TSC2011, TSC2012 Datasheet High voltage, precision, bidirectional current sense amplifiers Features SO8 MiniSO8 * * * * * * * * Wide common mode voltage: - 20 to 70 V Offset voltage: 200 V max. 2.7 to 5.5 V supply voltage Different gain available: - TSC2011: 60 V/V - TSC2012: 100 V/V Gain error: 0.3% max. Offset drift: 5 V/C max. Quiescent current: 20 A in shutdown mode SO8 and MiniSO8 package Applications * * * * * * * High-side current sensing Low-side current sensing Data acquisition and instrumentation Test and measurement equipment Industrial process control Motor control Solenoid control Maturity status link TSC2011, TSC2012 Description The TSC2011 and TSC2012 are precision bidirectional current sense amplifiers. They can sense the current thanks to a shunt resistor over a wide range of common mode voltages, from - 20 to + 70 V, whatever the supply voltage is. They are available with an amplifier gain of 60 V/V for TSC2011 and 100 V/V for TSC2012. They are able to sense very low drop voltages as low as 10 mV full scale minimizing the measurement error. The TSC2011 and TSC2012 can also be used in other functions such as: precision current measurement, overcurrent protection, current monitoring, and feedback loops. This device fully operates over the broad supply voltage range from 2.7 to 5.5 V and over the industrial temperature range from - 40 to 125 C. DS13057 - Rev 2 - January 2020 For further information contact your local STMicroelectronics sales office. www.st.com TSC2011, TSC2012 Diagram 1 Diagram Figure 1. Block diagram DS13057 - Rev 2 page 2/49 TSC2011, TSC2012 Pin configuration 2 Pin configuration Figure 2. Pin connection (top view) Table 1. Pin description DS13057 - Rev 2 Pin Pin name Description 1 IN - 2 GND 3 VREF2 Reference voltage 2 4 SHDN Shutdown 5 OUT Output 6 VCC Supply voltage 7 VREF1 8 IN + Negative input Ground Reference voltage 1 Positive input page 3/49 TSC2011, TSC2012 Maximum ratings 3 Maximum ratings Table 2. Absolute maximum ratings Symbol Parameter Value Unit -0.3 to 7 V -25 to 76 V 7 V Gnd - 0.3 to Vcc + 0.3 V 5 mA -65 to 150 C 150 C SO8 125 C/W MiniSO8 190 Human body model (HBM) (5) 2000 Charged device model (CDM) (6) 1000 Latch-up immunity 200 VCC Supply voltage VICM Common mode voltage on input pins VDIF Differential voltage between input pins (In+, In-) VREF1 VREF2 VOUT IIN (1) Voltage present on pins Ref1, Ref2, Out Input current to any pins (2) TSTG Storage temperature TJ Junction temperature Thermal resistance junction to ambient RTHJA ESD (3)(4) V mA 1. All voltage values, except the differential voltage are with respect to the network ground terminal. 2. Input voltage can go beyond supply voltage but input current must be limited. Using a serial resistor with the input is highly recommended in that case. 3. Short-circuits can cause excessive heating and destructive dissipation. 4. Rth are typical values. 5. According to JEDEC standard JESD22-A114F. 6. According to ANSI/ESD STM5.3.1.According to ANSI/ESD STM5.3.1. Table 3. Operating conditions Symbol Value Unit Vcc Supply voltage 2.7 to 5.5 V Vicm Common mode voltage on input pins -20 to +70 V Vref Output offset adjustment range 0 to Vcc V -40 to 125 C T DS13057 - Rev 2 Parameter Operating free-air temperature range page 4/49 TSC2011, TSC2012 Electrical characteristics 4 Electrical characteristics Table 4. Electrical characteristics Vcc = 2.7 V, Vicm = 12 V, T = 25 C (unless otherwise specified). Symbol Parameter Conditions Min. Typ. Max. 1.5 2.3 Unit Power supply Current consumption Icc Current consumption with shutdown active Vicm = -20 to 70 V 2.3 Tmin < T < Tmax Vicm = - 20 to 70 V 20 50 Tmin < T < Tmax 150 Vicm = 1 V 200 Tmin < T < Tmax 700 Vicm = 12 V 500 Tmin < T < Tmax 1100 mA A Input |Vos| |Vos/T| CMR Iib+ Iib- |Vsense| Offset voltage (RTI) (1) Offset drift vs. temperature Common mode rejection Input bias current Input bias current Vsense operating range with Eg 0.3% (2) V Vicm = 1 V, Tmin < T < Tmax 5 Vicm = 12 V, Tmin < T < Tmax 8 Vicm = -20 to 70 V, DC mode 90 Tmin < T < Tmax 85 Vicm = 12 V Tmin < T < Tmax, Vicm = -20 to 70 V dB 350 -400 Vicm = 12 V Tmin < T < Tmax, Vicm= - 20 to 70 V 115 V/C 600 100 -150 A 350 TSC2011 40.5 Tmin < T < Tmax 39.3 TSC2012 23.9 Tmin < T < Tmax 22.7 mV Output G Gain Eg Gain error vs. temperature 60 TSC2012 100 0.3 Tmin < T < Tmax 0.3 25 Gain error drift Tmin < T < Tmax NLE Linearity error Vicm = 12 V Vol Drop voltage output high Output voltage low V/V Vout = 100 mV to (Vcc - 100 mV) Eg/T Vcc - Voh DS13057 - Rev 2 TSC2011 Isource = 0.2 mA 0.03 8 Isink = 0.2 mA Tmin < T < Tmax 12 ppm/C % 15 20 Tmin < T < Tmax % 20 30 mV mV page 5/49 TSC2011, TSC2012 Electrical characteristics Symbol Iout Reg Load Parameter Output current Load regulation Conditions Min. Typ. Max. Sink mode 12 20 25 Tmin < T < Tmax 15 Source mode 6 Tmin < T < Tmax 8 Iout = - 10 to +4 mA Unit 30 10 14 mA 17 0.3 1.5 mV/mA OFFSET adjustment Rt Acc Ratiometric accuracy Accuracy, RTO Voltage applied to Vref1 and Vref2 in parallel 0.5 V/V 0.1 % Dynamic performances Rl = 10 k, Cl = 100 pF BW Small signal -3 dB bandwidth TSC2011 500 Tmin < T < Tmax 250 TSC2012 330 Tmin < T < Tmax 170 620 kHz 415 Rl = 10 k, Cl = 100 pF, Vicm = 1 V SR En Slew rate TSC2011, Vsense = 40 mV 2.7 Tmin < T < Tmax 2.5 TSC2012, Vsense = 24 mV 2.0 Tmin < T < Tmax 1.8 3.5 V/s 2.8 Noise, RTI 0.1 Hz to 10 Hz 37 Vpp Spectral density, RTI f = 1 kHz 100 nV/Hz Shutdown function (active high) Vil Logical low level 0 0.3xVcc Vih Logical high level 0.7xVcc Vcc Iih Leakage current Vshdn = Vcc (Shutdown mode) V 0.9 A TSC2011 6 s TSC2012 8 Vshdn= 2.7 V to 0 V, Rl = 10 k Ton Turn-on time Vshdn = 0 V to 2.7 V, Rl= 10 k Toff Iout Turn-off time Output leakage current TSC2011 4 TSC2012 5 Shdn active 50 s nA 1. RTI stands for "Related to input". 2. Vsense=(Vin+) - (Vin-). DS13057 - Rev 2 page 6/49 TSC2011, TSC2012 Electrical characteristics Table 5. Electrical characteristics (Vcc = 5 V, Vicm = 12 V, T = 25 C unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. 1.6 2.4 Unit Power supply Current consumption Icc Current consumption with shutdown active SVR Supply voltage rejection Vicm = -20 to 70 V 2.4 Tmin < T < Tmax Vicm = - 20 to 70 V 20 150 Tmin < T < Tmax Vcc = 2.7 to 5.5 V Tmin < T < Tmax 50 80 100 mA A dB 75 Input |Vos| |Vos/T| CMR Iib+ Iib- Offset voltage (RTI) (1) Offset drift vs. temperature Common mode rejection Input bias current Input bias current Vicm = 1 V 200 Tmin < T < Tmax 700 Vicm = 12 V 500 Tmin < T < Tmax 1100 V Vicm = 1 V, Tmin < T < Tmax 5 Vicm = 12 V, Tmin < T < Tmax 8 Vicm = -20 to 70 V, DC mode 90 Tmin < T < Tmax 85 Vicm = 12 V Tmin < T < Tmax, Vicm = -20 to 70 V -400 600 100 -150 Vsense operating range with Eg 0.3% (2) A 350 TSC2011 |Vsense| dB 350 Vicm = 12 V Tmin < T < Tmax, Vicm= - 20 to 70 V 120 V/C 78 Tmin < T < Tmax 77.6 TSC2012 46.9 Tmin < T < Tmax 45.7 mV Output G Gain Eg Gain error vs. temperature 60 TSC2012 100 0.3 Tmin < T < Tmax 0.3 25 Gain error drift Tmin < T < Tmax NLE Linearity error Vicm = 12 V Vol Drop voltage output high Output voltage low V/V Vout = 100 mV to (Vcc - 100 mV) Eg/T Vcc - Voh DS13057 - Rev 2 TSC2011 Isource = 0.2 mA 0.03 15 Isink = 0.2 mA Tmin < T < Tmax 26 ppm/C % 30 35 Tmin < T < Tmax % 40 50 mV mV page 7/49 TSC2011, TSC2012 Electrical characteristics Symbol Iout Reg Load Parameter Output current Load regulation Conditions Min. Typ. Max. Sink mode 25 36 50 Tmin < T < Tmax 30 Source mode 12 Tmin < T < Tmax 18 Iout = -10 to +10 mA Unit 60 25 45 mA 55 0.3 1.5 mV/mA OFFSET adjustment Rt Acc Ratiometric accuracy Accuracy, RTO Voltage applied to Vref1 and Vref2 in parallel 0.5 V/V 0.1 % Dynamic performance Rl = 10 k, Cl = 100 pF BW Small signal -3 dB bandwidth TSC2011 600 Tmin < T < Tmax 300 TSC2012 390 Tmin < T < Tmax 200 750 kHz 490 Rl = 10 k, Cl = 100 pF, Vicm = 1 V SR En Slew rate TSC2011, Vsense = 78 mV 6.2 Tmin < T < Tmax 4.8 TSC2012, Vsense = 47 mV 4.4 Tmin < T < Tmax 3.2 8 V/s 5.2 Noise, RTI 0.1 Hz to 10 Hz 37 Vpp Spectral density, RTI f = 1 kHz 100 nV/Hz Shutdown function (active high) Vil Logical low level 0 0.3xVcc Vih Logical high level 0.7xVcc Vcc Iih Leakage current Vshdn = Vcc (Shutdown mode) V 1.2 A TSC2011 6 s TSC2012 8 Vshdn= 5 V to 0 V, Rl = 10 k Ton Turn-on time Vshdn = 0 V to 5 V, Rl= 10 k Toff Iout Turn-off time Output leakage current TSC2011 4 TSC2012 5 Shdn active 50 s nA 1. RTI stands for "Related to input". 2. Vsense = (Vin+) - (Vin-). DS13057 - Rev 2 page 8/49 TSC2011, TSC2012 Typical characteristics 4.1 Typical characteristics TSC2011 is used for typical characteristics, unless otherwise noted. Figure 3. Supply current vs. supply voltage Figure 4. Supply current vs. input common mode 1.9 1.9 Vicm=2.5V 1.7 Vicm=0V Vicm=12V 1.6 1.5 Vicm=70V 2.8 3.1 3.5 3.9 4.2 4.5 1.7 Vcc=5V 1.6 Vcc=3.3V 1.5 Vcc=2.7V Vref=Vcc/2 Vsense=0V T=25C 1.4 4.9 1.3 -20 1.4 1.3 Vref=Vcc/2 Vsense=0V T=25C 1.8 Supply current (mA) Supply Current (mA) 1.8 5.3 -10 0 10 Supply voltage (V) 20 30 40 50 60 70 Vicm (V) Figure 6. Supply current vs. input common mode with active shutdown mode Figure 5. Supply current vs. temperature 1.9 24 Vicm= -20V 22 1.8 Vicm=0V 1.7 Supply Current (A) Supply Current (mA) 20 Vicm=12V 1.6 Vicm=48V 1.5 Vicm=70V 20 40 60 Temperature (C) DS13057 - Rev 2 12 80 100 120 Vcc=3.3V 10 8 2 0 Vcc=5V 14 4 Vsense=0V Vcc=5V -20 16 6 1.4 Vref=Vcc/2 1.3 -40 18 0 -20 Vref=Vcc/2 SHDN=Vcc Vsense=0V T=25C -10 0 Vcc=2.7V 10 20 30 40 50 60 70 Vicm (V) page 9/49 TSC2011, TSC2012 Typical characteristics Figure 7. Input bias current vs. input common mode with shutdown active Figure 8. Input bias current vs. temperature VCC = 2.7 V 600 400 500 300 400 Iibp 300 200 Iibp 25C Iibp -40 C Iib (A) 100 Iib (A) 200 Iibn 0 -100 100 Iibn [-40 : 125] 0 -100 -200 -200 -300 -400 -20 -10 0 Iibp 125C -300 Vref=Vcc/2 SHDN=Vcc Vsense=0V T=25 C Vcc=2.7 to 5.5V Vref=VCC /2 Vsense=0V Vcc=2.7V -400 -500 10 20 30 40 50 60 -600 -20 70 -10 0 10 20 Vicm (V) Figure 9. Input bias current vs. temperature with VCC = 5 V 500 400 300 Iibp -40 C Iibp 25C Vio (V) Iib (A) 200 0 Iibn [ -40 :125 ] -100 -200 Iibp 125 C -300 Vref=Vcc/2 Vsense=0V Vcc=5V -400 -500 -600 -20 -10 0 10 20 30 Vicm (V) DS13057 - Rev 2 40 50 60 70 Figure 10. Input offset voltage vs. temperature 600 100 30 Vicm (V) 40 50 60 70 700 600 500 400 300 200 100 0 -100 -200 -300 -400 Vref=Vcc/2 Vsense=0V -500 Vcc=5V -600 -700 -40 -20 0 Vicm=48V Vicm=12V Vicm= -20V Vicm=70V Vicm=0V 20 40 60 80 100 120 Temperature (C) page 10/49 TSC2011, TSC2012 Typical characteristics 700 600 500 400 300 200 100 Figure 12. Input offset voltage vs. input common mode with VCC = 5 V T=125C T=25C T=85C 0 T=-20C -100 -200 -300 -400 -500 -600 Vio (V) Vio (V) Figure 11. Input offset voltage vs. input common mode with VCC = 2.7 V T=-40C T=0C Vref=Vcc/2 Vsense=0V Vcc=2.7V -700 -20 -10 0 10 20 30 40 50 60 70 700 600 500 400 300 200 100 0 T=-40C -100 -200 -300 -400 Vref=Vcc/2 -500 Vsense=0V -600 Vcc=5V -700 -20 -10 0 Vicm (V) Vicm=12V Vicm=5V 100 -100 -200 Vicm=1V Vicm= -20V Vicm=48V Vicm= -10V Vicm=70V -300 Vref=Vcc/2 Vsense=0V T=25C -400 -500 3.0 3.5 4.0 Vcc (V) DS13057 - Rev 2 Iout (mA) Vio (V) 200 0 T=-20C 10 20 30 T=85 C T=0C 40 50 60 70 Figure 14. Output current vs. output voltage 500 300 T=25 C Vicm (V) Figure 13. Input offset voltage vs. supply voltage 400 T=125 C 4.5 5.0 5.5 40 35 30 Isink 25 20 15 10 Vcc=2.7V Vcc=3.3V Vcc=5.5V 5 0 -5 -10 -15 -20 Vref=Vcc/2 -25 Vsense=100mV -30 Isource Vicm=12V T=25C -35 -40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Vout (V) page 11/49 TSC2011, TSC2012 Typical characteristics Figure 15. Voh and Vol vs. input common mode voltage with VCC = 5 V Figure 16. (Output voltage - Vref) vs. Vsense unidirectionnal with VCC = 5 V 6.0 5.4 4.8 4.2 34 Vref=0V Vcc=5V T=25 C Unidirectionnal 3.6 26 VOL 17 VOH Vout (V) VOH and VOL drop (mV) 43 Vcc=5V; Vref=Vcc/2 Vsense= 100mV Rl=10k connected to Vcc/2 T=25 C 3.0 2.4 1.8 1.2 0.6 9 0.0 -0.6 0 -20 -10 0 10 20 30 40 50 60 -10 70 0 10 20 Vicm (V) 4.2 60 70 80 90 5.5 Vref=Vcc/2 Vcc=5V T=25 C Bidirectionnal 5.0 Vout (V) 3.6 3.0 2.4 Vcc=5V Vicm=12V Vref=Vcc/2 T=25C Rl=10k No load 4.5 Rl=1k 1.8 1.2 0.0 Rl=2k 0.6 Rl=4.7k 0.0 -0.6 Vsense (mV) DS13057 - Rev 2 50 50 40 45 30 40 20 -40 10 -45 0 -50 -0.5 -50 -40 -30 -20 -10 35 Vout (V) 50 Figure 18. Output rail linearity vs. load with VCC = 5 V 6.0 4.8 40 Vsense (mV) Figure 17. (Output voltage - Vref) vs. Vsense bidirectionnal with VCC = 5 V 5.4 30 Vsense (mV) page 12/49 TSC2011, TSC2012 Typical characteristics Figure 19. Linearity vs. Vsense with VCC = 5 V Figure 20. Linearity vs. Vsense and temperature 0.15 0.15 0.12 0.12 0.09 0.09 0.06 Vicm=1V Vicm=-10V 0.03 Linearity error (%) Linearity error (%) 0.06 0.00 -0.03 -0.06 Vicm=12V -0.09 Vref=Vcc/2 Vcc=5V T=25C -0.12 -0.15 -50 -40 -30 -20 -10 0 10 20 30 40 -0.03 T=-40C -0.06 -0.15 -50 50 T=125C Vref=Vcc/2 Vcc=5V Vicm=12V -40 -30 -20 -10 0 10 20 30 40 50 Vsense (mV) Figure 22. Gain error vs. input common mode and temperature 0.30 0.30 0.25 0.25 0.20 0.20 0.15 0.15 0.10 0.05 Vcc=2.7V Vcc=3.3V 0.00 -0.05 -0.10 Vcc=5V -0.15 -20 -0.05 0 T=-40C -0.10 -0.25 -10 T=25C 0.00 -0.20 10 20 30 Vicm (V) DS13057 - Rev 2 0.05 -0.15 Vref=Vcc/2 T=25C -0.30 T=125C 0.10 Gain error(%) Gain error(%) 0.00 -0.12 Figure 21. Gain error vs. input common mode -0.25 T=25C -0.09 Vsense (mV) -0.20 0.03 40 50 60 70 -0.30 -20 Vref=Vcc/2 Vcc=5V -10 0 10 20 30 40 50 60 70 Vicm (V) page 13/49 TSC2011, TSC2012 Typical characteristics Figure 23. Load regulation with VCC = 5 V Figure 24. Gain vs. frequency 1.30 Vcc = 3.3 V 40 Isink Isource Vcc = 5 V 1.25 Vcc = 2.7 V 20 Gain (dB) Vout (V) Vicm=70V Vicm=12V 1.20 Vicm=-20V 1.15 1.10 -15.0 -10.0 -5.0 -20 Vref=Vcc/2 Vsense=19.8mV Vcc=5V T=25C Vicm=0V 0.0 5.0 10.0 0 Vicm = 12 V, Vref = Vcc / 2 Rl = 10k ,Cl = 100 pF connected to Vcc / 2 -40 15.0 1 10 Iout (mA) 100 1000 Frequency (kHz) Figure 25. Gain vs. frequency (VCC = 5 V) Figure 26. Gain vs. frequency for different load TSC2012 40 40 CI = 100 pF TSC2011 20 20 Gain (dB) Gain (dB) 10000 0 CI = 330 pF 0 CI = 470 pF -20 -20 Vicm = 12 V, Vref = Vcc / 2 RI = 10k , Cl = 100pF connected to Vcc / 2 -40 1 10 100 Frequency (kHz) DS13057 - Rev 2 1000 Vcc=5V, Vicm=12V, Vref=Vcc/2 RI=10k connected to Vcc/2 -40 10000 1 10 100 1000 10000 Frequency (kHz) page 14/49 TSC2011, TSC2012 Typical characteristics Figure 27. Gain vs. different capacitive load (TSC2012) Figure 28. Bandwidth vs. input common mode 1.1M 40 Bandwidth -3dB (Hz) 900.0k Gain (dB) 20 Cl = 330 pF Cl = 470 pF 0 Cl = 680 pF -20 T = 25C 800.0k 700.0k T =125C 600.0k 500.0k 400.0k 300.0k Vref=Vcc/2 Vcc=5V Rl=10k , Cl=100pF connected to Vcc/2 200.0k Vcc = 5 V, Vicm = 12 V, Vref = Vcc / 2 RI = 10k connected to Vcc / 2 -40 T = -40C 1.0M Cl = 100 pF 1 10 100 100.0k 1000 0.0 -20 10000 -10 0 10 Figure 29. Bandwidth vs. input common mode (TSC2012) 70 30 T = - 40 C 600.0k Overshoot (%) Bandwidth -3dB (Hz) 60 TSC2011 Vsense step = 10 mVpp 35 700.0k T = 25 C 500.0k T = 125 C 400.0k 300.0k 25 20 15 TSC2012 Vsense step = 6 mVpp 10 Vref = Vcc / 2 Vcc = 5 V Rl = 10 k , Cl = 100pF connected to Vcc / 2 -10 0 10 20 30 Vicm (V) DS13057 - Rev 2 50 40 800.0k 0.0 -20 40 Figure 30. Overshoot vs. capacitive load 900.0k 100.0k 30 Vicm (V) Frequency (kHz) 200.0k 20 Vcc = 5 V, Vref = Vcc / 2, Vicm [-20 V : 70 V], Rl = 10 k , Cl connected to Vcc / 2 5 40 50 60 70 0 100 200 300 400 500 600 700 Capacitive load (pF) page 15/49 TSC2011, TSC2012 Typical characteristics Figure 32. Small signal response with VCC = 5 V (TSC2012) Figure 31. Small signal response with VCC = 5 V 1.0 50 1.0 50 Vout -0.5 0 -25 0.5 25 0.0 0 Vsense -0.5 -25 Vcc=5V, Vicm=12V, Vsense=10mVpp T=25C, Cl=100pF -1.0 -60 -40 -20 Vsense (mV) Vsense 0.0 Vout (V) 25 Vout Vsense (mV) Vout (V) 0.5 Vcc = 5 V, Vicm = 12 V, Vsense = 6 mVpp -50 20 0 T = 25 C, Cl = 100 pF -1.0 -60 -40 Time (s) -20 -50 20 0 Time (s) Figure 33. Small signal response with VCC = 2.7 V 1.0 50 0.5 25 Figure 34. Large signal response with VCC = 5 V 3 50 -0.5 0 -40 -20 Time (s) DS13057 - Rev 2 Vout Vcc=5V, Vicm=12V, Vsense=80mVpp Cl=100pF, T=25C -1 -25 -2 Vcc=2.7V, Vicm=12V, Vsense=10mVpp T=25C, Cl=100pF -1.0 -60 Vsense 0 0 -50 20 -25 -3 -5 0 5 0 Vsense (mV) Vsense 0.0 25 1 Vout (V) Vout Vsense (mV) Vout (V) 2 10 -50 15 Time (s) page 16/49 TSC2011, TSC2012 Typical characteristics 3 Figure 36. 12 V common mode step response recovery 50 5 4 2 20 15 Vicm 25 0 Vout Vcc=2.7V, Vicm=12V, Vsense=40mVpp Cl=100pF, T=25C -1 -2 0 2 0 1 -1 5 -50 15 10 0 10 20 30 Figure 37. 50 V common mode step response recovery Figure 38. PSRR vs. frequency -120 70 60 Vcc=3.3V 50 Vout 3 -100 40 30 2 10 0 1 -10 -20 Vcc=5V, Vicm edge 10ns, Vsense=0V, Vref=2.5V Rl=10k, Cl=100pF, T=25C 0 -1 -30 -50 10 Time (s) DS13057 - Rev 2 20 30 Vcc=2.7V Vcc=5V -60 -40 -20 -60 -70 0 -80 -40 -2 -10 Vicm (V) Vout (V) 20 PSRR (dB) Vicm -15 -20 -10 Time (s) 4 -10 -2 Time (s) 5 -5 Vcc=5V, Vicm edge 10ns, Vsense=0V, Vref=2.5V Rl=10k , Cl=100pF, T=25C 0 -25 -3 -5 0 10 5 Vout (V) Vsense Vsense (mV) Vout (V) Vout 3 1 Vicm (V) Figure 35. Large signal response with VCC = 2.7 V 0 100 Vicm=12V Vripple=100mVpp T=25C 1k 10k 100k 1M 10M Frequency (Hz) page 17/49 TSC2011, TSC2012 Typical characteristics Figure 40. Positive overvoltage recovery VCC = 2.7 V Figure 39. CMRR vs. frequency -120 100 Vcc=3.3V Vcc=2.7V 0 -100 50 -60 Vcc=5V -40 0 100 1k Vcc=2.7V, Vicm=12V, CI=100pF, T=25C -2 Vicm=12V Vripple=100mVpp T=25C -20 -50 Vout 100k 1M 10M -2 -1 0 1 3 Vcc=2.7V, Vicm=12V, CI=100pF T=25C 50 -50 0 -100 -1 0 1 2 Time (s) 5 6 3 4 Vref = Vcc / 2 Vcc = 5 V, T = 25 C Vout = 100 mV drop after Vsense edge 5 6 1.5 Over Voltage Recovery (s) 100 Vsense (mV) Vout (V) 150 0 -2 4 2.0 1.8 Vout Vsense 3 Figure 42. Overvoltage recovery vs. Vicm, VCC = 5 V 200 2 2 Time (s) Figure 41. Negative overvoltage recovery VCC = 2.7 V -3 -150 -200 -3 Frequency (Hz) 1 -100 -3 10k Vsense (mV) 0 -1 Vout (V) CMRR (dB) Vsense -80 Negative recovery time 1.3 1.0 0.8 0.5 Positive recovery time 0.3 0.0 -20 -10 0 10 20 30 40 Vicm (V) Lorem ipsum DS13057 - Rev 2 page 18/49 TSC2011, TSC2012 Typical characteristics Figure 43. Noise vs. frequency Figure 44. ON/OFF delay for shutdown mode 3 2 5V 1000 VSHDN 3.3V 1 2.7V 1V/div Equivalent Input Voltage Noise (nV/ Hz) 10000 100 Vout 0 Vref=Vcc/2 Vsense=20mV, Vcc=5V, Vicm=12V, RI=10k connected to Vcc-, T=25C -1 10 -2 Vicm=Vcc/2 Tamb=25C 1 100m 1 10 100 1k 10k 100k -3 -10 1M 0 10 20 Frequency (Hz) 50 60 70 Figure 46. Power up time delay 6 4.0 3.2 5 Vout phase reversal for Vsense<-4V 2.4 4 1.6 3 0.8 2 1V/div Vout (V) 40 Time (s) Figure 45. Output voltage vs. Vsense beyond the sense operating 0.0 -0.8 Vcc Vout 1 0 -1.6 -1 Vref=Vcc/2 Vcc=5V Vicm=12V T=25C -2.4 -3.2 -4.0 30 -7 -6 -5 -4 -3 -2 -1 0 1 Vsense (V) DS13057 - Rev 2 2 3 4 5 6 -2 7 -3 -40 -20 Vref=0V Vsense=20mV, Vcc=5V, Vicm=12V, RI=10k , Cl=100pF connected to Vcc-, T=25C 0 20 40 60 80 100 120 140 Time (s) page 19/49 TSC2011, TSC2012 Application information 5 Application information 5.1 Overview The TSC2011 is especially designed to accurately measure the current by amplifying the voltage across a shunt resistor connected to its input. This voltage drop Vsense is then amplified by an instrumentation amplifier providing a max. input offset voltage of 500 V (25C) for an input common voltage of 12 V. The TSC2011 is a fixed gain current sensing amplifier of 60 V/V. Thanks to a thin film resistor, the TSC2011 offers an extremely precise gain and a very high CMRR performance even in a high frequency range. Moreover, by fixing the output common mode voltage, the TSC2011 can be either used as unidirectional or bidirectional current sensing amplifier. The TSC2011 provides an extended input common range from - 20 V below the negative supply voltage, and up to 70 V allowing either low-side or high-side current sensing, while the TSC2011 device can operate from 2.7 to 5.5 V. The parameters are very stable in the full Vcc range and characterization curves show the TSC2011 characteristics at 2.7 V and 5.0 V. Moreover, the main specifications are guaranteed in an extended temperature range from -40 to 125 C. 5.2 Theory of operation The main feature of the TSC2011 is the ability to work with an input common mode voltage largely beyond the power supply Vcc range (2.7 V to 5.5 V). It is ideal, for example for automotive applications where a reverse battery can be supported by the TSC2011 without any damage. It also works with 48 V battery applications as the TSC2011 can support and measure the current on line at voltage up to 70 V. No additional protective components are needed in that range. * Vcc < Vicm < 70 V In this case, the power supply of the TSC2011 is issued by the input and not only by the Vcc power supply. More precisely, a current is drawn by the common mode rail as depicted in the Figure 47. Power supply when Vicm > Vcc to power it. Figure 47. Power supply when Vicm > Vcc DS13057 - Rev 2 page 20/49 TSC2011, TSC2012 Theory of operation In Figure 48. Input bias current vs. common mode voltage Vcc = 5 V, the current used to power the TSC2011 increases together with the Vicm voltage. The slope represents the internal common mode resistances. The most part of the current is drawn by the pin In+ as we can see on the iibp curve of Figure 9. Input bias current vs. temperature with VCC = 5 V the current is around 450 A. Some of it being Vicm / (R4+R1) and some supplies the input stage of the circuit, roughly 250 A. On the In- pin 250 A is drawn only. So due to the architecture of the TSC2011, the current to be measured must be much larger than the input bias current. In case of small current to measure the Iib current must be taken into account. Figure 48. Input bias current vs. common mode voltage Vcc = 5 V 600 500 400 300 Iibp Iib (A) 200 100 Iibn 0 -100 -200 -300 -400 Vref=Vcc/2 Vsense=0V Vcc=5V -500 -600 -20 -10 0 10 20 30 40 50 60 70 Vicm (V) * Gnd < Vicm < Vcc In this manner, the TSC2011 is only powered by the power supply Vcc, and the iib currents are very close to 0 A and do not have any impact on the current measurement. * - 20 V < Vicm < Gnd The TSC2011 is fully functional in this range of common mode voltage and has also been characterized. As the high positive common mode voltage, in this specific range, the TSC2011 is also powered by the input, see Figure 49. Power supply when Vicm < Gnd. DS13057 - Rev 2 page 21/49 TSC2011, TSC2012 Theory of operation Figure 49. Power supply when Vicm < Gnd Most part of the current is still due to the pin In+ as we can see on the iibp curve of Figure 9. Input bias current vs. temperature with VCC = 5 V. The current is about - 300 A, some of it being Vicm / (R4 + R1) and some other supplies the circuit, roughly 250 A. A small part of the current, coming from the common mode rail, is also due to the input In- in order to power the TSC2011, in a range of - 100 V. * Output common mode range The TSC2011 output common mode voltage level can be set thanks to voltages applied on the Vref1 and Vref2 pins. These two pins allow the device to be set either in bidirectional or in unidirectional operation. The voltage applied to those pins must not exceed the Vcc range. The different configurations are detailed in the section Unidirectionnal/Bidirectionnal operation. As depicted by the Figure 50. Vref powered by an external voltage source, Vref1 and Vref2 pins can be driven by an external voltage source capable of sourcing/sinking a current following the equation below: Iref = Vicm - Vref 5k + 275k + 25k (1) Figure 50. Vref powered by an external voltage source DS13057 - Rev 2 page 22/49 TSC2011, TSC2012 Theory of operation When the output common mode voltage is supplied by an external power supply, in order to improve the output voltage measurement, it is recommended to measure the Vout differentially with respect to Vref voltage. It provides a better CMRR measurement, better noise immunity and also a more accurate Vout voltage. A decoupling capacitance of 1 nF minimum can be also added to better filter the power supply, and can also be used as a tank capacitance in case an ADC is connected to this reference voltage. DS13057 - Rev 2 page 23/49 TSC2011, TSC2012 Unidirectionnal / bidirectionnal operation 5.3 Unidirectionnal / bidirectionnal operation * Unidirectional operation Unidirectional mode of operation allows the device to measure the current through a shunt resistor in one direction only. The output reference can be ground or Vcc and can be set by using Vref1 and Vref2 pins for adjustment. * Ground referenced Figure 51. Output reference to ground In this configuration Vref1 pin and Vref2 pin are connected together to the ground. The output common mode voltage is then automatically set to GND when no current flows through the Rshunt resistance. This configuration allows the full scale output in unidirectional mode. It allows a current to be measured as described in Figure 51. Output reference to ground. * Vcc referenced Figure 52. Output reference to Vcc DS13057 - Rev 2 page 24/49 TSC2011, TSC2012 Unidirectionnal / bidirectionnal operation In this configuration Vref1 pin and Vref2 pin are connected together to the Vcc power supply. The output common mode voltage is then automatically set to Vcc voltage when no current flows through the Rshunt resistance. This configuration allows the full scale output in unidirectional mode. It measures the current as described in Figure 52. Output reference to Vcc. * Bidirectional operation Bidirectional mode of operation allows the device to measure currents through a shunt resistor in two directions. The output reference can be set anywhere within the power supply range. If the output common mode voltage is set at mid-range, the full scale current measurement range is equal in both directions. This is achieved by connecting one Vref pin to Vcc and the other Vref pin to Gnd as described by Figure 53. Split supply. It can be done as well connecting both Vref pins to Vcc / 2 voltage as described by Figure 54. External supply. In case the current measurement is not equal in both directions, user can set the output in a non-symmetrical configuration, adjusting Vref according to the user's needs. * Split supply Figure 53. Split supply The great advantage of this configuration, is that the TSC2011 can be used in bidirectional mode with an output common mode voltage set at the middle of scale, with an accuracy of 0.1%, without any added external component or power supply. This configuration creates a midscale offset ratiometric to the power supply. DS13057 - Rev 2 page 25/49 TSC2011, TSC2012 RSENSE selection * External Figure 54. External supply In this configuration, Vref1 pin and Vref2 pin are connected together to a reference voltage. The output common mode voltage is then automatically set to this reference voltage value when no current flows through the Rshunt resistance. This configuration adjusts the output offset as needed by the application. A DAC for calibration of the analog chain could also be used. 5.4 RSENSE selection The selection of the shunt resistor is a tradeoff between the dynamic range and power dissipation. Generally, in high current sensing application, the main focus is to reduce as much as possible the power dissipation (IR) by choosing the smallest value of shunt. It could be quite easy if a full scale current to measure is small. In low current applications the Rsense value could be higher, to minimize the impact of the offset voltage on the circuit. Due to input bias current of several A, the TSC2011 cannot measure the current in the same range, when the common mode voltage overpasses the power supply voltage (refer to section about theory of operation). The tradeoff is mainly when a dynamic range of current to measure is large, meaning ability to measure with the same shunt value from low current to high current. Generally, the current full scale (Imax-Imin) defines the shunt value thanks to the full output voltage range, the gain of the TSC2011. The TSC2011 can work with a full scale Vout = 100 mV to Vcc - 100 mV with maximum gain accuracy of 0.3%. At first order, the full current range to measure through Rsense can be defined by equation 2, just by taking the gain error and input offset voltage as inaccuracy parameters: Isense_full_scale*Rsense = Vcc - 200mV - 2 Vio TSC_Gain 1 + Eg (2) The Vsense parameter is defined in the electrical characteristics following the equation 2. Its purpose is to highlight that the product Rsense*TSC_gain is determined by the application, and that once one of these two parameters is selected, the maximum value of the second one can be calculated. * If power dissipation in the shunt is the key point, RSense should be chosen as follows: Rsense Pmax Imax and then choosing the right gain. For example, for high current to sense, the TSC2012 can offer a gain of 100, in this manner a smaller shunt can be used and so limited power losses. However accuracy can be lower. * DS13057 - Rev 2 Or choosing the product available on the shelf, and then size the shunt resistor value accordingly. page 26/49 TSC2011, TSC2012 Input offset voltage drift overtemperature 5.5 Input offset voltage drift overtemperature The maximum input offset voltage drift overtemperature is defined as the offset variation related to the offset value measured at 25 C. The signal chain accuracy at 25 C can be compensated during production at application level. The maximum input voltage drift overtemperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift over temperature is computed using equation 3: Vio Vio T - Vio 25C = max T T - 25C (3) Where T = -40 C and 125 C. The TSC2011 datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 1.3. DS13057 - Rev 2 page 27/49 TSC2011, TSC2012 Error calculation 5.6 Error calculation The principal source of error, such as: input offset voltage, gain error, common mode rejection ration, are described separately in the electrical characteristics. This chapter summarizes the most important error to take into account during a design phase. * Input offset voltage error The equation 2 depicts a first order error calculation just by taking into account the input offset voltage. In a temperature environment, the deviation of the Vio and the error linked to the input offset on the output voltage can be written as equation 4: * VioError = Vio Dvio/Dt *Gain (4) Gainerror = Gain 1 + gain (5) Gain error and shunt resistance accuracy Rsenseerror = Gain 1 + Rsense (6) Where gain is the gain error 0.3% max for the TSC2011. Where Rsense is the shunt resistance error. Shunt resistors from 5 m to 100 m are available with 1% accuracy or better. * CMR error In the electrical characteristics, CMR is specified at one input common mode voltage. So in order to take into consideration the variation of the input voltage offset depending the Vicm, the calculus must be done till this known point. Let us get the Vicm = 12 V as reference point. So the error on Vout due to a common mode voltage variation can be written as the equation 7: * CMRerror = Output common mode error (Vocm) Vicm - 12V *Gain CMR (7) This error can be taken into account when the output common mode voltage is set like suggested in the Figure 55. Schematic for Vocm error, and so by using the internal divider bridge. Otherwise it is important to take into consideration the error linked to the voltage source applied on the VRef1 pin and Vref2 pin. Figure 55. Schematic for Vocm error The divider bridge is made by two resistances of 50 k given an output common mode voltage of: Vref1 + Vref2 2 DS13057 - Rev 2 page 28/49 TSC2011, TSC2012 Error calculation Due to a small mismatch of the internal resistance the error, on the output common mode voltage, can be described as equation 8: Vocm = Vref1 + Vref2 . 1 + Acc 2 (8) Where Acc is the accuracy referred to the output with a typical value of 0.1%. * Noise The Figure 43. Noise vs. frequency expresses the noise referred to the input of the TSC2011. This device shows a 1/f noise until 10 kHz frequency. Above this limit the white noise density is 29 nV/ Hz , until the bandwidth of the TSC2011. The noise can be then expressed as two terms, the former related to the 1/f noise and the latter due to the white noise. If we consider that there is no additional filter on the TSC2011 and it is only bandwidth limited, it can be considered that over the 750 kHz, there is an attenuation of the noise with a first order filtering. So the equivalent noise bandwidth is 750kHz . 2 . The RMS value of the output noise is the integration of the spectral noise over the bandwidth of interest and can be expressed as equation 9: enRMS = * Total error 10000 29 . 10-9 0.1 f 10 . 103 2 750000 . 2 29 . 10-9 2df *Gain df + 0.1 (9) The maximum total error expected on the output of the device can be described as the sum of the different source described just above. The total output accuracy can be written as equation 10. Vouterr = Gain*Rsense* Iload gain + Rsense + Gain . Vio + Gain . Vocm Acc + noise Vicm - 12V + CMR (10) Iload is described in Figure 56. Input current and the output noise is described by the equation 9. Note that the input bias currents are not taken into account in this section, as they are already integrated in the Vsense. The Figure 56. Input current below depicts the current flowing from the source to the load when the input common mode voltage is higher than the supply voltage. Figure 56. Input current From a calculation approach, when Vicm voltage is beyond Vcc, Iload must be considered as the sum of Isource and Input bias current (Iib). Note that the input bias current on the pin - is largely lower and can be neglected. The Figure 56. Input current also expresses that the TSC2011 cannot measure the current in the same order as input bias current (several hundreds of A). DS13057 - Rev 2 page 29/49 TSC2011, TSC2012 Shutdown mode The linearity is not taken into account in the error calculus as it represents 0.03% of error only and it is negligible. Nevertheless, as the gain error has been calculated thanks to the best fit line approach, it gives the information that the gain error can be relatively constant throughout the linear input range of the TSC2011. The equation 10 has been described for a temperature of 25 C. For sure with a temperature variation, Dvio/DT error term must be added. And if the power supply is susceptible to change, the SVR parameter must also be taken into account. * Example Let us consider that the maximum total error can happen on the output of the TSC2011. * Use case: - Vcc = 5 V - Vicm = 24 V - Vocm = 2.5 V - - Temperature = 25 C Iload = 5 A - Shunt 5 m with 1% accuracy Theoretically the expected output voltage should be Vout = Rshunt * Iload *60 + Vocm = 4 V. From the equations above, all the error terms are detailed by using the maximum value of the electrical characteristics (when available), in order to express as much as possible, the worst case condition. The % error on output of the following table is expressed in reference of Vout - Vref, so in this typical example: 1.5 V. Table 6. Gain error Error source Calculus Output voltage error % error on output Gain error 60*5 . 10-3*5*0.3% 4.5 mV 0.3% 30 mV 2% 22.7 mV 1.5% 2.5 mV 0.2% 1.98 mVRMS 0.4% (1) Vio error 60*500V 60* CMRR error Vocm error Noise 60* Total 24V - 12V 90 10 20 2.5*0.1% 29nV 10kHz* ln 10k - ln 0.1 Hz + 750kHz* - 0.1Hz 2 60 mV +1.98 mVRMS 4.4% 1. The percentage is based on voltage peak value, which is 3 times RMS value. So the maximum output voltage in the worst case condition at ambient temperature is 4.060 V + 1.98 mVRMS instead of 4 V expected. This represents an error on the current reading about 4.4%. 1% more must be added due to the shunt accuracy. This calculus comes from all the maximum values and all the error terms which have been added to each other, meaning that the chance to get 4.4% precision in the use case above is extremely low and on the whole population, the error is largely smaller. 5.7 Shutdown mode If the SHDN pin is driven between 0.7 x Vcc and Vcc the TSC2011 enters low power shutdown mode, drawing less than 20 A, over the Vcc and Vicm range. In SHDN mode the output is in HiZ state. DS13057 - Rev 2 page 30/49 TSC2011, TSC2012 Stability Although there is an internal current source of 500 nA on the SHDN pin, keeping a low state allowing the TSC2011 to work without any voltage applied on the SHDN pin, it is strongly recommended to apply the dedicated voltage on the SHDN pin to ensure the full functionality of the TSC2011, especially when fast common mode variation appears. The figure below depicts the architecture of the SHDN pin. Figure 57. SHDN pin * * 5.8 With GND applied to SHDN pin the TSC2011 is in active mode With Vcc applied to SHDN pin the TSC2011 is in shutdown mode Stability * Driving switched capacitive loads Some ADCs get their signal thanks to a sample and hold capacitor. If before a sampling this capacitance is fully discharged, a fast current load can appear on the output of the TSC2011 during the sampling phase. The scope probe in the figure below shows the output voltage of the TSC2011 excited by a 40 pF capacitor with a 3.3 Vpp signal at 50 kHz to simulate the sample and hold circuit of the ADC120. 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 Sample and hold Vout Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp T=25C, 50kHz square signal of 3.3V amplitude injected in the output through 40pF -4 0 4 8 1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 Vout (mV) Simulated Sample and Hold (V) Figure 58. Capacitive load response at Vcc = 3.3 V 12 Time (s) The ADC120 has a conversion rate of 50 ksps, which is perfect to sample and hold the output of the TSC2011 without any error. The graph shows the behavior of the output of the TSC2011 under the worst case condition, as for example, when there is an ADC120 channel change between two measurements. DS13057 - Rev 2 page 31/49 TSC2011, TSC2012 Stability If a single channel is used, for sure the change on the sample and hold capacitance are very small, and so the recovery time is extremely low as described by the figure below. Figure 59. Capacitive load response at Vcc = 3.3 V with a step of 100 mV Simulated Sample and Hold (mV) 80 60 Sample and hold 40 20 Vout 0 -20 -40 -60 Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp T=25C, 50kHz square signal of 100mV amplitude injected in the output through 40pF -80 -100 -4 0 4 8 1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 Vout (mV) 100 12 Time (s) The effect of the ADC sampling and hold can be easily smoothed thanks to an RC filter. As suggested on the schematic below. The capacitor of the external filter must be chosen much higher than the internal ADC capacitor, in order to easily absorb the sudden voltage variation on the output due to the sampling and hold of the ADC. The resistance must be chosen accordingly to the application speed of the system in order not to impact the whole application. The main advantage of using an RC filter is to have an antialiasing system. For sure the used ADC must have sample and hold conversion in accordance with the RC filter value, in order to let the output recover before sampling. Figure 60. RC filter when driving ADC In the figure Figure 61. Capacitive load response at Vcc = 3.3 V with 720 kHz RC filter an Rs = 470 resistance and a Ct = 470 pF capacitance have been set. Given a low-pass filter of 720 kHz and a response time of roughly 660 ns. In the figure Figure 62. Capacitive load response at Vcc = 3.3 V with 194 kHz RC filter an Rs = 820 resistance and a Ct = 1 nF capacitance have been set. Given a low-pass filter of 194 kHz and a response time of roughly 2.5 s. DS13057 - Rev 2 page 32/49 TSC2011, TSC2012 Stability Vout Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp T=25C, Rs=470,Ct=470pF 50kHz square signal of 3.3V amplitude injected in the output through 40pF -4 0 4 8 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 Sample and hold Vout Vcc=3.3V, Vicm=1.65V, Vsense=0Vpp T=25C, Rs=820,Ct=1nF 50kHz square signal of 3.3V amplitude injected in the output through 40pF -4 12 0 4 8 1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 Vout (mV) Sample and hold 1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 Simulated Sample and Hold (V) 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 Figure 62. Capacitive load response at Vcc = 3.3 V with 194 kHz RC filter Vout (mV) Simulated Sample and Hold (V) Figure 61. Capacitive load response at Vcc = 3.3 V with 720 kHz RC filter 12 Time (s) Time (s) The value of the added external capacitor must be taken into account. Indeed, if this one is chosen with an excessive value and the serial resistance with a too small value, the risk of instability on the output of the TSC2011 is high. * Driving large capacitive Cload Increasing the load capacitance produces gain peaking in the frequency response, with an overshoot and ringing in the step response. The figure below, shows the serial resistors that must be added to the output, to make a system stable. The chosen criteria ensures the stability of the system and it is an overshoot lower than 24%. Figure 63. Stability criteria with a serial resistor at VCC = 5 V 500 Vcc=5V, Vicm=0V, Vref=Vcc/2, T=25C, Serial Resistor (Ohm) 400 300 Stable 200 100 Unstable 0 0.1 1 10 100 Capacitive Load (nF) DS13057 - Rev 2 page 33/49 TSC2011, TSC2012 Power supply recommendation 5.9 Power supply recommendation In order to decouple correctly the TSC2011, a 100 nF bypass capacitor can be placed between Vcc and Gnd. This capacitor must be placed as closer as possible to the supply pins. The figure below shows a start-up time with a decoupling capacitance of 100 nF. Figure 64. Start-up time with a decoupling capacitance of 100 nF 6 5 Vcc 4 Voltage (V) 3 2 Vout 1 0 Vref=0V Vsense=20mV, Vcc=5V, Vicm=12V, RI=10k , Cl=10pF connected to Vcc-, T=25C -1 -2 -3 -200 0 200 400 600 800 Time (s) Vref pin is used to fix the output common mode voltage and it is driven by a low impedance voltage source and can be decoupled thanks to a 10 nF bypass capacitor. A greater bypass capacitor added on Vcc pin and Vref pin helps to enhance CMRR and PSRR performance. 5.10 PCB layout recommendations The layout of the PCB tracks connected to the current sensing, load and power supply is very important. It is a good practice to use short and wide PCB traces to minimize voltage drops and parasitic inductance. When a shunt resistance, lower than 1 , is used, a 4-wire connection technique should be used to sense the current as described in the schematic below. This technique separates pairs of current carrying and voltagesensing electrodes to make more accurate measurements by eliminating the lead and contact resistance from the measurement. The track connected to the input pin of the TSC2011 has to be considered as a differential pair, it must have the same length and width, and ideally placed on the same PCB plane, and above all must be routed as far as possible from noisy source. As this track carries the input bias current, in a range of hundreds of A, it can be designed small but always by taking care of its resistivity. Any via in these input tracks are non-recommended to avoid any parasitic resistance in this path. To minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used. A ground plane generally helps to reduce EMI, that is why a multilayer PCB use is suggested as well as the ground planes as a shield to protect the internal track. In this case, the digital from the analog ground must be separated and any ground loop must be avoided. Loop area or antenna must be reduced to minimize EMI impact. The Figure 65. Recommended layout suggests a possible routing for the TSC2011, in order to minimum parasitic effect. DS13057 - Rev 2 page 34/49 TSC2011, TSC2012 EMI rejection ration (EMIRR) Figure 65. Recommended layout 5.11 EMI rejection ration (EMIRR) The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of current sensing device. An adverse effect that is common to many current sensing is a change in the offset voltage as a result of RF signal rectification. A first order internal low pass filter is included on the input of the TSC2011 to minimize susceptibility to EMIRR. Figure below shows the EMIRR on pin IN+, the EMIRR on pin IN- of the TSC2011 measured from 400 MHz up to 2.4 GHz. Figure 67. EMIRR on pin- Figure 66. EMIRR on pin+ 100 100 EMIRR In-(dB) 120 EMIRR In+(dB) 120 80 60 60 40 40 20 20 Vcc=5V, T=25C Prf=-10dBm Vcc=5V, T=25C Prf=-10dBm 0 400 80 600 800 1000 1200 1400 1600 1800 2000 2200 2400 Frequency (MHz) DS13057 - Rev 2 0 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 Frequency (MHz) page 35/49 TSC2011, TSC2012 Overload recovery 5.12 Overload recovery Overload recovery is defined as the time required for the current sensing output to recover from a saturated state to a linear state. The saturation state occurs when the output voltage gets very close to rails in the application. It results from an excessive input voltage. When the output of the TSC2011 enters saturation state, less than 1 s is needed to get back to a linear state as shown by Figure 68. Negative overvoltage recovery VCC = 2.5 V and Figure 69. Positive overvoltage recovery VCC = 2.5 V. Figure 40. Positive overvoltage recovery VCC = 2.7 V and Figure 41. Negative overvoltage recovery VCC = 2.7 V show the overvoltage recovery for a VCC = 2.7 V. Figure 69. Positive overvoltage recovery VCC = 2.5 V 100 0 3 200 Vcc=2.7V, Vicm=12V, CI=100pF T=25C 50 Vout (V) -1 -50 Vout Vcc=2.7V, Vicm=12V, CI=100pF, T=25C -2 -100 2 Vout (V) 0 Vsense (mV) Vsense 1 150 100 50 Vout Vsense 0 -150 -50 0 -3 -200 -3 -2 -1 0 1 2 Time (s) DS13057 - Rev 2 3 4 5 6 Vsense (mV) Figure 68. Negative overvoltage recovery VCC = 2.5 V -100 -3 -2 -1 0 1 2 3 4 5 6 Time (s) page 36/49 TSC2011, TSC2012 Application examples 5.13 Application examples 5.13.1 Half-bridge motor control The half-bridge topology is very popular in motor control, DC-DC converters, LED lighting control and other bidirectional loads from a single supply potential. The TSC2011 provides a feedback control system about current but also detects overload conditions. The Figure 70. Half-bridge application describes a typical schematic using the TSC2011 in a motor control application. A 20 m shunt resistance in series with the motor monitors a measurable voltage drop representing the load current, and the TSC2011 amplifies the Vsense in order to give some information about the current flowing into the motor in real time. These information are then digitalizing by the 12-bit ADC (ADC120). Figure 70. Half-bridge application General overview: To make the motor rotation occur, the NMOS H1, H2, L1, L2 are driven by a half-bridge quad power MOSFET driver. We have to consider that the current flows from the 12 V to the GND, through H1 NMOS and L2 NMOS. A PWM is applied on the NMOS L2 in order to control the current and thus the speed of the motor. By PWM, the average voltage applied on the motor is controlled. H1 remains always ON and the PWM is applied on L2. When L2 is turned off, H2 must be turned ON, for freewheeling, allowing the discharge of the motor inductance current. This phenomenon generates a fast input common mode voltage transition on the TSC2011, from 0 V to 12 V. Thanks to a good recovery time due to fast input common mode change, the TSC2011 follows the current flowing into the motor as depicted by the scope probe in Figure 71. TSC2011 H Bridge application. The black curve represents the fast Vicm variation step of 12 V in 500 ns when the freewheeling is activated. The blue curve represents the current flowing into the motor measured with a current probe. The red curve represents the output voltage - 1.35 V (Vref voltage) of the TSC2011 probe after the RC filter. The RC filter, used to drive the ADC120, smooths a bit the output signal and adds a small constant time, in the range of 1 s. DS13057 - Rev 2 page 37/49 TSC2011, TSC2012 Application examples Figure 71. TSC2011 H Bridge application 1.0 1.20 0.96 Vicm variation from 0V to 12V 0.6 0.72 0.4 0.48 0.2 0.24 Vout 0.0 0.00 -0.2 -0.24 Current flowing into the motor -0.4 -50 Vout - Vref (V) input current (A) 0.8 -0.48 -40 -30 -20 -10 0 10 20 30 40 50 Time (s) After a fast variation of the input common mode, the TSC2011 needs less than 5 s to recover its normal behavior. 5.13.2 Solenoid valve In automotive applications, the automatic transmission relies on bands and clutches to change gears, and the only way they can be applied is by fluid pressure. The transmission solenoid is responsible for opening or closing valves in the valve body to allow transmission fluid to enter, at which point the fluid can pressurize the clutches and bands. Solenoids consist of a spring loaded plunger wrapped with a coil of wire, and it is generally driven thanks to a MOS transistor. In the schematic below the TSC2011 is used in mono directional mode. When the MOS is ON, the current can flow through the solenoid and actuate this one. The input common mode is high in this case. When the MOS is turned OFF, as the current stored into the solenoid cannot stop instantaneously, the diode turns ON allowing a freewheeling to discharge the solenoid resulting in a common mode one diode voltage drop below ground. Thanks to its large input common mode range, the TSC2011 can be used for such applications depicted in figure below. In order not to saturate the output when no current is flowing into Rsense, a small voltage on Vref has to be applied. DS13057 - Rev 2 page 38/49 TSC2011, TSC2012 Application examples Figure 72. Solenoid valve application DS13057 - Rev 2 page 39/49 TSC2011, TSC2012 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS13057 - Rev 2 page 40/49 TSC2011, TSC2012 SO8 package information 6.1 SO8 package information Figure 73. SO8 package outline Table 7. SO-8 mechanical data Dim. mm Min. Inches Typ. A Min. Typ. 1.75 0.25 Max. 0.069 A1 0.1 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.01 D 4.8 4.9 5 0.189 0.193 0.197 E 5.8 6 6.2 0.228 0.236 0.244 E1 3.8 3.9 4 0.15 0.154 0.157 e 0.004 0.01 0.049 1.27 0.05 h 0.25 0.5 0.01 0.02 L 0.4 1.27 0.016 0.05 L1 k ccc DS13057 - Rev 2 Max. 1.04 0 0.04 8 0.1 1 8 0.004 page 41/49 TSC2011, TSC2012 MiniSO8 package information 6.2 MiniSO8 package information Figure 74. MiniSO8 package outline Table 8. MiniSO8 mechanical data Dim. Millimeters Min. Inches Typ. A 0 Typ. A2 0.75 b c D 2.8 E E1 0.043 0 0.95 0.03 0.22 0.4 0.009 0.016 0.08 0.23 0.003 0.009 3 3.2 0.11 0.118 0.126 4.65 4.9 5.15 0.183 0.193 0.203 2.8 3 3.1 0.11 0.118 0.122 0.85 0.65 0.4 0.6 0.006 0.033 0.8 0.016 0.024 0.95 0.037 L2 0.25 0.01 ccc 0 0.037 0.026 L1 k Max. 0.15 e DS13057 - Rev 2 Min. 1.1 A1 L Max. 8 0.1 0 0.031 8 0.004 page 42/49 TSC2011, TSC2012 Ordering information 7 Ordering information Table 9. Order codes Order code TSC2011IDT TSC2011IST TSC2012IDT TSC2012IST DS13057 - Rev 2 Gain (V/V) 60 100 Package Packaging SO8 MiniSO8 SO8 MiniSO8 Marking TSC2011 Tape and reel O118 TSC2012 O119 page 43/49 TSC2011, TSC2012 Revision history Table 10. Document revision history Date Revision 11-Sep-2019 1 Changes Initial release. Added new part number TSC2012, Figure 25. Gain vs. frequency (VCC = 5 V), Figure 27. Gain vs. different capacitive load (TSC2012), Figure 29. Bandwidth vs. input common mode (TSC2012) and Figure 32. Small signal response with VCC = 5 V (TSC2012). 30-Jan-2020 DS13057 - Rev 2 2 Updated description on the cover page, Figure 30. Overshoot vs. capacitive load, Figure 42. Overvoltage recovery vs. Vicm, VCC = 5 V, Table 4. Electrical characteristics Vcc = 2.7 V, Vicm = 12 V, T = 25 C (unless otherwise specified)., Table 5. Electrical characteristics (Vcc = 5 V, Vicm = 12 V, T = 25 C unless otherwise specified) and Table 9. Order codes. page 44/49 TSC2011, TSC2012 Contents Contents 1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 4 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.1 5 6 7 Typical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2 Theory of operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Unidirectionnal / bidirectionnal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4 RSENSE selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.5 Input offset voltage drift overtemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.6 Error calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.7 Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.8 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.9 Power supply recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.10 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.11 EMI rejection ration (EMIRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.12 Overload recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.13 Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.13.1 Half-bridge motor control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.13.2 Solenoid valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 6.1 SOT23-3L package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 DS13057 - Rev 2 page 45/49 TSC2011, TSC2012 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics Vcc = 2.7 V, Vicm = 12 V, T = 25 C (unless otherwise specified). . Electrical characteristics (Vcc = 5 V, Vicm = 12 V, T = 25 C unless otherwise specified). . . Gain error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS13057 - Rev 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 4 . 4 . 5 . 7 30 41 42 43 44 page 46/49 TSC2011, TSC2012 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. DS13057 - Rev 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. input common mode . . . . . . . . . . . . . . . . . . . . Supply current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. input common mode with active shutdown mode Input bias current vs. input common mode with shutdown active . . . Input bias current vs. temperature VCC = 2.7 V . . . . . . . . . . . . . . . Input bias current vs. temperature with VCC = 5 V . . . . . . . . . . . . . Input offset voltage vs. temperature. . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. input common mode with VCC = 2.7 V . . . . . Input offset voltage vs. input common mode with VCC = 5 V . . . . . . Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . Output current vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . Voh and Vol vs. input common mode voltage with VCC = 5 V . . . . . . (Output voltage - Vref) vs. Vsense unidirectionnal with VCC = 5 V . . . (Output voltage - Vref) vs. Vsense bidirectionnal with VCC = 5 V . . . . Output rail linearity vs. load with VCC = 5 V. . . . . . . . . . . . . . . . . . Linearity vs. Vsense with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . Linearity vs. Vsense and temperature . . . . . . . . . . . . . . . . . . . . . . Gain error vs. input common mode . . . . . . . . . . . . . . . . . . . . . . . Gain error vs. input common mode and temperature . . . . . . . . . . . Load regulation with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . Gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain vs. frequency (VCC = 5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . Gain vs. frequency for different load . . . . . . . . . . . . . . . . . . . . . . Gain vs. different capacitive load (TSC2012) . . . . . . . . . . . . . . . . Bandwidth vs. input common mode . . . . . . . . . . . . . . . . . . . . . . . Bandwidth vs. input common mode (TSC2012). . . . . . . . . . . . . . . Overshoot vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . Small signal response with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . Small signal response with VCC = 5 V (TSC2012) . . . . . . . . . . . . . Small signal response with VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . Large signal response with VCC = 5 V . . . . . . . . . . . . . . . . . . . . . Large signal response with VCC = 2.7 V . . . . . . . . . . . . . . . . . . . . 12 V common mode step response recovery . . . . . . . . . . . . . . . . 50 V common mode step response recovery . . . . . . . . . . . . . . . . PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive overvoltage recovery VCC = 2.7 V . . . . . . . . . . . . . . . . . . Negative overvoltage recovery VCC = 2.7 V . . . . . . . . . . . . . . . . . Overvoltage recovery vs. Vicm, VCC = 5 V. . . . . . . . . . . . . . . . . . . Noise vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ON/OFF delay for shutdown mode . . . . . . . . . . . . . . . . . . . . . . . Output voltage vs. Vsense beyond the sense operating . . . . . . . . . . Power up time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply when Vicm > Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . Input bias current vs. common mode voltage Vcc = 5 V . . . . . . . . . Power supply when Vicm < Gnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 9 . 9 . 9 . 9 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 21 22 page 47/49 TSC2011, TSC2012 List of figures Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. DS13057 - Rev 2 Vref powered by an external voltage source . . . . . . . . . . . . . . Output reference to ground . . . . . . . . . . . . . . . . . . . . . . . . . Output reference to Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . Split supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematic for Vocm error . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SHDN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V. . . . . . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V with a step of 100 mV . RC filter when driving ADC. . . . . . . . . . . . . . . . . . . . . . . . . . Capacitive load response at Vcc = 3.3 V with 720 kHz RC filter . Capacitive load response at Vcc = 3.3 V with 194 kHz RC filter . Stability criteria with a serial resistor at VCC = 5 V . . . . . . . . . . Start-up time with a decoupling capacitance of 100 nF. . . . . . . Recommended layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on pin+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on pin- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative overvoltage recovery VCC = 2.5 V . . . . . . . . . . . . . Positive overvoltage recovery VCC = 2.5 V. . . . . . . . . . . . . . Half-bridge application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSC2011 H Bridge application . . . . . . . . . . . . . . . . . . . . . . . Solenoid valve application . . . . . . . . . . . . . . . . . . . . . . . . . . SO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 24 24 25 26 28 29 31 31 32 32 33 33 33 34 35 35 35 36 36 37 38 39 41 42 page 48/49 TSC2011, TSC2012 IMPORTANT NOTICE - PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. (c) 2020 STMicroelectronics - All rights reserved DS13057 - Rev 2 page 49/49