1/14
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Motor Drivers for Printers
Three-phase Brushless Motor Driver
for Polygonal Mirrors [For LBP, PPC]
BD67929EFV
Description
BD67929EFV is a 3-phase brushless motor driver for pol ygon mirror motors of direct PWM drive type built-in PLL ensuring.
As for its basic function, it is a 3-phase 120°energization direct PWM drive type with power supply rated voltage of 36V
and rated output current 2.3A. It is useful for high speed drive. It has the P-MOS and D-MOS on the output block, and the
output ON Resistance is very low 1.35Ω(Typ .). It is very useful for low power consumption. And this IC is high reliability due
to built-in each protection functions (thermal protection, over current protection, restricted protection circuit).
Features
1) 3-Phase MOS120°energization, dir ect PW M drive type
2) High output current: 2.5A
3) Low ON resistance DMOS output
4) PLL control circuit
5) Phase lock detection circuit
6) Current limiting circuit
7) 5V regulator output
8) Power-saving function (SS)
9) Short brake function (SB)
10) Built-in logic input pull-up resistor
11) Restricted protection circuit
12) CLK un-input protection circuit
13) CLK input baffler chattering circuit
14) Over current protection circuit (OCP)
15) Thermal shutdown circuit (TSD)
16) Over voltage lock out circuit (OVLO)
17) Under voltage lock out circuit (UVLO)
18) Electrostatic discharge: 8kV (HBM standard)
Applications
Laser beam printer, PPC, etc.
No.10016EAT05
Technical Note
2/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Absolute maximum ratings (Ta=25)
Parameter Symbol Ratings Unit
Supply voltage VCC -0.2+36.0 V
Applied voltage of LD, FG terminal VLD, FG -0.2+6.5 V
Applied voltage of HB terminal VHB -0.2+6.5 V
Input voltage of Hall signal VHALL -0.2+6.5 V
Input voltage of CLK VCLK -0.2+6.5 V
Input voltage of control pin (SS, SBE) VIN -0.2+6.5 V
Power dissipation Pd 1.45*1 W
4.70*2 W
Output current IOUT 2500*3 mA
Operating temperature range Topr -25+85
Storage temperature range Tstr -55+150
Junction temperature Tjmax 150
*1 70mm×70mm×1.6mm glass epoxy board. Derating in done at 11.6mW/ for operating above Ta=25
*2 Mounting on 4-layer board. Derating in done at 37.6mW/ for operating above Ta=25.
*3 Do not, however exceed Pd, ASO and Tlmax=150.
Operating conditions (Ta=-2585)
Parameter Symbol Ratings Unit
Min. Typ. Max.
Supply voltage VCC 19 24 28 V
Output current of 5V regulator IREG -20 - 0 mA
Input current of HB terminal IHB 0 - 20 mA
Applied voltage of LD, FG terminal VLD, FG 0 - 5.5 V
Output current of LD, FG terminal ILD, FG 0 - 15 mA
Technical Note
3/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Electrical characteristics (Unless otherwise specified, Ta=25, VCC=24V)
Parameter Symbol Limits Unit Conditions
Min. Typ. Max.
Whole
Circuit current 1 ICC1 - 4.0 9.0 mA SS=L, Output is ON
Circuit current 2 ICC2 - 1.0 2.3 mA SS=H, Output is OFF
VREG output
Output voltage VREG 4.65 5.00 5.35 V
Driver block (U, V, W)
Output ON resistance RON - 1.35 1.76 Ω IOUT =1.0A on high and low side
in total
Forward voltage of Diode on low side VD1 0.70 1.10 1.55 V IOUT =-1.0A
Forward voltage of Diode on high side VD2 0.70 1.10 1.55 V IOUT =1.0A
Output leak current ILEAK - - 10 µA
Hall comparator (HUP, HUN, HVP, HVN, HWP, HWN)
In-phase input voltage range VICM 1.5 - 3.5 V High and low side in total
Hysteresis voltage ΔVIN 15 24 42 mV
LD, FG output
Low output voltage VOD - 0.15 0.50 V ILD,FG =10mA
PD output
High output voltage VPDH 4.5 4.9 - V IPD =-100µA
Low output voltage VPDL - 0.2 0.3 V IPD =100µA
Integral Amplifier
High output voltage of EO VERH 3.5 4.1 - V IEO =-500µA
Low output voltage of EO VERL - 0.9 1.5 V IEO =500µA
Input current of EI IEi -2.0 -0.1 - µA VEi =0V
Current limiting circuit
Gain at start up GH 1.2 1.5 1.8 times
Gain at steady state GL 0.4 0.5 0.6 times
Limit voltage VRNF 0.45 0.50 0.55 V
CLK input
External input frequency FCLK - - 10 kHz
High level input voltage VCLKH 3.0 - - V
Low level input voltage VCLKL - - 1.5 V
Low level input current ICLKL -75 -50 -25 µA VCLK =0V
Control input(SS, SB)
High level input voltage VINH 3.0 - - V
Low level input voltage VINL - - 1.5 V
Low level input current IINL -75 -50 -25 µA VIN =0V
Oscillator
Oscillating frequency FOSC 130 200 270 kHz COSC =220pF
High triangular waveform voltage VOSCH 1.6 2.0 2.4 V
Low triangular waveform voltage VOSCL 1.2 1.5 1.8 V
PROCLK
CLK cycle for protection circuit TPCLK 13 20 27 msec CPCLK =0.1µF
Hall bias
Hall bias voltage VHB 0.65 0.80 0.95 V IHB =10mA
Technical Note
4/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Capacitor for noise to
Hall signal.
Setting range is
0.010.1µF.
Resistor and capacitor
for PLL control.
Capacitor for
compensation of
current feedback roop.
Capacitor to set
the PWM frequency.
Bypass ca pa citor.
Setting range is
47µF470µF
(electrolytic)
0.01µF0.1µF
(multilayer ceramic etc.)
Resistor to detect the
Motor current.
Setting range is
0.25Ω~1.00Ω.
Resistor to set output
signal level of Hall
element.
Resistor and Capacitor
is to reduce the noise
of CR terminal.
Capacitor for
internal Regulator and
regulator for Hall element.
Capacitor to set the detection time for
protection circuit. Setting range is
0.01µF0.47µF.
CS
VREG
TEST
PROCLK
GND
FG
LD
CL
K
SS
PD
EO
EI
OSC
CNF
HWP
HVP
HUN
HUP
HWN
HVN U
VCC
HB
RNF
W
V
VCC
0.01µF 100µF
1K
330pF
0.1µF
0.1µF
33pF
10nF
10nF
10nF
0.33
20
17
19
11
13
14
15
10
12
25
27
16
22
3
24
Regulator
5
8
2
6
18
4
TSD
HALL
HYS
COMP
7
21
23
RESET UVLO
OCP OVLO PRO_OSC
LOGIC
PWM
1
9
HALL
BIAS
SB
BRMODE
28
26
Pin function
Pin No Pin name Function Pin No Pin name Function
1 GND Ground 15 HUP Hall signal input terminal
2 VCC Power supply terminal 16 VREG 5V regulator output terminal
3 FG FG output terminal 17 PD Phase comparison output terminal
4 CS
Current detection comparator
input terminal 18 TEST Testing terminal
5 RNF
Connection terminal of resistor
for output current detection 19 EI Error amplifier input terminal
6 W Output terminal 20 EO Error amplifier output terminal
7 V Output terminal 21 PROCLK Connection terminal of a capacitor
to set the clock cycle for protection
8 U Output termina l 22 CLK Speed control clock input terminal
9 HB Bias terminal for Hall element 23 SS Start/stop signal input terminal
10 HWN Hall signal input terminal 24 LD Phase locked detection
output terminal
11 HWP Hall signal input terminal 25 OSC Connection terminal of capacitor
to set PWM oscillating frequency
12 HVN Hall signal input terminal 26 BRMODE Switch terminal of deceleration
mode in servo
13 HVP Hall signal input terminal 27 CNF Connection terminal of
capacitor for current sense amp
14 HUN Hall signal input terminal 28 SB Short brake signal input termi nal
Block diagram & Appl ication circuit diagram
Block diagram & Application circuit diagram
Technical Note
5/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Terminal function
HWP, HVP, HUP, HWN, HVN, HUN/Hall signal input terminal
These terminals are the input terminals of the output sig na ls from Hall elements. This has the comparator with hysteresis.
The width of hysteresis voltage is ±12mV(Typ.). The output of this comparator will be high if the voltage of HxP terminal
is greater than the voltage of HxN terminal by 12mV, and the level will be low if the voltage of HxP terminal is less than
the voltage of HxN terminal by 12mV. For the countermeasures against noise interfac e with Hall inputs, the connection of
a capacitor with a capacitance of approximately 0.01 - 0.1µF between HxP terminal and HxN terminal.
PD/Phase comparison output terminal
This terminal outputs the signal that is the comparison of FG signal and CLK signal.
EI/Error amplifier input terminal
This terminal is the input terminal of the error amplifier.
EO/Error amplifier output terminal
This terminal is the output terminal of the error amplifier. It is connected to the input terminal of motor torque command
signal inside the IC.
CLK/Speed control clock input termina l
This terminal is the CLK signal input terminal to control the speed. This terminal has the 100kΩ resistor which is
pulled-up to the internal regulator. This block detect the falling edge. In case that there is the noise on the CLK signal, it
makes the miscount of the CLK signal. Be sure to design the pattern without the influence of the noise.
SS/Start/Stop signal input terminal
This terminal makes the motor start or stop.
This terminal has the 100kΩ resistor which is pulled-up to the internal regulator.
SS
LO start
HI stop
When SS=HI, IC becomes stop condition. Stop condition is Free Run or Short Brake that decided by SB terminal.
Moreover, it makes the HB terminal off, and shut down the current to the Hall element. It is very useful to low power
consumption.
LD/Phase locked detection output terminal
When the rotation count of the motor is within 10% of the target rotation count, the LD terminal becomes LO.
This terminal is open drain type output, please connect to the external regulator (05.5V recommended) through the
resistor. The capability of this terminal is 15mA maximum, please set the voltage of the external regulator and th e value of
resistor to be within 15mA.
OSC/Connection terminal of capacitor to set PWM oscillating frequency
This terminal is the connection terminal of capacitor to make the triangle waveform that set the PWM frequency.
fPWM = 44µ / C [Hz]
ex.) when C=220pF, f=200kHz
CNF/Connection terminal of capacitor of Current Sense Amp.
This terminal is the connection terminal of capacitor to compensate the phase of CS Amplifier.
SB/Short brake signal input terminal
This terminal is the input signal terminal that set output condition when the voltage of SS is HI. This terminal has the
100kΩ resistor which is pulled-up to the internal regulator. When the voltage of SB terminal turns to LO, all low side
MOS FET turns to ON, and it should be short brake condition. It is very useful to reduce the speed quickly.
SB stop mode
LO Short brake mode
HI Free run mode
BRMODE/PLL brake setting terminal
This IC has the two kinds of deceleration method. The method is configurable by which terminal to connect with
BRMODE, VREG or GND terminal. This terminal has the 100kΩ resistor which is pulled-up to the internal regulator.
BRMODE deceleration method
GND short brake
VREG free run
Technical Note
6/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
VREG/5V regulator output terminal
This terminal is the connection terminal of capacitor to stabilize the 5V output of internal regulator. It should be connecte d
with the capacitor (0.01µF-1µF) to the ground. This terminal is used as the regulator to the Hall element too. The road
current should be within 20mA.
PROCLK/Connection terminal of a capacitor to set the clock cycle for protection
This terminal is the connection terminal of capacitor to set the time of detection.
The period of PROCLK=C×200k[s]
ex.) when C=0.1µF, The period of PROCLK=20m[s]
HB/Bias terminal for Hall element
This terminal is the open collector type, and l ow side s witch. By connecting the GND side of Hall element to the HB, the
bias current of the Hall element will be turned off with the SS set to high or open. It is very useful for the low power
consumption because the bias current for Hall element will be 0µA.
FG/FG output terminal
This terminal outputs the signal which indicate the rotation count, which is synthesize from Hall signal of U-phase.
This terminal is open drain type output, it sho uld b e pulled-up to the external regulator (0-5.5V) through the resistor.
The capability of FG terminal is 15mA maximum, pleas e set the voltage of external regulator and th e value of resistor to
be within 15mA.
CS/Current detection comparator input terminal
In this IC, CS terminal, which is the input terminal of current limit comparator, is independently arranged in order to
decrease the lowering of current-detecting accuracy caused by the wire impedance inside the IC of RNF terminal.
Therefore, please be sure to connect RNF terminal and CS terminal together when using in the case of PWM constant
current control. In addition, because the wires from CS terminal is connected near the current-detecting resistor in the
case of interconnection, the lowering of current-detecting accuracy, which is caused by the impedance of board pattern
between RNF terminal and the current-detec ting resistor, can be decreased. Moreover, please desig n the pattern in such
a way that there is no noise plunging. In addition, ple ase be careful because if terminal of RNF is shorted to GND, large
current flows without normal PWM constant current control and, then there is danger that OCP or TSD will operate.
To reduce the PWM noise influence, please out the filter between RNF terminal a nd CS terminal.
The cut-off frequency is below
f = 1 / (2π×R1×C1)
ex.) when C1=330pF, R1=1kHz f=483[kHz]
U, V, W/Output terminal
Motor's drive current is flowing in it, so please wires in such a way that the wire is thick & short has low impedance. It is
also effective to add a Shot-ke y diode if output has positiv e or negative great fluctuation when large current is used etc.,
for example, if counter electromotive voltage etc. is great. Moreover, in the output terminal, there is built-in clamp
component for preventing of electrostatic destruction. If steep pulse or voltage of surge more that maximum absolute
rating is applied, this clamp component operates, as a result there is the danger of even destruction, so please be sure
that the maximum absolute rating must not be excee ded.
Hall signal
FG
HUN
HUP
CS R1 RNF
C1 RRNF
Technical Note
7/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
GND/Ground terminal
In order to reduce the noise caused b y switching current and to stabilize the inter nal reference voltage of IC, please wire
in such a way that the wiring impedance from this terminal is made as low as possible to achieve the lowest electrical
potential no matter what operating state it may be.
VCC/Power supply terminal
Motor's drive current is flowing in it, so please wire in such a way that the wire is thick & short and has low impedance.
Voltage VCC may have great fluctuation, so please arrange the bypass capacitor of about 47µF470µF as close to the
terminal as possible and adjust in such a way that the voltage VCC is stable. Please increase the capacity if needed
especially when a large current is used or those motors that have great back electromotiv e force are used. In addition, for
the purpose of reducing of power supply's impedance in wide frequency bandwidth, parallel connection of multi-layered
ceramic capacitor of 0.01µF0.1µF etc. is recommended. Extreme care must be used to make sure that the voltage
VCC does not exceed the rating even for a moment. Still more, in the power supply terminal, there is built-in clamp
component for preventing of electrostatic destruction. If steep pulse or voltage of surge more that maximum absolute
rating is applied, this clamp component operates, as a result there is the danger of destruction, so pleas e be sure that the
maximum absolute rating must not be exceeded. It is effective to mount a Zener diode of about the maximum absolute
rating. Moreover, the diode for preventing of electrostatic destruction if reverse voltage is applied between VCC terminal
and GND terminal, so please be careful.
RNF/Connection terminal of resistor for detecting of output current
Please connect the resistor of 0.25Ω~1.00Ω for current detection between this terminal and GND. In view of the power
consumption of the current-detecting resistor, please determine the resistor in such a way that W=IOUT2R[W] does not
exceed the power diss ipation of the resistor. In addition, please wire in such a way that it has a lo w impedance and do es
not have a impedance in common with other GND patterns because motor's drive current flows in the pattern through
RNF terminalcurrent-detecting resistorGND. Please do not exceed the rating because there is the possibility of
circuits' malfunction etc. if RNF voltage has exceeded the maximum rating (0.7V). More over, please be careful bec ause if
RNF terminal is shorted to GND, large current flows without normal PWM constant current control, then there is the
danger that OCP or TSD will operate. If RNF terminal is open, then there is the possibi lity of such malfunction as output
current does not flow either, so please do not let it open.
IC back side metal/Metal for heat-radiation
For HTSSOP-B28 package, the heat-radiating metal is mounted on IC's back side, and on the metal the heat-radiating
treatment is performed when in use, which becomes the precondition to use, so please secure sufficiently the
heat-radiating area by surely connecting b y solder with the GND plane on the board and getting as wide GND pattern as
possible. Please be careful because the allowable loss as shown in page 21 cannot be secured if not connected by
solder. Moreover, the back side metal is shorted with IC chip's back side and becomes th e GND potential, so there is the
danger of malfunction and destruction if shorted with potentials other than GND, therefore please absolutely do not
design patterns other than GND through the IC's back side.
TEST terminal/Terminal for testing
This is the terminal used at the time of shipping test. Please connect to GND. Please be careful because there is a
possibility of malfunction if GND unconnected.
Technical Note
8/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Servo and PLL
This IC synchronizes the phase of the reference CLK signal and the internal three-phase synthesized FG in motor RPM
control. In the control system, the rising of the FG signal and the falling of CLK signal are monitored and the phase
comparison of the two signals is made. The output signal after the phase comparison is smoothed by the active filter with
the above INT amplifier used to determine the torque of the motor. The motor rotates at the torque determined here and the
FG signal is generated. The motor rotates at the number of revolutions according the CLK, and the IC goes into servo
mode.
Input and output co ndition table
Hall input Output FG logic
Pin No. 15 13 11 8 7 6 3
Pin Name HUP HVP HWP U V W FG
Condition 1 L H H L H M L
Condition 2 L L H L M H L
Condition 3 H L H M L H H
Condition 4 H L L H L M H
Condition 5 H H L H M L H
Condition 6 L H L M H L L
HUN(35pin)= HVN(33pin)= HWN(31pin)= M
Timing Chart
HUP
HUN
HVN
HVP
HWP
HWN
U
V
FG
W
Technical Note
9/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Protection Circuits
Thermal Shutdown (TSD)
This IC has a built-in therm al shutdown circ uit for thermal protection. When the IC's chip temperature rises above 175
(Typ.), the motor output becomes OPEN. Also, when the temperature returns to under 150(Typ.), it automatically
returns to normal operation. However, even when TSD is in operation, if heat is continued to be added externally, heat
overdrive can lead to destruction.
Over Current Protection (OCP)
This IC has a built-in over current protection circuit as a provision agai nst destruction when the motor outputs are shorted
each other or VCC-motor output pr motor output-GND is shorted. T his circuit latches the motor output to OPEN condition
when the regulated threshol d current flows for 4µs (Typ.). It returns with power reactivation or a reset of the SS terminal.
The over current protection circuit's only aim is to prevent the destruction of the IC from irregular situations such as motor
output shorts, and is not meant to be used as protection or security for the set. Therefore, sets should not be designed to
take into account this circuit's functions. After OCP operating, if irregular situations continues and the return by power
reactivation or a reset of the PS terminal is carried out repeatedly, then OCP operates repeatedly and the IC may
generate heat or otherwise deteriorat e. When the L value of the wiring is great due to the wiring bei ng long, after the over
current has flowed and the o utput terminal voltage jumps up and the a bsolute m aximum valu es may b e exc eeded an d as
a result, there is a possibilit y of destruction. A lso, when current which is over the outp ut current ratin g and und er the OCP
detection current flows, the IC can heat up to over Tjmax=150 and can deteriorate, so current which exceeds the
output rating should not be applied.
Under Voltage Lock Out (UVLO)
This IC has a built-in under voltage lock out function to prevent false operation such as IC output during power supply
under voltage. When the applied voltage to the VCC terminal does u nd er 15V (Typ.), the motor output is set to OPEN. This
switching voltage has a 1V (Typ.) hysteresis to prevent false operation by noise etc. Please be aware that this circuit
does not operate during SS= HI mode.
Over Voltage Lock Out (OVLO)
This IC has a built-in over voltage lock out function to protect the IC output and the motor during power supply over
voltage. When the applied voltage to the VCC terminal goes over 33V (Typ.), the motor output is set to OPEN. This
switching voltage has a 1V (Typ.) hysteresis and a 4µs (Typ.) mask time to prevent false operation by noise etc. Although
this over voltage locked out circuit is built-in, there is a p ossibility of destruction if the absolute ma ximum value for power
supply voltage is exceeded, therefore the absolute maximum value should not be exceeded. Please be aware that this
circuit does not operate during SS= HI mode.
Restricted protection circuit
This IC has a built-in restricted protection circuit for the provision against restriction of the motor. This circuit sets PD to H
for decreasing the torque when FG signal does not change over for certain time. It returns by re-charging the power
supply or resetting by SS terminal. The length of the time for detecting the motor lock will be able to set by the value of
the capacitor which is connected to PROCLK terminal.
When motor is locked by some reason, Pd is changed to H and the motor torque is decreased. The time that is until
detecting the lock is set by the value of capacitor which is connected to PROCLK terminal.
The period of PROCLK = C×200k[s]
The detecting time to lock = the period of PROCLK×96 count
= C×200k[s]×96 count
ex.) When C=0.1µF, T= 1.92 [s]. The declination of 1 count may occur b y the timing of the count.
Non input CLK protection circuit
This IC has a built-in non input CLK protection circuit for the provisio n agai nst breaki ng of CLK. This circuit sets the motor
output open when CLK signal does not change over for certain time. It returns by re-changing the power supply or
resetting by SS terminal. The length of the time for detecting the state of non input CLK will b e able to set by the value of
the capacitor which is connected to PROCLK terminal.
The period of PROCLK = C×200k[s]
The detecting time to lock T = The period of PROCLK×3count
= C×200k[s]×3count
ex.) When C=0.1µF, T= 80 [ms]. The declination of 1 count may occur by the timing of the count.
Technical Note
10/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Power Consumption
Please confirm that the IC's chip temperature Tj is not over 150, while considering the IC's power consumption (W),
package power (Pd) and ambient temperature (Ta). When Tj is exceeded 150, the functions as a semiconductor do not
operate and problems such as parasitism and leaks occur. Constant use under these circumstances leads to deterioration
and eventually destruction of the IC. Tjmax=150 must be strictly obeyed under all circumstances.
Thermal Calculation
The IC's consumed power can be estimated roughly with the power supply voltage (VCC), circuit current (ICC),
output ON resistance (RONH, RONL) and motor output current value (IOUT).
Consumed power of the Vcc [W] = VCC [V] × I
CC [A] ・・・・・・・①
Consumed power of the output DMOS [W] = (RONH + RONL)×IOUT2×on_duty +{RONL×IOUT2+DIVL×IOUT}(1-on_duty) ・・・②
ton varies depending on the L and R values of the motor coil and the current set value.
Please confirm by actual measurement, or make an approx imate calculation.
tchop is the period of chopping which is set by the external capacitor of OSC terminal. See page 5 for detail.
High side Pch DMOS ON Resistance RONH [Ω] (typ.)= 0.70 [Ω]
Low side Nch DMOS ON Resistance RONL [Ω] (typ.)= 0.65 [Ω]
Consumed power of total IC W_total[W] = +
Junction temperature Tj = Ta[] + θja[/W]W_total [W]
However, the thermal resistance valueθja [/W] differs greatly depending on circuit board conditions. Refer to the
derating curve on P.10. Also, we are taking measurements of thermal resistance valueθja of boards actually in use.
Please feel free to contact our salesman. The calculated values above are only theoretical. For actual thermal design,
please perform sufficient thermal evaluation for the application board used, and create the thermal design with enough
margin to not exceed Tjmax= 150. Although unn ecessary with normal us e, if the IC is to be used under especiall y strict
heat conditions, please consider externally attaching a Schottky diode between the motor output terminal and GND to
abate heat from the IC.
Temperature Monitoring
There is a way to directly measure the approximate chip temperature by using the T EST terminal. However, temperature
monitor using this TEST terminal is only for evaluation and experimenting, and must not be used in actual usage
conditions. TEST terminal has a protection diode for prevention from electrostatic discharge. The temperature may be
monitored using this protection diode.
(1) Measure the terminal voltage when a current of Idiode=50µA flows from the TEST terminal to the GND, without
supplying VCC to the IC. This measurement is of the Vf voltage inside the diode.
(2) Measure the temperature characteristics of this terminal voltage. (Vf has a linear negative temperature may be
calibrated from the TEST terminal voltage.
(3) Supply VCC, confirm the TEST terminal voltage while running the motor, and the chip temperature can be
approximated from the results of (2).
Model diagram for measuring chip temp erature
-Vf[mV]
25 150 Tj[]
TEST Circuitry
Circuitry
Idiode
VCC
V
Technical Note
11/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Power Dissipation
HTSSOP-B28 Package
HTSSOP-B28 has exposed metal on the b ack, and it is possible to dissipate heat from a through hole in the back. Also,
the back of board as well as the surfaces has large areas of copper foil heat dissipation patterns, greatly increasing
power dissipation. The back metal is shorted with the back side of the IC chip, being a GND potential, therefore there is a
possibility for malfunction if it is shorted with any potential other than GND, which should be avoided. Also, it is
recommended that the back metal is soldered onto the GND to short. Please note that it has been assumed that this
product will be used in the condition of this back metal performed heat dissipation treatment for increasing heat
dissipation efficiency.
HTSSOP-B28 Derating Curve
Ambient Temperature:Ta[]
Power DissipationPd[W]
1.0
100 125
0
4.70W 4
3.30W 3
1.85W 2
1.45W 1
2.0
3.0
4.0
5.0 Measurement machineTH156(Kuwano Electric)
Measurement conditionROHM board
Board size70*70*1.6mm3
(With through holes on the board)
Board①:1-layer board(Copper foil on the back 0mm2)
Board②:2-layer board(Copper foil on the back 15*15mm2)
Board③:2-layer board(Copper foil on the back 70*70mm2)
Board④:4-layer board(Copper foil on the back 70*70mm2)
Board①:θja=86.2/W
Board②:θja=67.6/W
Board③:θja=37.9/W
Board④:θja=26.6/W
Technical Note
12/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Notes for use
(1) Absolute maximum ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can
break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If
any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices,
such as fuses.
(2) Connecting the power supply connector backward
Connecting of the po wer supply in reverse polarity can d amage IC. Take precautions when connecting the power supply
lines. An external direction diode can be added.
(3) Power Supply Lines
Design PCB layout pattern to provide low im pedance GND and su ppl y lin e s. To obtain a low noise ground and suppl y line,
separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply terminals
to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrol ytic capacitors in the
circuit, not have sufficient current absorption capacity, regenerative current will cause the voltage on the power supply
line to rise, which combined with the product and its peripher al circuitry may exceed the absolute maximum ratings. It is
recommended to implement a ph ysic al safety m easur e such as the insertion of a voltage clamp diode between the power
supply and GND pins.
(4) GND Potential
The potential of GND pin must be minimum potenti al in all operating conditions.
(5) Metal on the back side (Define the side where prod uct markings are printed as front)
The metal on the backside is shorted with the backside of IC chip therefore it should be connected to GND. Be aware that
there is a possibility of malfu nction or destruction if it is shorted with any potential other than GND.
(6) Thermal design
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions .
This IC is equipped with FIN heat dissipation terminals, but dissipation efficiency can be improved by applying heat
dissipation treatment in this area. It is important to consider actual usage conditions and to take as large a dissipation
pattern as possible.
(7) Inter-pin shorts and mounting errors
When attaching to a printed circuit board, pay close attention to the direction of the IC and displacement. Improper
attachment may lead to destruction of the IC.
(8) Operation in a strong electric field
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to
malfunction.
(9) ASO
When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.
(10) Thermal shutdown circuit
The IC has a built-in thermal shutdown circuit (TSD circuit). If the chip temperature becomes Tjmax=150, and higher,
coil output to the motor will be open. The TSD circuit is designed only to shut the IC off to prevent runaway thermal
operation. It is not designed to protect or indemnify peripheral equipment. Do not use the TSD function to protect
peripheral equipment.
TSD on temperature [] (Typ.) Hysteresis Temperature [] (Typ.)
175 25
(11) Inspection of the application board
During inspection pf the application board, if a capacitor is connected to a pin with low impedance there is a possibility
that it could cause stress to the IC, therefore an e lectrical discharge should be perform ed after each process. Also, as a
measure again electrostatic discharge, it should be earthed during the assembly process and special care should be
taken during transport or storage. Furthermore, when connecting to the jig during the inspection process, the power
supply should first be turned off and then removed before the insp ection.
Technical Note
13/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
(12) Input terminal of IC
This IC is a monolithic IC, and between each element there is a P+ isolation foe eleme nt partition and a P substrate.
This P layer and each element's N layer make up the P-N junction, and various parasitic elements are made up.
For example, when the resistance and transistor are connected to the terminal as shown in figure,
When GND(Terminal A) at the resistance and GND(Terminal B) at the transistor (NPN),
the P-N junction operates as a parasitic diode.
Also, when GND(Terminal B) at the transistor (NPN)
The parasitic NPN transistor operates with the N layers of other elements close to the aforementioned parasitic
diode.
Because of the IC's structure, the creation of parasitic elements is inevitable from the electrical potential relationship. The
operation of parasitic elements causes interference in circuit operation, and can lead to malfunction and destruction.
Therefore, be careful not to use it in a way which causes the parasitic elements to operate, such as by
applying voltage that is lower than the GND (P substrate) to the input terminal.
Pattern Diagram of Parasitic Element
Resistor Transistor (NP N)
N N N P+ P
+
P
P substrate
GND
Parasitic element
Pin A
N
N P+ P+
P
P substrate
GND
Parasitic element
Pin B C B
E
N
GND
Pin A
Parasitic
element
Pin B
Other adjacent ele men t s
E
B C
GND
Parasitic
element
Technical Note
14/14
BD67929EFV
www.rohm.com 2010.12 - Rev.
A
© 2010 ROHM Co., Ltd. All rights reserved.
Ordering part number
B D 6 7 9 2 9
E F V -E 2
Part No. Part No.
Package
EFV: HTSSOP-B28 Packaging and forming specification
E2: Embossed tape and reel
(HTSSOP-B28)
(Unit : mm)
HTSSOP-B28
0.08
M
0.08 S
S
1.0±0.2
0.5±0.15
4
°
+
6
°
4
°
0.17+0.05
-
0.03
1528
141
(2.9)
4.4±0.1
(5.5)
(MAX 10.05 include BURR)
0.625
6.4±0.2
9.7±0.1
1PIN MARK
1.0MAX
0.65
0.85±0.05
0.08±0.05
0.24 +0.05
-
0.04
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tape (with dry pack)Tape
Quantity
Direction
of feed
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
2500pcs
E2
()
Direction of feed
Reel 1pin
Datasheet
Datasheet
Notice - GE Rev.002
© 2014 ROHM Co., Ltd. All rights reserved.
Notice
Precaution on using ROHM Products
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific
Applications.
(Note1) Medical Equipment Classification of the Specific Applications
JAPAN USA EU CHINA
CLASS CLASS CLASSb CLASS
CLASS CLASS
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are designed and manufactured for use under standard conditions and not under any special or
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any
special or extraordinary environments or conditions. If you intend to use our Products under any special or
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of
product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning
residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual
ambient temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Precaution for Mounting / Circuit board design
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the
ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Datasheet
Datasheet
Notice - GE Rev.002
© 2014 ROHM Co., Ltd. All rights reserved.
Precautions Regarding Application Examples and External Circuits
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
QR code printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,
please consult with ROHM representative in case of export.
Precaution Regarding Intellectual Property Rights
1. All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable
for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the information contained in this document.
Other Precaution
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
DatasheetDatasheet
Notice – WE Rev.001
© 2014 ROHM Co., Ltd. All rights reserved.
General Precaution
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.
ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s
representative.
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or
concerning such information.
Datasheet
Part Number bd67929efv
Package HTSSOP-B28
Unit Quantity 2500
Minimum Package Quantity 2500
Packing Type Taping
Constitution Materials List inquiry
RoHS Yes
bd67929efv - Web Page
Distribution Inventory
Buy