 1. Be sure to specify WDON and WDOFF as at least one cycle of BCLK. Figure 5.41 External Bus Timing/Page Write Cycle (Bus Clock Synchronization) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 124 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics CSRWAIT:3 CSWWAIT:3 TW1 TW2 TW3 (Tend) Tend Tn1 Th BCLK A23 to A0 CS3# to CS0# RD# (Read) WR# (Write) External wait tWTS tWTH tWTS tWTH WAIT# Figure 5.42 External Bus Timing/External Wait Control R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 125 of 177 RX230 Group, RX231 Group Table 5.36 5. Electrical Characteristics Bus Timing (Multiplex bus) (1) Conditions: 2.7 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, fBCLK 32 MHz (BCLK pin output frequency 16 MHz), Ta = -40 to +105C, VOH = VCC x 0.5, VOL = VCC x 0.5, IOH = -1.0 mA, IOL = 1.0 mA, CL = 30 pF, when normal output is selected by the drive capacity control register Item Symbol Min. Max. Unit Address delay time tAD -- 55 ns Byte control delay time tBCD -- 55 ns CS# delay time tCSD -- 55 ns RD# delay time tRSD -- 55 ns ALE delay time tALED -- 55 ns Read data setup time tRDS 40 -- ns Read data hold time tRDH 0 -- ns WR# delay time tWRD -- 55 ns Write data delay time tWDD -- 55 ns Write data hold time tWDH 0 -- ns WAIT# setup time tWTS 40 -- ns WAIT# hold time tWTH 0 -- ns Table 5.37 Test Conditions Figure 5.43, Figure 5.44 Figure 5.42 Bus Timing (Multiplex bus) (2) Conditions: 1.8 V VCC = VCC_USB = AVCC0 < 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, fBCLK 16 MHz (BCLK pin output frequency 8 MHz), Ta = -40 to +105C, VOH = VCC x 0.5, VOL = VCC x 0.5, IOH = -1.0 mA, IOL = 1.0 mA, CL = 30 pF, when normal output is selected by the drive capacity control register Item Address delay time Symbol Min. Max. Unit tAD -- 90 ns Byte control delay time tBCD -- 90 ns CS# delay time tCSD -- 90 ns RD# delay time tRSD -- 90 ns ALE delay time tALED -- 90 ns Read data setup time tRDS 60 -- ns Read data hold time tRDH 0 -- ns WR# delay time tWRD -- 90 ns Write data delay time tWDD -- 90 ns Write data hold time tWDH 0 -- ns WAIT# setup time tWTS 60 -- ns WAIT# hold time tWTH 0 -- ns R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Test Conditions Figure 5.43, Figure 5.44 Figure 5.42 Page 126 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics Data cycle Address cycle TW1 TWn Tend Tn1 Th BCLK tAD Address Wait for address cycle (AWAIT) td(AD-ALE) tSU(DB-RD) th(ALE-AD) tAD Address/ data bus th(RD-DB) 0ns(min) 40ns(min) tAD A D tRDS tRDH Fixed to 1 cycle Address latch (ALE) tALED tALED tRSD Wait for RD assertion (RDON) tRSD tRSS Data read (RD#) tRSS Wait for normal read cycle (CSRWAIT) Wait for CS assertion (CSON) CS extended cycle when reading (CSROFF) tCSD tCSD Chip select (CS3# to CS0#) Figure 5.43 External Bus Timing/Read Access Operation Example (Multiplex) Data cycle Address cycle TW1 Tend Tn1 Th BCLK Wait for write data output (WDON) tAD Address A Wait for address cycle (AWAIT) tAD tAD Address/ data bus A D Fixed to 1 cycle Address latch (ALE) td(BCLK-ALE)=tALED th(BCLK-ALE)=tALED tRSD tRSD Wait for WR assertion (WRON) tRSS Data write (WR#) Wait for normal write cycle (CSWWAIT) tCSD Chip select (CS3# to CS0#) Figure 5.44 tRSS CS extended cycle when writing (CSWOFF) tCSD External Bus Timing/Write Access Operation Example (Multiplex) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 127 of 177 RX230 Group, RX231 Group 5.3.6 5. Electrical Characteristics Timing of On-Chip Peripheral Modules Table 5.38 Timing of On-Chip Peripheral Modules (1) Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Item I/O ports Input data pulse width MTU2/TPU Input capture input pulse width Single-edge setting Single-edge setting Both-edge setting Max. tPRW 1.5 -- tPcyc Figure 5.45 tTICW 1.5 -- tPcyc Figure 5.46 2.5 -- 1.5 -- 2.5 -- 2.5 -- tPOEW 1.5 -- tPcyc Figure 5.48 tTMCWH, tTMCWL 1.5 -- tPcyc Figure 5.49 2.5 -- tTCKWH, tTCKWL Phase counting mode POE2 POE# input pulse width TMR Timer clock pulse width Single-edge setting Both-edge setting SCI Input clock cycle time Asynchronous tScyc Clock synchronous -- -- 0.4 0.6 tScyc tSCKr -- 20 ns Input clock fall time tSCKf -- 20 ns tScyc 16 -- 4 -- Asynchronous tPcyc Figure 5.51 Output clock pulse width tSCKW 0.4 0.6 tScyc Output clock rise time tSCKr -- 20 ns Output clock fall time tSCKf -- 20 ns Transmit data delay time Clock synchronous (master) tTXD -- 40 ns ns Transmit data delay time Clock (slave) synchronous 2.7 V or above -- 65 1.8 V or above -- 100 ns Receive data setup time (master) Clock synchronous 2.7 V or above 65 -- ns 90 -- ns Receive data setup time (slave) Clock synchronous 40 -- ns Receive data hold time Clock synchronous Trigger input pulse width CAC CACREF input pulse width tRXS 1.8 V or above tPcyc tcac*2 tRXH 40 -- tTRGW 1.5 -- tCACREF 4.5 tcac + 3 tPcyc -- ns -- ns -- ns -- ns 12 ns tPcyc > tcac*2 CLKOUT pin output cycle*4 VCC = 2.7 V or above CLKOUT pin high pulse width*3 VCC = 2.7 V or above tCcyc VCC = 2.7 V or above tCH VCC = 2.7 V or above 15 15 30 tCr -- VCC = 1.8 V or above CLKOUT pin output fall time VCC = 2.7 V or above VCC = 1.8 V or above Figure 5.53 30 tCL VCC = 1.8 V or above CLKOUT pin output rise time 62.5 125 VCC = 1.8 V or above CLKOUT pin low pulse width*3 ns tPcyc Figure 5.52 5 tcac + 6.5 tPcyc VCC = 1.8 V or above Note 4. tPcyc Figure 5.50 tSCKW A/D converter Note 1. Note 2. Note 3. tPcyc Figure 5.47 Input clock pulse width Clock synchronous CLKOUT 4 6 *1 Input clock rise time Output clock cycle time Test Conditions Min. Both-edge setting Timer clock pulse width Unit Symbol 25 tCf -- 12 ns 25 tPcyc: PCLK cycle tcac: CAC count clock source cycle When the LOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 000b), set the clock output division ratio selection to divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b). When the EXTAL external clock input or an oscillator is used with divided by 1 (the CKOCR.CKOSEL[2:0] bits are 010b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 128 of 177 RX230 Group, RX231 Group Table 5.39 5. Electrical Characteristics Timing of On-Chip Peripheral Modules (2) Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C, C = 30 pF, when high-drive output is selected by the drive capacity control register Item RSPI RSPCK clock cycle Master Symbol Min. Max. tSPcyc 2 4096 8 4096 Slave RSPCK clock Master high pulse width Master -- (tSPcyc - tSPCKr - tSPCKf)/2 -- (tSPcyc - tSPCKr- tSPCKf)/2 - 3 -- (tSPcyc - tSPCKr - tSPCKf)/2 -- -- 10 -- 15 -- 1 s 10 -- ns 30 -- tSPCKWL Slave RSPCK clock rise/fall time Output 2.7 V or above 1.8 V or above tSPCKr, tSPCKf Input Data input setup Master 2.7 V or above time 1.8 V or above tSU 25 - tPcyc -- tH tPcyc -- tHF 0 -- tH 20 + 2 x tPcyc -- Slave Data input hold time Master RSPCK set to a division ratio other than PCLKB divided by 2 RSPCK set to PCLKB divided by 2 Slave SSL setup time Master tLEAD Slave SSL hold time Master tLAG Master 2.7 V or above Slave x tSPcyc 2 Slave Data output delay time -30 + N*2 tOD -30 + N*3 x tSPcyc -- ns 2 -- tPcyc -- 14 ns 30 3 x tPcyc + 65 -- 3 x tPcyc +105 Data output hold Master time Slave tOH 0 -- 0 -- Successive transmission delay time tTD tSPcyc + 2 x tPcyc 8 x tSPcyc + 2 x tPcyc 4 x tPcyc -- MOSI and MISO Output 2.7 V or above rise/fall time 1.8 V or above tDr, tDf Input SSL rise/fall time Output 2.7 V or above 1.8 V or above tSSLr, tSSLf Input Slave access time 2.7 V or above tSA 1.8 V or above Slave output release time 2.7 V or above 1.8 V or above tREL -- 10 -- 15 ns ns ns -- 1 s -- 10 ns -- 15 ns -- 1 s -- 6 tPcyc -- 7 -- 5 -- 6 Figure 5.55 to Figure 5.58 ns ns -- Slave ns tPcyc -- Master ns -- 1.8 V or above 1.8 V or above ns -- 2.7 V or above Test Conditions tPcyc*1 Figure 5.54 tSPCKWH (tSPcyc - tSPCKr - tSPCKf)/2 - 3 Slave RSPCK clock low pulse width Unit Figure 5.57, Figure 5.58 tPcyc Note 1. tPcyc: PCLK cycle Note 2. N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD) Note 3. N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 129 of 177 RX230 Group, RX231 Group Table 5.40 5. Electrical Characteristics Timing of On-Chip Peripheral Modules (3) Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Item Symbol Simple SCK clock cycle output (master) SPI SCK clock cycle input (slave) SCK clock low pulse width SCK clock rise/fall time Data input setup time (master) 2.7 V or above Max. Unit*1 Test Conditions Figure 5.54 4 65536 tPcyc 6 65536 tPcyc tSPCKWH 0.4 0.6 tSPcyc tSPcyc SCK clock high pulse width Min. tSPCKWL 0.4 0.6 tSPcyc tSPCKr, tSPCKf -- 20 ns tSU 65 -- ns 95 -- 40 -- 1.8 V or above Data input setup time (slave) Data input hold time tH 40 -- ns SSL input setup time tLEAD 3 -- tSPcyc SSL input hold time tLAG 3 -- tSPcyc Data output delay time (master) tOD -- 40 ns Data output delay time (slave) Data output hold time (master) 2.7 V or above -- 65 1.8 V or above -- 100 -10 -- -20 -- -10 -- 2.7 V or above tOH 1.8 V or above Data output hold time (slave) Data rise/fall time ns tDr, tDf -- 20 ns tSSLr, tSSLf -- 20 ns Slave access time tSA -- 6 tPcyc Slave output release time tREL -- 6 tPcyc SSL input rise/fall time Figure 5.55, Figure 5.56 Figure 5.57, Figure 5.58 Note 1. tPcyc: PCLK cycle R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 130 of 177 RX230 Group, RX231 Group Table 5.41 5. Electrical Characteristics Timing of On-Chip Peripheral Modules (4) Conditions: 2.7 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, fPCLKB 32 MHz, Ta = -40 to +105C Symbol Min.*1, *2 Max. Unit Test Conditions SCL cycle time tSCL 6 (12) x tIICcyc + 1300 -- ns Figure 5.59 SCL high pulse width tSCLH 3 (6) x tIICcyc + 300 -- ns SCL low pulse width tSCLL 3 (6) x tIICcyc + 300 -- ns SCL, SDA rise time tSr -- 1000 ns SCL, SDA fall time tSf -- 300 ns SCL, SDA spike pulse removal time tSP 0 1 (4) x tIICcyc ns SDA bus free time tBUF 3 (6) x tIICcyc + 300 -- ns START condition hold time tSTAH tIICcyc + 300 -- ns Repeated START condition setup time tSTAS 1000 -- ns STOP condition setup time tSTOS 1000 -- ns Data setup time tSDAS tIICcyc + 50 -- ns Data hold time tSDAH 0 -- ns Cb -- 400 pF SCL cycle time tSCL 6 (12) x tIICcyc + 600 -- ns SCL high pulse width tSCLH 3 (6) x tIICcyc + 300 -- ns SCL low pulse width tSCLL 3 (6) x tIICcyc + 300 -- ns SCL, SDA rise time tSr -- 300 ns SCL, SDA fall time tSf -- 300 ns SCL, SDA spike pulse removal time tSP 0 1 (4) x tIICcyc ns Item RIIC (Standard mode, SMBus) SCL, SDA capacitive load RIIC (Fast mode) SDA bus free time tBUF 3 (6) x tIICcyc + 300 -- ns START condition hold time tSTAH tIICcyc + 300 -- ns Repeated START condition setup time tSTAS 300 -- ns STOP condition setup time tSTOS 300 -- ns Data setup time tSDAS tIICcyc + 50 -- ns Data hold time tSDAH 0 -- ns Cb -- 400 pF SCL, SDA capacitive load Figure 5.59 Note: tIICcyc: RIIC internal reference clock (IIC) cycle Note 1. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11b while a digital filter is enabled with the ICFER.NFE bit = 1. Note 2. Cb is the total capacitance of the bus lines. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 131 of 177 RX230 Group, RX231 Group Table 5.42 5. Electrical Characteristics Timing of On-Chip Peripheral Modules (5) Conditions: 2.7 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, fPCLKB 32 MHz, Ta = -40 to +105C Symbol Min.*1 Max. Unit Test Conditions SDA rise time tSr -- 1000 ns Figure 5.59 SDA fall time tSf -- 300 ns Item Simple I2C (Standard mode) SDA spike pulse removal time Simple I2C (Fast mode) tSP 0 4 x tPcyc ns Data setup time tSDAS 250 -- ns Data hold time tSDAH 0 -- ns SCL, SDA capacitive load Cb -- 400 pF SDA rise time tSr -- 300 ns SDA fall time tSf -- 300 ns SDA spike pulse removal time tSP 0 4 x tPcyc ns Data setup time tSDAS 100 -- ns Data hold time tSDAH 0 -- ns Cb -- 400 pF SCL, SDA capacitive load Figure 5.59 Note: tPcyc: PCLK cycle Note 1. Cb is the total capacitance of the bus lines. Table 5.43 Timing of On-Chip Peripheral Modules (6) Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, fPCLKB 32 MHz, Ta = -40 to +105C Item SSI Symbol Min. Max. Unit tAUDIO 1 25 MHz 1 4 Output clock cycle tO 250 -- ns Input clock cycle tI 250 -- ns AUDIO_MCLK input frequency 2.7 V or above 1.8 V or above Clock high level tHC 0.4 0.6 to, ti Clock low level tLC 0.4 0.6 to, ti Clock rise time tRC -- 20 ns ns Data delay time 2.7 V or above tDTR -- 65 -- 105 65 -- 90 -- tHTR 40 -- ns tDTRW -- 105 ns 1.8 V or above Setup time 2.7 V or above tSR 1.8 V or above Hold time WS changing edge SSIDATA output delay R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Test Conditions Figure 5.60 Figure 5.61 Figure 5.62 ns Figure 5.63 Page 132 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics PCLK Port tPRW Figure 5.45 I/O Port Input Timing PCLK Output compare output Input capture input Figure 5.46 tTICW MTU2 Input/Output Timing PCLK MTCLKA to MTCLKD tTCKWL Figure 5.47 tTCKWH MTU2 Clock Input Timing PCLK POEn# input tPOEW Figure 5.48 POE# Input Timing R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 133 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics PCLK TMCI0 to TMCI3 tTMCWL Figure 5.49 tTMCWH TMR Clock Input Timing tSCKW tSCKr tSCKf SCKn tScyc n = 0, 1, 5, 6, 8, 9, 12 Figure 5.50 SCK Clock Input Timing SCKn tTXD TXDn tRXS tRXH RXDn n = 0, 1, 5, 6, 8, 9, 12 Figure 5.51 SCI Input/Output Timing: Clock Synchronous Mode R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 134 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics PCLK ADTRG0# tTRGW Figure 5.52 A/D Converter External Trigger Input Timing tCcyc tCH tCf CLKOUT pin output tCr tCL Test conditions: VOH = VCC x 0.7, VOL = VCC x 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF Figure 5.53 CLKOUT Output Timing tSPCKr tSPCKWH RSPI Simple SPI RSPCKA Master select output SCKn Master select output VOH VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH RSPCKA Slave select input VIH VIL SCKn Slave select input tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 x VCC, VOL = 0.3 x VCC, VIH = 0.7 x VCC, VIL = 0.3 x VCC n = 0, 1, 5, 6, 8, 9, 12 Figure 5.54 RSPI Clock Timing and Simple SPI Clock Timing R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 135 of 177 RX230 Group, RX231 Group RSPI 5. Electrical Characteristics Simple SPI SSLA0 to SSLA3 output tTD tLEAD RSPCKA CPOL = 0 output SCKn CKPOL = 0 output RSPCKA CPOL = 1 output SCKn CKPOL = 1 output tLAG tSSLr, tSSLf tSU MISOA input SMISOn input tH MSB IN DATA tDr, tDf MOSIA output SMOSIn output tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT n = 0, 1, 5, 6, 8, 9, 12 Figure 5.55 RSPI RSPI Timing (Master, CPHA = 0) and Simple SPI Clock Timing (Master, CKPH = 1) Simple SPI tTD SSLA0 to SSLA3 output tLEAD RSPCKA CPOL = 0 output SCKn CKPOL = 1 output RSPCKA CPOL = 1 output SCKn CKPOL = 0 output tLAG tSSLr, tSSLf tSU MISOA input SMISOn input tH MSB IN tOH MOSIA output SMOSIn output DATA LSB IN tOD MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT n = 0, 1, 5, 6, 8, 9, 12 Figure 5.56 RSPI Timing (Master, CPHA = 1) and Simple SPI Clock Timing (Master, CKPH = 0) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 136 of 177 RX230 Group, RX231 Group RSPI Simple SPI SSLA0 input SSn# input 5. Electrical Characteristics tTD tLEAD RSPCKA CPOL = 0 input SCKn CKPOL = 0 input RSPCKA CPOL = 1 input SCKn CKPOL = 1 input tLAG tSA MISOA output tOH SMISOn output MSB OUT tSU MOSIA input tOD SMOSIn input tREL DATA LSB OUT tH MSB IN MSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN n = 0, 1, 5, 6, 8, 9, 12 Figure 5.57 RSPI Timing (Slave, CPHA = 0) and Simple SPI Clock Timing (Slave, CKPH = 1) RSPI Simple SPI SSLA0 input SSn# input tTD tLEAD RSPCKA CPOL = 0 input SCKn CKPOL = 1 input RSPCKA CPOL = 1 input SCKn CKPOL = 0 input MISOA output SMISOn output tSA tLAG tOH tOD LSB OUT (Last data) MSB OUT tSU MOSIA input SMOSIn input tREL DATA tH MSB IN LSB OUT MSB OUT tDr, tDf DATA LSB IN MSB IN n = 0, 1, 5, 6, 8, 9, 12 Figure 5.58 RSPI Timing (Slave, CPHA = 1) and Simple SPI Clock Timing (Slave, CKPH = 0) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 137 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics VIH SDA VIL tBUF tSCLH tSTAS tSTAH tSTOS tSP SCL P*1 P*1 Sr*1 S*1 tSCLL tSr tSf tSCL tSDAS tSDAH Test conditions VIH = VCC x 0.7, VIL = VCC x 0.3 Note 1. S, P, and Sr indicate the following conditions, respectively. S: START condition P: STOP condition Sr: Repeated START condition Figure 5.59 RIIC Bus Interface Input/Output Timing and Simple I2C Bus Interface Input/Output Timing tRC tHC tLC SSISCKn tI, tO Figure 5.60 SSI Clock Input/Output Timing SSISCKn (input or output) SSIWSn, SSIDATAn, SSIRXDn (input) tSR tHTR SSIWSn, SSIDATAn, SSITXDn (output) tDTR Figure 5.61 SSI Transmission/Reception Timing (SSICR.SCKP=0) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 138 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics SSISCKn (input or output) SSIW Sn, SSIDATAn, SSIRXDn (input) t SR t HTR SSIW Sn, SSIDATAn, SSITXDn (output) tDTR Figure 5.62 SSI Transmission/Reception Timing (SSICR.SCKP=1) SSIWSn (input) SSIDATAn (output) tDTRW Note. Timing to output the MSB bit during slave transmission from SSIWSn when DEL = 1 and SDTA = 0 or DEL = 1, SDTA = 1, and SWL[2:0] = DWL[2:0] Figure 5.63 SSIDATA Output Delay After SSIWSn Changing Edge R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 139 of 177 RX230 Group, RX231 Group 5.4 5. Electrical Characteristics USB Characteristics Table 5.44 USB Characteristics (USB0_DP and USB0_DM Pin Characteristics) Conditions: 3.0 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Item Input characteristics Output characteristics Symbol Min. Max. Unit Input high level voltage VIH 2.0 -- V Input low level voltage VIL -- 0.8 V Differential input sensitivity VDI 0.2 -- V Differential common mode range VCM 0.8 2.5 V Output high level voltage VOH 2.8 VCC_USB V IOH = -200 A Output low level voltage VOL 0.0 0.3 V IOL = 2 mA VCRS 1.3 2.0 V tr 4 20 ns 75 300 Cross-over voltage Rise time FS LS Fall time FS tf LS Rise/fall time ratio FS tr/tf LS Output resistance 4 20 75 300 90 111.11 tr/tf (Adjusting the resistance by external elements is not necessary.) 80 125 ZDRV 28 44 VCC x 0.8 -- V VIH VIL -- VCC x 0.2 V Pull-up, pull-down Pull-down resistor RPD 14.25 24.80 k RPUI 0.9 1.575 k During idle state RPUA 1.425 3.09 k During reception D+ sink current IDP_SINK 25 175 A D- sink current IDM_SINK 25 175 A DCD source current IDP_SRC 7 13 A VDAT_REF 0.25 0.4 V D+ source current VDP_SRC 0.5 0.7 V Output current = 250 A D- source current VDM_SRC 0.5 0.7 V Output current = 250 A Data detection voltage USB0_DP, USB0_DM 90% VCRS 90% 10% 10% tr Figure 5.64 Figure 5.64, Figure 5.65 % VBUS input voltage Pull-up resistor | USB0_DP - USB0_DM | ns VBUS characteristics Battery Charging Specification Ver 1.2 Test Conditions tf USB0_DP and USB0_DM Output Timing R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 140 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics Observation point Observation point USB0_DP USB0_DP 200 pF to 3.6 V 600 pF 50 pF 1.5 k USB0_DM USB0_DM 200 pF to 600 pF 50 pF Full-speed (FS) Figure 5.65 Low-speed (LS) Observation point Test Circuit R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 141 of 177 RX230 Group, RX231 Group 5.5 5. Electrical Characteristics A/D Conversion Characteristics VREFH0 VREFH0 5.5 5.5 5.0 5.0 4.0 A/D Conversion Characteristics (1) 4.0 A/D Conversion Characteristics (3) 3.0 2.7 2.4 A/D Conversion Characteristics (2) 3.0 2.7 2.4 A/D Conversion Characteristics (4) 2.0 2.0 1.8 A/D Conversion Characteristics (5) 1.0 1.0 2.4 2.7 1.0 2.0 5.5 3.0 4.0 AVCC0 1.8 5.0 1.0 ADCSR.ADHSC = 0 Figure 5.66 Table 5.45 2.4 2.7 2.0 3.0 5.5 4.0 AVCC0 5.0 ADCSR.ADHSC = 1 VREFH0 Voltage Range vs. AVCC0 A/D Conversion Characteristics (1) Conditions: 2.7 V VCC = VCC_USB = AVCC0 5.5 V, 2.7 V VREFH0 AVCC0, reference voltage = VREFH0 selected, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, Ta = -40 to +105C Item Frequency Resolution Min. Typ. Max. Unit 1 -- 54 MHz Test Conditions -- -- 12 Bit 0.83 -- -- s 1.33 -- -- Cs -- -- 15 pF Pin capacitance included Figure 5.67 Analog input resistance Rs -- -- 2.5 k Figure 5.67 Analog input voltage range Ain 0 -- VREFH0 V Offset error -- 0.5 4.5 LSB 6.0 LSB Other than above Full-scale error -- 0.75 4.5 LSB High-precision channel 6.0 LSB Other than above Quantization error -- 0.5 -- LSB Absolute accuracy -- 1.25 5.0 LSB High-precision channel 8.0 LSB Other than above DNL differential non-linearity error -- 1.0 -- LSB INL integral non-linearity error -- 1.0 3.0 LSB Conversion time*1 (Operation at PCLKD = 54 MHz) Analog input capacitance Permissible signal source impedance (Max.) = 0.3 k High-precision channel The ADCSR.ADHSC bit is 0 The ADSSTRn register is 0Dh Normal-precision channel The ADCSR.ADHSC bit is 0 The ADSSTRn register is 28h High-precision channel Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 142 of 177 RX230 Group, RX231 Group Table 5.46 5. Electrical Characteristics A/D Conversion Characteristics (2) Conditions: 2.4 V VCC = VCC_USB = AVCC0 5.5 V, 2.4 V VREFH0 AVCC0, reference voltage = VREFH0 selected, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, Ta = -40 to +105C Item Min. Typ. Max. Unit Frequency 1 -- 32 MHz Resolution -- -- 12 Bit 1.41 -- -- s 2.25 -- -- Conversion time*1 (Operation at PCLKD = 32 MHz) Permissible signal source impedance (Max.) = 1.3 k Test Conditions High-precision channel The ADCSR.ADHSC bit is 0 The ADSSTRn register is 0Dh Normal-precision channel The ADCSR.ADHSC bit is 0 The ADSSTRn register is 28h Analog input capacitance Cs -- -- 15 pF Pin capacitance included Figure 5.67 Analog input resistance Rs -- -- 2.5 k Figure 5.67 -- 0.5 4.5 LSB Full-scale error -- 0.75 4.5 LSB Quantization error -- 0.5 -- LSB Absolute accuracy -- 1.25 5.0 LSB High-precision channel 8.0 LSB Other than above DNL differential non-linearity error -- 1.0 -- LSB INL integral non-linearity error -- 1.0 4.5 LSB Offset error Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 143 of 177 RX230 Group, RX231 Group Table 5.47 5. Electrical Characteristics A/D Conversion Characteristics (3) Conditions: 2.7V VCC = VCC_USB = AVCC0 5.5V, 2.7V VREFH0 AVCC0, reference voltage = VREFH0 selected, VSS = AVSS0 = VREFL0 = VSS_USB = 0V, Ta = -40 to +105C Item Min. Typ. Max. Unit Frequency 1 -- 27 MHz Resolution -- -- 12 Bit 2 -- -- s 3 -- -- Conversion time*1 (Operation at PCLKD = 27 MHz) Permissible signal source impedance (Max.) = 1.1 k Test Conditions High-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn.SST[7:0] bits are 0Dh Normal-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn.SST[7:0] bits are 28h Analog input capacitance Cs -- -- 15 pF Pin capacitance included Figure 5.67 Analog input resistance Rs -- -- 2.5 k Figure 5.67 -- 0.5 4.5 LSB Full-scale error -- 0.75 4.5 LSB Quantization error -- 0.5 -- LSB Absolute accuracy -- 1.25 5.0 LSB High-precision channel 8.0 LSB Other than above DNL differential non-linearity error -- 1.0 -- LSB INL integral non-linearity error -- 1.0 3.0 LSB Offset error Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 144 of 177 RX230 Group, RX231 Group Table 5.48 5. Electrical Characteristics A/D Conversion Characteristics (4) Conditions: 2.4V VCC = VCC_USB = AVCC0 5.5V, 2.4V VREFH0 AVCC0, VSS = AVSS0 = VSS_USB = 0V, reference voltage = VREFH0 selected, Ta = -40 to +105C Item Min. Typ. Max. Unit Frequency 1 -- 16 MHz Resolution -- -- 12 Bit 3.38 -- -- s 5.06 -- -- Conversion time*1 (Operation at PCLKD = 16 MHz) Permissible signal source impedance (Max.) = 2.2 k Test Conditions High-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 0Dh Normal-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 28h Analog input capacitance Cs -- -- 15 pF Pin capacitance included Figure 5.67 Analog input resistance Rs -- -- 2.5 k Figure 5.67 -- 0.5 4.5 LSB Full-scale error -- 0.75 4.5 LSB Quantization error -- 0.5 -- LSB Absolute accuracy -- 1.25 5.0 LSB High-precision channel 8.0 LSB Other than above DNL differential non-linearity error -- 1.0 -- LSB INL integral non-linearity error -- 1.0 3.0 LSB Offset error Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 145 of 177 RX230 Group, RX231 Group Table 5.49 5. Electrical Characteristics A/D Conversion Characteristics (5) Conditions: 1.8V VCC = VCC_USB = AVCC0 5.5V, 1.8V VREFH0 AVCC0, VSS = AVSS0 = VSS_USB = 0V, reference voltage = VREFH0 selected, Ta = -40 to +105C Item Min. Typ. Max. Unit Frequency 1 -- 8 MHz Resolution -- -- 12 Bit 6.75 -- -- s 10.13 -- -- Conversion time*1 (Operation at PCLKD = 8 MHz) Permissible signal source impedance (Max.) = 5 k Test Conditions High-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 0Dh Normal-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 28h Analog input capacitance Cs -- -- 15 pF Pin capacitance included Figure 5.67 Analog input resistance Rs -- -- 2.5 k Figure 5.67 -- 1 7.5 LSB Offset error Full-scale error -- 1.5 7.5 LSB Quantization error -- 0.5 -- LSB Absolute accuracy -- 3.0 8.0 LSB DNL differential non-linearity error -- 1.0 -- LSB INL integral non-linearity error -- 1.25 3.0 LSB Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. Table 5.50 A/D Converter Channel Classification Classification Channel High-precision channel AN000 to AN007 Normal-precision channel AN016 to AN031 Internal reference voltage input channel Internal reference voltage Temperature sensor input channel Temperature sensor output Conditions Remarks AVCC0 = 1.8 to 5.5 V Pins AN000 to AN007 cannot be used as digital outputs when the A/D converter is in use. AVCC0 = 2.0 to 5.5 V AVCC0 = 2.0 to 5.5 V MCU R0 Rs 12b - ADC Cs Figure 5.67 Equivalent Circuit R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 146 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics FFFh Full-scale error Integral nonlinearity error (INL) A/D converter output code Ideal line of actual A/D conversion characteristic Actual A/D conversion characteristic Ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Absolute accuracy 000h Offset error 0 Figure 5.68 Analog input voltage VREFH0 (full-scale) Illustration of A/D Converter Characteristic Terms Absolute accuracy Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages. If analog input voltage is 6 mV, absolute accuracy = 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, although an output code, 008h, can be expected from the theoretical A/D conversion characteristics. Integral non-linearity error (INL) The integral non-linearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 147 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics Differential non-linearity error (DNL) The differential non-linearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code. Offset error An offset error is the difference between a transition point of the ideal first output code and the actual first output code. Full-scale error A full-scale error is the difference between a transition point of the ideal last output code and the actual last output code. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 148 of 177 RX230 Group, RX231 Group 5.6 5. Electrical Characteristics D/A Conversion Characteristics Table 5.51 D/A Conversion Characteristics (1) Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Reference voltage = VREFH or VREFL selected Item Min. Typ. Max. Unit Resolution -- -- 12 Bit Resistive load 30 -- -- k Capacitive load -- -- 50 pF 0.35 -- AVCC0 - 0.47 V DNL differential non-linearity error -- 0.5 1.0 LSB INL integral non-linearity error -- 2.0 8.0 LSB Output voltage range Offset error -- -- 20 mV Full-scale error -- -- 20 mV Output resistance -- 5 -- Conversion time -- -- 30 s Table 5.52 Test Conditions D/A Conversion Characteristics (2) Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VREFL = VSS_USB = 0 V, Ta = -40 to +105C Reference voltage = AVCC0 or AVSS0 selected Item Min. Typ. Max. Unit Resolution -- -- 12 Bit Resistive load 30 -- -- k Capacitive load -- -- 50 pF 0.35 -- AVCC0 - 0.47 V DNL differential non-linearity error -- 0.5 2.0 LSB INL integral non-linearity error -- 2.0 8.0 LSB Output voltage range Offset error -- -- 30 mV Full-scale error -- -- 30 mV Output resistance -- 5 -- Conversion time -- -- 30 s Table 5.53 Test Conditions D/A Conversion Characteristics (3) Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Reference voltage = internal reference voltage selected Item Resolution Internal reference voltage (Vbgr) Resistive load Capacitive load Output voltage range Min. Typ. Max. Unit -- -- 12 Bit 1.36 1.43 1.50 V 30 -- -- k -- -- 50 pF 0.35 -- Vbgr V DNL differential non-linearity error -- 2.0 16.0 LSB INL integral non-linearity error -- 8.0 16.0 LSB Offset error -- -- 30 mV Output resistance -- 5 -- Conversion time -- -- 30 s R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Test Conditions Page 149 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics Gain error Full-scale error Upper output limit Integral nonlinearity error (INL) Offset error Output analog voltage 1-LSB width for ideal D/A conversion characteristic Ideal output voltage Differential nonlinearity error (DNL) *1 Lower output limit Actual D/A conversion characteristic Offset error Ideal output voltage 000h FFFh D/A converter input code Note 1. Ideal D/A conversion output voltage that is adjusted so that offset and full scale errors are zeroed. Figure 5.69 Illustration of D/A Converter Characteristic Terms Integral non-linearity error (INL) The integral non-linearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code. Differential non-linearity error (DNL) The differential non-linearity error is the difference between 1-LSB width based on the ideal D/A conversion characteristics and the width of the actually output code. Offset error An offset error is the difference between a transition point of the ideal first output code and the actual first output code. Full-scale error A full-scale error is the difference between a transition point of the ideal last output code and the actual last output code. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 150 of 177 RX230 Group, RX231 Group 5.7 5. Electrical Characteristics Temperature Sensor Characteristics Table 5.54 Temperature Sensor Characteristics Conditions: 2.0 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Item Symbol Min. Typ. Max. Unit 1.5 C 2.0 Relative accuracy Below 2.4 V Temperature slope -3.65 mV/C Output voltage (25C) 1.05 V tSTART 5 s 5 s Temperature sensor start time Sampling time 5.8 Test Conditions 2.4 V or above VCC = 3.3 V Comparator Characteristics Table 5.55 Comparator Characteristics Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Item Symbol Min. Typ. Max. Unit VREF 0 -- VCC - 1.4 V CMPB0 to CMPB3 input voltage VI -0.3 -- VCC + 0.3 V Offset Comparator high-speed mode -- -- -- 50 mV Comparator high-speed mode Window function enabled -- -- -- 60 mV Comparator low-speed mode -- -- -- 40 mV Td -- -- 1.2 s Tdw -- -- 2.0 s Td -- -- 5.0 s High-side reference voltage (comparator high-speed mode, window function enabled) VRFH -- 0.76 VCC -- V Low-side reference voltage (comparator high-speed mode, window function enabled) VRFL -- 0.24 VCC -- V Operation stabilization wait time Tcmp 100 -- -- s CVREFB0 to CVREFB3 input reference voltage Comparator Comparator high-speed output delay time mode Comparator high-speed mode Window function enabled Comparator low-speed mode R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Test Conditions VCC = 3 V, input slew rate 50 mV/us Page 151 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics CVREFB = 0 V CMPB CMPOB td Figure 5.70 td Comparator Output Delay Time in Comparator High-Speed Mode and Low-Speed Mode Internal vrh = VCC * 0.76 CMPB CMPOB tdw tdw Internal vrh = VCC * 0.24 CMPB CMPOB tdw Figure 5.71 tdw Comparator Output Delay Time in High-Speed Mode with Window Function Enabled R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 152 of 177 RX230 Group, RX231 Group 5.9 5. Electrical Characteristics CTSU Characteristics Table 5.56 CTSU Characteristics Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Item Symbol Min. Typ. Max. Unit External capacitance connected to TSCAP pin Ctscap 9 10 11 nF TS pin capacitive load Cbase -- -- 50 pF Permissible output high current IOH -- -- 24 mA 5.10 Test Conditions When the mutual capacitance method is applied Characteristics of Power-On Reset Circuit and Voltage Detection Circuit Table 5.57 Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (1) Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Item Voltage detection level Power-on reset (POR) Voltage detection circuit (LVD0)*1 Voltage detection circuit (LVD1)*2 Voltage detection circuit (LVD2)*3 Symbol Min. Typ. Max. Unit VPOR 1.35 1.50 1.65 V Figure 5.72, Figure 5.73 Vdet0_0 3.67 3.84 3.97 V Vdet0_1 2.70 2.82 3.00 Figure 5.74 At falling edge VCC Vdet0_2 2.37 2.51 2.67 V Figure 5.75 At falling edge VCC V Figure 5.76 At falling edge VCC Vdet0_3 1.80 1.90 1.99 Vdet1_0 4.12 4.29 4.42 Vdet1_1 3.98 4.14 4.28 Vdet1_2 3.86 4.02 4.16 Vdet1_3 3.68 3.84 3.98 Vdet1_4 2.99 3.10 3.29 Vdet1_5 2.89 3.00 3.19 Vdet1_6 2.79 2.90 3.09 Vdet1_7 2.68 2.79 2.98 Vdet1_8 2.57 2.68 2.87 Vdet1_9 2.47 2.58 2.67 Vdet1_A 2.37 2.48 2.57 Vdet1_B 2.10 2.20 2.30 Vdet1_C 1.86 1.96 2.06 Vdet1_D 1.80 1.86 1.96 Vdet2_0 4.08 4.29 4.48 Vdet2_1 3.95 4.14 4.35 Vdet2_2 3.82 4.02 4.22 Vdet2_3 3.62 3.84 4.02 Test Conditions Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection. Note 1. n in the symbol Vdet0_n denotes the value of the OFS1.VDSEL[1:0] bits. Note 2. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits. Note 3. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[1:0] bits. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 153 of 177 RX230 Group, RX231 Group Table 5.58 5. Electrical Characteristics Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (2) Conditions: 1.8 V VCC0 = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V, Ta = -40 to +105C Symbol Min. Typ. Max. Unit Wait time after power-on reset cancellation Item At normal startup*1 tPOR 9.1 ms Figure 5.73 During fast startup time*2 tPOR 1.6 Wait time after voltage monitoring 0 reset cancellation Power-on voltage monitoring 0 reset disabled*1 tLVD0 568 s Figure 5.74 100 Power-on voltage monitoring 0 reset enabled*2 Test Conditions Wait time after voltage monitoring 1 reset cancellation tLVD1 100 s Figure 5.75 Wait time after voltage monitoring 2 reset cancellation tLVD2 100 s Figure 5.76 tdet 350 s Figure 5.72 Minimum VCC down time*3 tVOFF 350 s Figure 5.72, VCC = 1.0 V or above Power-on reset enable time tW(POR) 1 ms Figure 5.73, VCC = below 1.0 V LVD operation stabilization time (after LVD is enabled) Td(E-A) 300 s Figure 5.75, Figure 5.76 Hysteresis width (power-on rest (POR)) VPORH 110 mV VLVH 70 mV 60 When Vdet1_5 to Vdet1_9 is selected 50 When Vdet1_A or Vdet1_B is selected 40 When Vdet1_C or Vdet1_D is selected 60 When LVD2 is selected Response delay time Hysteresis width (voltage detection circuit: LVD1 and LVD2) When Vdet1_0 to Vdet1_4 is selected Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection. Note 1. When OFS1.(LVDAS, FASTSTUP) = 11b. Note 2. When OFS1.(LVDAS, FASTSTUP) 11b. Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, Vdet1, and Vdet2 for the POR/LVD. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 154 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics tVOFF VCC VPORH VPOR 1.0V Internal reset signal (active-low) tdet Figure 5.72 tdet tPOR Voltage Detection Reset Timing VPORH VPOR VCC 1.0 V tw(POR) Internal reset signal (active-low) *1 tdet tPOR Note 1. tw(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held below the valid voltage (1.0 V). When turning the VCC on, maintain a voltage below 1.0V for at least 1.0ms. Figure 5.73 Power-On Reset Timing tVOFF VCC VLVH Vdet0 Internal reset signal (active-low) tdet Figure 5.74 tdet tLVD0 Voltage Detection Circuit Timing (Vdet0) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 155 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics tVOFF VCC VLVH Vdet1 LVD1E Td(E-A) LVD1 Comparator output LVD1CMPE LVD1MON Internal reset signal (active-low) When LVD1RN = L tdet tdet tLVD1 When LVD1RN = H tLVD1 Figure 5.75 Voltage Detection Circuit Timing (Vdet1) tVOFF VCC VLVH Vdet2 LVD2E Td(E-A) LVD2 Comparator output LVD2CMPE LVD2MON Internal reset signal (active-low) When LVD2RN = L tdet tdet tLVD2 When LVD2RN = H tLVD2 Figure 5.76 Voltage Detection Circuit Timing (Vdet2) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 156 of 177 RX230 Group, RX231 Group 5.11 5. Electrical Characteristics Oscillation Stop Detection Timing Table 5.59 Oscillation Stop Detection Timing Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, Ta = -40 to +105C Item Symbol Min. Typ. Max. Unit tdr -- -- 1 ms Detection time M a in c lo c k Test Conditions Figure 5.77 M a in c lo c k td r tdr O S T D S R .O S T D F O S T D S R .O S T D F L o w -s p e e d c lo c k P L L c lo c k IC L K L o w -s p e e d c lo c k W h e n th e m a in c lo c k is s e le c te d IC L K W h e n th e P L L c lo c k is s e le c te d Figure 5.77 Oscillation Stop Detection Timing R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 157 of 177 RX230 Group, RX231 Group 5.12 5. Electrical Characteristics Battery Backup Function Characteristics Table 5.60 Battery Backup Function Characteristics Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, 1.8 V VBATT 5.5 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, Ta = -40 to +105C Item Symbol Min. Typ. Max. Voltage level for switching to battery backup (falling) VDETBATT 1.99 2.09 2.19 V Hysteresis width VVBATTH -- 100 -- mV tVOFFBATT -- -- 350 s VCC-off period for starting power supply switching Allowable voltage change rising/falling gradient Level for detection of voltage drop on the VBATT pin (falling) VBTLVDLVL[1:0] = 10b Test Conditions Figure 5.78 dt/dVCC 1.0 -- -- ms/V Figure 5.7 VDETBATLVD 2.11 2.20 2.29 V Figure 5.78 1.87 2.00 2.13 V -- 50 -- mV VBTLVDLVL[1:0] = 11b Hysteresis width for detection of voltage drop on the VBATT pin Note: Unit VBATLVDH The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (VDETBATT). tVOFFBATT VCC VBATT Backup power supply area Figure 5.78 VDETBATT VCC Cannot Be raised VDETBATLVD VCC supplied VCC voltage guaranteed range VVBATTH VBATT voltage guaranteed range VBATLVDH VBATT supplied VCC supplied Battery Backup Function Characteristics R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 158 of 177 RX230 Group, RX231 Group 5.13 5. Electrical Characteristics ROM (Flash Memory for Code Storage) Characteristics Table 5.61 ROM (Flash Memory for Code Storage) Characteristics (1) Symbol Min. Typ. Max. Unit Reprogramming/erasure cycle*1 Item NPEC 1000 -- -- Times Data hold time tDRP 20*2, *3 -- -- Year After 1000 times of NPEC Conditions Ta = +85C Note 1. Definition of reprogram/erase cycle: The reprogram/erase cycle is the number of erasing for each block. When the reprogram/ erase cycle is n times (n = 1000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in a 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited). Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics. Note 3. This result is obtained from reliability testing. Table 5.62 ROM (Flash Memory for Code Storage) Characteristics (2) High-Speed Operating Mode Conditions: 2.7 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V Temperature range for the programming/erasure operation: Ta = -40 to +105C Item Symbol Programming time 8-byte Erasure time 2-Kbyte Blank check time FCLK = 1 MHz FCLK = 32 MHz Unit Min. Typ. Max. Min. Typ. Max. tP8 -- 112 967 -- 52.3 491 s tE2K -- 8.75 278 -- 5.50 215 ms 512-Kbyte (when block erase command is used) tE512K -- 928 19218 -- 72.0 1679 ms 512-Kbyte (when allblock erase command is used) tEA512K -- 923 19013 -- 66.7 1469 ms 8-byte tBC8 -- -- 55.0 -- -- 16.1 s 2-Kbyte tBC2K -- -- 1840 -- -- 136 ms tSED -- -- 18.0 -- -- 10.7 s Erase operation forced stop time Start-up area switching setting time tSAS -- 12.3 566.5 -- 6.2 434 ms Access window time tAWS -- 12.3 566.5 -- 6.2 434 ms ROM mode transition wait time 1 tDIS 2.0 -- -- 2.0 -- -- s ROM mode transition wait time 2 tMS 5.0 -- -- 5.0 -- -- s Note: Note: Note: The time until each operation of the flash memory is started after instructions are executed by software is not included. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be within 3.5%. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 159 of 177 RX230 Group, RX231 Group Table 5.63 5. Electrical Characteristics ROM (Flash Memory for Code Storage) Characteristics (3) Middle-Speed Operating Mode Conditions: 1.8 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V Temperature range for the programming/erasure operation: Ta = -40 to +85C Item Symbol Programming time 8-byte Erasure time 2-Kbyte Blank check time FCLK = 1 MHz FCLK = 8 MHz Unit Min. Typ. Max. Min. Typ. Max. tP8 -- 152 1367 -- 97.9 936 s tE2K -- 8.8 279.7 -- 5.9 221 ms 512-Kbyte (when block erase command is used) tE512K -- 928 19221 -- 191 4108 ms 512-Kbyte (when allblock erase command is used) tEA512K -- 923 19015 -- 185 3901 ms 8-byte tBC8 -- -- 85.0 -- -- 50.88 s 2-Kbyte tBC2K -- -- 1870 -- -- 402 s tSED -- -- 28.0 -- -- 21.3 s Erase operation forced stop time Start-up area switching setting time tSAS -- 13.0 573.3 -- 7.7 451 ms Access window time tAWS -- 13.0 573.3 -- 7.7 451 ms ROM mode transition wait time 1 tDIS 2.0 -- -- 2.0 -- -- s ROM mode transition wait time 2 tMS 3.0 -- -- 3.0 -- -- s Note: Note: Note: The time until each operation of the flash memory is started after instructions are executed by software is not included. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be within 3.5%. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 160 of 177 RX230 Group, RX231 Group 5.14 5. Electrical Characteristics E2 DataFlash Characteristics (Flash Memory for Data Storage) Table 5.64 E2 DataFlash Characteristics (1) Symbol Min. Typ. Max. Unit Reprogramming/erasure cycle*1 Item NDPEC 100000 1000000 -- Times Data hold time tDDRP 20*2, *3 After 10000 times of NDPEC -- -- Year After 100000 times of NDPEC 5*2, *3 -- -- Year After 1000000 times of NDPEC -- 1*2, *3 -- Year Conditions Ta = +85C Ta = +25C Note 1. The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 100000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1000 times for different addresses in a 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited). Note 2. Characteristic when the flash memory programmer is used and the self-programming library is provided from Renesas Electronics. Note 3. These results are obtained from reliability testing. Table 5.65 E2 DataFlash Characteristics (2) : high-speed operating mode Conditions: 2.7 V VCC = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V Temperature range for the programming/erasure operation: Ta = -40 to +105C Item Symbol FCLK = 1 MHz FCLK = 32 MHz Min. Typ. Max. Min. Typ. Max. Unit Programming time 1 byte tDP1 -- 95.0 797 -- 40.8 376 s Erasure time 1 Kbyte tDE1K -- 19.5 498 -- 6.2 230 ms 8 Kbyte tDE8K -- 119.8 2556 -- 12.9 368 ms Blank check time 1 byte tDBC1 -- -- 55.00 -- -- 16.1 s 1 Kbyte tDBC1K -- -- 0.72 -- -- 0.50 ms Erase operation forced stop time tDSED -- -- 16.0 -- -- 10.7 s DataFlash STOP recovery time tDSTOP 5.0 -- -- 5.0 -- -- s Note: Note: Note: The time until each operation of the flash memory is started after instructions are executed by software is not included. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be within 3.5%. Table 5.66 E2 DataFlash Characteristics (3) : middle-speed operating mode Conditions: 1.8 V VCC0 = VCC_USB = AVCC0 5.5 V, VSS = AVSS0 = VSS_USB = 0 V Temperature range for the programming/erasure operation: Ta = -40 to +85C Item Programming time Erasure time Blank check time Symbol FCLK = 1 MHz FCLK = 8 MHz Min. Typ. Max. Min. Typ. Max. 1197 -- 86.5 823 -- 1 byte tDP1 -- 135 1 Kbyte tDE1K -- 19.6 501 8 Kbyte tDE8K -- 120 2558 1 byte tDBC1 -- -- 85.0 -- Unit s 8.0 265 ms 27.7 669 ms -- 50.9 s 1 Kbyte tDBC1K -- -- 0.72 -- -- 1.45 ms Erase operation forced stop time tDSED -- -- 28.0 -- -- 21.3 s DataFlash STOP recovery time tDSTOP 0.72 -- -- 0.72 -- -- s Note: Note: Note: The time until each operation of the flash memory is started after instructions are executed by software is not included. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be within 3.5%. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 161 of 177 RX230 Group, RX231 Group 5.15 5.15.1 5. Electrical Characteristics Usage Notes Connecting VCL Capacitor and Bypass Capacitors This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU automatically to the optimum level. A 4.7-F capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and the VSS pin. Figure 5.79 to Figure 5.81 shows how to connect external capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin. Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor as closer to the MCU power supply pins as possible. Use a recommended value of 0.1 F as the capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit in the User's Manual: Hardware. For the capacitors related to analog modules, also see section 43, 12-Bit A/D Converter (S12ADE) in the User's Manual: Hardware. For notes on designing the printed circuit board, see the descriptions of the application note, the Hardware Design Guide (R01AN1411EJ). The latest version can be downloaded from the Renesas Electronics website. R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 162 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics 77 51 52 53 54 55 56 57 58 59 61 VCC 60 63 76 VSS 62 64 65 66 67 68 69 70 71 72 73 74 75 Bypass capacitor 0.1 F 50 49 78 48 79 47 80 46 81 45 82 44 83 43 84 42 RX230 Group, RX231 Group PLQP0100KB-B VSS_USB (100-pin LQFP) (Top view) VCC_USB 85 86 87 *1 88 89 90 *1 91 40 39 38 37 36 34 93 33 94 32 31 96 97 30 AVCC0 29 98 27 25 24 23 22 21 20 19 18 17 16 26 15 14 13 VSS 12 11 10 9 8 7 6 VCL 4 3 2 1 100 VCC 28 AVSS0 5 99 Bypass capacitor 0.1 F 35 92 95 Bypass capacitor 0.1 F 41 External capacitor for power supply stabilization 4.7 F Bypass capacitor 0.1 F Note: Do not apply the power supply voltage to the VCL pin . Use a 4.7-F multilayer ceramic capacitor for the VCL pin and place it close to the pin . A recommended value is shown for the capacitance of the bypass capacitors . Note 1. As the products of the RX230 group do not have VCC_USB or VSS_USB, a bypass capacitor is not required . Figure 5.79 Connecting Capacitors (100 Pins) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 163 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics 33 34 35 36 39 37 32 50 31 51 30 52 29 RX230 Group, RX231 Group PLQP0064KB-C (64-pin LQFP) (Top view) 53 54 55 56 57 58 59 60 28 27 26 25 VSS_USB*1 24 23 22 18 16 15 14 13 12 11 7 6 5 4 3 2 1 17 VCL 10 VCC 19 63 9 20 62 AVCC0 64 AVSS0 Bypass capacitor 0.1 F VCC_USB*1 21 61 8 VSS Bypass capacitor 0.1 F VCC 38 41 49 VSS 40 42 43 44 45 46 47 48 Bypass capacitor 0.1 F External capacitor for power supply stabilization 4.7 F Note: Bypass capacitor 0.1 F Do not apply the power supply voltage to the VCL pin . Use a 4.7-F multilayer ceramic capacitor for the VCL pin and place it close to the pin . A recommended value is shown for the capacitance of the bypass capacitors . Note 1. As the products of the RX230 group do not have VCC_USB or VSS_USB, a bypass capacitor is not required. Figure 5.80 Connecting Capacitors (64 Pins) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 164 of 177 RX230 Group, RX231 Group 5. Electrical Characteristics 25 26 27 29 VCC 28 31 37 VSS 30 32 33 34 35 36 Bypass capacitor 0.1 F 24 38 39 40 41 42 43 44 45 46 RX230 Group, RX231 Group VSS_USB PLQP0048KB-B (48-pin LQFP) VCC_USB (Top view) *1 22 21 20 19 18 Bypass capacitor 0.1 F *1 17 16 15 12 11 10 9 8 7 VCC 6 5 VSS VCL 4 13 3 14 48 AVSS0 2 47 AVCC0 1 Bypass capacitor 0.1 F 23 External capacitor for power supply stabilization Bypass 4.7 F capacitor 0.1 F Note: Do not apply the power supply voltage to the VCL pin. Use a 4.7-F multilayer ceramic capacitor for the VCL pin and place it close to the pin . A recommended value is shown for the capacitance of the bypass capacitors . Note 1. As the products of the RX230 group do not have VCC_USB or VSS_USB, a bypass capacitor is not required. Figure 5.81 Connecting Capacitors (48 Pins) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 165 of 177 RX230 Group, RX231 Group Appendix 1. Package Dimensions Appendix 1. Package Dimensions Information on the latest version of the package dimensions or mountings has been displayed in "Packages" on Renesas Electronics Corporation website. JEITA Package Code P-TFLGA100-5.5x5.5-0.50 RENESAS Code PTLG0100KA-A Previous Code 100F0M MASS[Typ.] 0.1g b1 x M w S B b D w S A S AB x M e ZD A S AB e A K J H G B E F E D C B ZE A 1 x4 v y S Index mark Index mark (Laser mark) Figure A 2 S 3 4 5 6 7 8 9 Reference Symbol 10 D E v w A e b b1 x y ZD ZE Dimension in Millimeters Nom Max 5.5 5.5 0.15 0.20 1.05 0.5 0.21 0.25 0.29 0.29 0.34 0.39 0.08 0.08 0.5 0.5 Min 100 -Pin TFLGA (PTLG0100KA-A) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 166 of 177 RX230 Group, RX231 Group Figure B Appendix 1. Package Dimensions 100 -Pin LQFP (PLQP0100KB-B) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 167 of 177 RX230 Group, RX231 Group Appendix 1. Package Dimensions 64-PIN PLASTIC FLGA (5x5) 60x b x M S AB A D w S A ZD e 8 ZE 7 6 B 5 E 4 3.90 3 2 C D INDEX MARK w S B 1 H G F E D C B E A 3.90 y1 A S S y S DETAIL C DETAIL E DETAIL D R0.17o0.015 0.70o0.03 0.55o0.04 R0.125o 0.02 0.75 0.55 R0.17o0.015 0.70o0.03 R0.125o0.02 0.55o0.04 0.75 0.55 b (LAND PAD) 0.34o0.03 (APERTURE OF SOLDER RESIST) Figure C 0.55 0.75 0.55o0.04 0.70o0.03 0.55 0.75 0.55o0.04 0.70o0.03 R0.275o0.02 R0.35o0.015 (UNIT:mm) ITEM D DIMENSIONS 5.00o0.10 E 5.00o0.10 w 0.20 e A 0.50 0.69o0.07 b 0.25o0.04 x 0.05 y 0.08 y1 0.20 ZD 0.75 ZE 0.75 P64FC-50-AN5 64 -Pin WFLGA (PWLG0064KA-A) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 168 of 177 RX230 Group, RX231 Group Appendix 1. Package Dimensions JEITA Package code P-HWQFN64-9x9-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0064KC-A P64K8-50-6B4-5 0.21 D 33 48 49 32 DETAIL OF A PART E A A1 17 64 c2 16 1 INDEX AREA A S y S Reference Symbol D2 A Lp EXPOSED DIE PAD 1 16 17 64 Dimension in Millimeters Min Nom Max D 8.95 9.00 9.05 E 8.95 9.00 9.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 ZE 49 32 33 48 ZD e b Figure D x M 0.25 0.30 0.50 0.30 0.40 0.50 x 0.05 y 0.05 ZD 0.75 ZE 0.75 c2 0.15 0.20 D2 7.50 E2 7.50 0.25 S AB 64 -Pin HWQFN (PWQN0064KC-A) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 169 of 177 RX230 Group, RX231 Group Figure E Appendix 1. Package Dimensions 64 -Pin LQFP (PLQP0064KB-C) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 170 of 177 RX230 Group, RX231 Group Appendix 1. Package Dimensions JEITA Package code P-HWQFN48-7x7-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0048KB-A 48PJN-A P48K8-50-5B4-7 0.13 D 25 36 DETAIL OF A PART 24 37 E A A1 13 48 c2 12 1 INDEX AREA A S y S Reference Symbol D2 A Lp EXPOSED DIE PAD 12 1 13 48 Dimension in Millimeters Min Nom Max D 6.95 7.00 7.05 E 6.95 7.00 7.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 ZE 37 24 36 25 ZD e b Figure F x M 0.25 0.30 0.50 0.30 0.40 0.50 x 0.05 y 0.05 ZD 0.75 ZE 0.75 c2 0.15 0.20 D2 5.50 E2 5.50 0.25 S AB 48 -Pin HWQFN (PWQN0048KB-A) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 171 of 177 RX230 Group, RX231 Group Figure G Appendix 1. Package Dimensions 48 -Pin LQFP (PLQP0048KB-B) R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Page 172 of 177 REVISION HISTORY RX230 Group, RX231 Group REVISION HISTORY REVISION HISTORY RX230 Group, RX231 Group Datasheet Classifications - Items with Technical Update document number: Changes according to the corresponding issued Technical Update - Items without Technical Update document number: Minor changes that do not require Technical Update to be issued Rev. Date 1.00 1.10 Jun 24, 2015 Oct 30, 2015 Page -- 1. Overview 3 5 6 Description Summary First edition, issued Table 1.1 Outline of Specifications (2/4), changed Table 1.1 Outline of Specifications (4/4): SD Host Interface (SDHIa) added Table 1.2 Comparison of Functions for Different Packages: RX230 Group added 3. Address Space 39 Figure 3.1 Memory Map in Each Operating Mode, changed 4. I/O Registers 67 Table 4.1 List of I/O Registers (Address Order) (25 / 42), changed 83 Table 4.1 List of I/O Registers (Address Order) (41 / 42), changed 5. Electrical Characteristics 85 Table 5.1 Absolute Maximum Ratings, changed 86 Table 5.2 Recommended Operating Voltage Conditions, changed 87 Table 5.3 DC Characteristics (1), changed 88 Table 5.4 DC Characteristics (2), changed 88 Table 5.5 DC Characteristics (3), changed 89 Table 5.7 DC Characteristics (5), changed 91 Figure 5.1 Voltage Dependency in High-Speed Operating Mode (Reference Data), changed 92 Figure 5.2 Voltage Dependency in Middle-Speed Operating Mode (Reference Data), changed 93 Figure 5.3 Voltage Dependency in Low-Speed Operating Mode (Reference Data), changed 94 Table 5.8 DC Characteristics (6), changed Figure 5.4 Voltage Dependency in Software Standby Mode (Reference Data), changed 95 Figure 5.5 Temperature Dependency in Software Standby Mode (Reference Data), changed 96 Figure 5.6 Temperature Dependency of RTC Operation with VCC Off (Reference Data), changed Table 5.10 DC Characteristics (8): Conditions changed 97 Table 5.11 DC Characteristics (9), changed 99 Table 5.16 Permissible Output Currents (1), changed 100 Table 5.17 Permissible Output Currents (2), changed 101 Table 5.18 Output Values of Voltage (1), changed 101 Table 5.19 Output Values of Voltage (2), changed 101 Table 5.20 Output Values of Voltage (3), changed 105 Figure 5.13 VOH/VOL and IOH/IOL Voltage Characteristics at Ta = 25C When High-Drive Output is Selected (Reference Data), changed 108 Figure 5.18 VOL and IOL Voltage Characteristics of RIIC Output Pin at Ta = 25C (Reference Data) 110 Table 5.21 Operating Frequency Value (High-Speed Operating Mode) and Table 5.22 Operating Frequency Value (Middle-Speed Operating Mode), changed 112 Table 5.26 Clock Timing, changed 116 Table 5.27 Reset Timing, changed 131 Table 5.41 Timing of On-Chip Peripheral Modules (4): Note changed 132 Table 5.43 Timing of On-Chip Peripheral Modules (6), changed 138 Figure 5.61 SSI Transmission/Reception Timing (SSICP.SCKP=0), changed 139 Figure 5.62 SSI Transmission/Reception Timing (SSICP.SCKP=1), changed 142 Figure 5.66 VREFH0 Voltage Range vs. AVCC0, changed R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Classification TN-RX*-A139A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E Page 173 of 177 RX230 Group, RX231 Group Rev. Date 1.10 Oct 30, 2015 REVISION HISTORY Description Summary Table 5.45 A/D Conversion Characteristics (1): Conditions and Voltage Range of Analog Input (Max.), changed 143 Table 5.46 A/D Conversion Characteristics (2): Conditions changed 144 Table 5.47 A/D Conversion Characteristics (3): Conditions changed 145 Table 5.48 A/D Conversion Characteristics (4): Conditions changed 146 Table 5.49 A/D Conversion Characteristics (5): Conditions changed and Absolute accuracy (Test Conditions) deleted 153 Table 5.57 Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (1), changed 154 Table 5.58 Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (2), changed 155 Figure 5.73 Power-On Reset Timing and Figure 5.74 Voltage Detection Circuit Timing (Vdet0), changed 159 Table 5.62 ROM (Flash Memory for Code Storage) Characteristics (2) HighSpeed Operating Mode: Note changed 160 Table 5.63 ROM (Flash Memory for Code Storage) Characteristics (3) Middle-Speed Operating Mode: Note changed 161 Table 5.65 E2 DataFlash Characteristics (2): high-speed operating mode, Note changed 161 Table 5.66 E2 DataFlash Characteristics (3): middle-speed operating mode, Conditions and Note changed 163 Figure 5.79 Connecting Capacitors (100 Pins), changed 164 Figure 5.80 Connecting Capacitors (64 Pins), changed 165 Figure 5.81 Connecting Capacitors (48 Pins), changed Appendix 1. Package Dimensions 167 Figure B 100 -Pin LQFP (PLQP0100KB-B), changed 170 Figure E 64 -Pin LQFP (PLQP0064KB-C), changed 172 Figure G 48 -Pin LQFP (PLQP0048KB-B), changed Page 142 R01DS0261EJ0110 Rev.1.10 Oct 30, 2015 Classification TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E TN-RX*-A137A/E Page 174 of 177 NOTES FOR CMOS DEVICES (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN). (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device. (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions. (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device. (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device. General Precautions in the Handling of MPU/MCU Products The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Handling of Unused Pins Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual. 2. Processing at Power-on The state of the product is undefined at the moment when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified. 3. Prohibition of Access to Reserved Addresses Access to reserved addresses is prohibited. The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed. 4. Clock Signals After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized. When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable. 5. Differences between Products Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems. The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products. 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. http://www.renesas.com SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Dusseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141 (c) 2015 Renesas Electronics Corporation. All rights reserved. Colophon 5.0