Product
Folder
Sample &
Buy
Technical
Documents
Tools &
Software
Support &
Community
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
LMx58-N Low-Power, Dual-Operational Amplifiers
1 Features 3 Description
The LM158 series consists of two independent, high
1 Available in 8-Bump DSBGA Chip-Sized Package, gain, internally frequency compensated operational
(See AN-1112, SNVA009)amplifiers which were designed specifically to operate
Internally Frequency Compensated for Unity Gain from a single power supply over a wide range of
Large DC Voltage Gain: 100 dB voltages. Operation from split power supplies is also
possible and the low power supply current drain is
Wide Bandwidth (Unity Gain): 1 MHz independent of the magnitude of the power supply
(Temperature Compensated) voltage.
Wide Power Supply Range: Application areas include transducer amplifiers, dc
Single Supply: 3V to 32V gain blocks and all the conventional op-amp circuits
Or Dual Supplies: ±1.5V to ±16V which now can be more easily implemented in single
Very Low Supply Current Drain (500 power supply systems. For example, the LM158
series can be directly operated off of the standard
μA)—Essentially Independent of Supply Voltage 3.3-V power supply voltage which is used in digital
Low Input Offset Voltage: 2 mV systems and will easily provide the required interface
Input Common-Mode Voltage Range Includes electronics without requiring the additional ±15V
Ground power supplies.
Differential Input Voltage Range Equal to the The LM358 and LM2904 are available in a chip sized
Power Supply Voltage package (8-Bump DSBGA) using TI's DSBGA
Large Output Voltage Swing package technology.
Unique Characteristics: Device Information(1)
In the Linear Mode the Input Common-Mode PART NUMBER PACKAGE BODY SIZE (NOM)
Voltage Range Includes Ground and the TO-CAN (8) 9.08 mm x 9.09 mm
Output Voltage Can Also Swing to Ground, LM158-N CDIP (8) 10.16 mm x 6.502 mm
even though Operated from Only a Single LM258-N TO-CAN (8) 9.08 mm x 9.09 mm
Power Supply Voltage. DSBGA (8) 1.31 mm x 1.31 mm
The Unity Gain Cross Frequency is LM2904-N SOIC (8) 4.90 mm x 3.91 mm
Temperature Compensated. PDIP (8) 9.81 mm x 6.35 mm
The Input Bias Current is also Temperature TO-CAN (8) 9.08 mm x 9.09 mm
Compensated. DSBGA (8) 1.31 mm x 1.31 mm
Advantages: LM358-N SOIC (8) 4.90 mm x 3.91 mm
Two Internally Compensated Op Amps PDIP (8) 9.81 mm x 6.35 mm
Eliminates Need for Dual Supplies (1) For all available packages, see the orderable addendum at
Allows Direct Sensing Near GND and VOUT the end of the datasheet.
Also Goes to GND
Compatible with All Forms of Logic Voltage Controlled Oscillator (VCO)
Power Drain Suitable for Battery Operation
2 Applications
Active Filters
General Signal Conditioning and Amplification
4- to 20-mA Current Loop Transmitters
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Table of Contents
7.3 Feature Description................................................. 12
1 Features.................................................................. 17.4 Device Functional Modes........................................ 13
2 Applications ........................................................... 18 Application and Implementation ........................ 14
3 Description............................................................. 18.1 Application Information............................................ 14
4 Revision History..................................................... 28.2 Typical Applications ................................................ 14
5 Pin Configuration and Functions......................... 39 Power Supply Recommendations...................... 24
6 Specifications......................................................... 410 Layout................................................................... 24
6.1 Absolute Maximum Ratings ...................................... 410.1 Layout Guidelines ................................................. 24
6.2 ESD Ratings ............................................................ 410.2 Layout Example .................................................... 24
6.3 Recommended Operating Conditions....................... 511 Device and Documentation Support................. 25
6.4 Thermal Information.................................................. 511.1 Related Links ........................................................ 25
6.5 Electrical Characteristics: LM158A, LM358A, LM158,
LM258........................................................................ 511.2 Trademarks........................................................... 25
6.6 Electrical Characteristics: LM358, LM2904............... 711.3 Electrostatic Discharge Caution............................ 25
6.7 Typical Characteristics.............................................. 911.4 Glossary................................................................ 25
7 Detailed Description............................................ 12 12 Mechanical, Packaging, and Orderable
Information........................................................... 25
7.1 Overview................................................................. 12
7.2 Functional Block Diagram....................................... 12
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision H (March 2013) to Revision I Page
Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes,Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1
Changes from Revision G (March 2013) to Revision H Page
Changed layout of National Data Sheet to TI format ........................................................................................................... 25
2Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
5 Pin Configuration and Functions
D, P, and NAB Package
8-Pin SOIC, PDIP, and CDIP
Top View
LMC Package
8-Pin TO-99
Top View
YPB Package
8-Pin DSBGA
Top View
Pin Functions
PIN TYPE DESCRIPTION
D/P/LMC DSBGA NO. NAME
NO.
1 A1 OUTA O Output , Channel A
2 B1 -INA I Inverting Input, Channel A
3 C1 +INA I Non-Inverting Input, Channel A
Ground for Single supply configurations. negative supply for dual supply
4 C2 GND / V- P configurations
5 C3 +INB I Output, Channel B
6 B3 -INB I Inverting Input, Channel B
7 A3 OUTB O Non-Inverting Input, Channel B
8 A2 V+ P Positive Supply
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
See (1)(2)(3).LM158, LM258,
LM358, LM158A, LM2904 UNIT
LM258A, LM358A
MIN MAX MIN MAX
Supply Voltage, V+32 26 V
Differential Input Voltage 32 26 V
Input Voltage 0.3 32 0.3 26 V
Power Dissipation(4) PDIP (P) 830 830 mW
TO-99 (LMC) 550 mW
SOIC (D) 530 530 mW
DSBGA (YPB) 435 mW
Output Short-Circuit to V+15 V and TA= 25°C Continuous Continuou
GND (One s
Amplifier)(5)
Input Current (VIN <0.3V)(6) 50 50 mA
Temperature 55 125 °C
PDIP Package (P): Soldering (10 seconds) 260 260 °C
SOIC Package (D) Vapor Phase (60 215 215 °C
seconds)
Infrared (15 seconds) 220 220 °C
Lead Temperature PDIP (P): (Soldering, 10 seconds) 260 260 °C
TO-99 (LMC): (Soldering, 10 seconds) 300 300 °C
Storage temperature, Tstg 65 150 65 150 °C
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate
conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the
test conditions, see the Electrical Characteristics.
(2) Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.
(3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
(4) For operating at high temperatures, the LM358/LM358A, LM2904 must be derated based on a 125°C maximum junction temperature
and a thermal resistance of 120°C/W for PDIP, 182°C/W for TO-99, 189°C/W for SOIC package, and 230°C/W for DSBGA, which
applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM258/LM258A and LM158/LM158A can be
derated based on a +150°C maximum junction temperature. The dissipation is the total of both amplifiers—use external resistors, where
possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
(5) Short circuits from the output to V+can cause excessive heating and eventual destruction. When considering short circuits to ground,
the maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15
V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result
from simultaneous shorts on all amplifiers.
(6) This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of
the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is
also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to
the V+voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and
normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than 0.3 V (at 25°C).
6.2 ESD Ratings VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±250 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
4Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT
Supply Voltage (V+ - V-):LM158. LM258, LM358 3 (±1.5) 32 (±16) V
Supply Voltage (V+ - V-):LM2904 3 (±1.5) 26 (±13) V
Operating Temperature: LM158 -55 125 °C
Operating Temperature: LM258 -25 85 °C
Operating Temperature: LM358 0 70 °C
Operating Temperature: LM2904 -40 85 °C
6.4 Thermal Information LM158-N, LM158-N LM2904-N, LM358-N
LM258-N,
LM358-N
THERMAL METRIC(1) UNIT
LMC NAB YPB D P
8 PINS
RθJA Junction-to-ambient thermal resistance 155 132 230 189 120 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
6.5 Electrical Characteristics: LM158A, LM358A, LM158, LM258
V+= +5.0 V, See(1), unless otherwise stated LM158A LM358A LM158, LM258
PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX MIN TYP MAX MIN TYP MAX
Input Offset Voltage See(2), TA= 25°C 1 2 2 3 2 5 mV
Input Bias Current IIN(+) or IIN(), TA= 25°C, 20 50 45 100 45 150 nA
VCM = 0 V,(3)
Input Offset Current IIN(+) IIN(), VCM = 0V, TA= 2 10 5 30 3 30 nA
25°C
Input Common-Mode V+= 30 V,(4) V+1.
0 0 V+1.5 0 V+1.5 V
Voltage Range (LM2904, V+= 26V), TA=5
25°C
Supply Current Over Full Temperature
Range
RL=on All Op Amps
V+= 30V (LM2904 V+= 26V) 1 2 1 2 1 2 mA
V+= 5V 0.5 1.2 0.5 1.2 0.5 1.2 mA
Large Signal Voltage Gain V+= 15 V, TA= 25°C,
RL2 kΩ, (For VO= 1 V to 50 100 25 100 50 100 V/mV
11 V)
Common-Mode TA= 25°C, 70 85 65 85 70 85 dB
Rejection Ratio VCM = 0 V to V+1.5 V
Power Supply V+= 5 V to 30 V 65 100 65 100 65 100 dB
Rejection Ratio (LM2904, V+= 5 V to 26 V),
TA= 25°C
(1) These specifications are limited to –55°C TA+125°C for the LM158/LM158A. With the LM258/LM258A, all temperature specifications
are limited to 25°C TA85°C, the LM358/LM358A temperature specifications are limited to 0°C TA70°C, and the LM2904
specifications are limited to –40°C TA85°C.
(2) VO1.4 V, RS= 0 Ωwith V+from 5 V to 30 V; and over the full input common-mode range (0 V to V+1.5 V) at 25°C. For LM2904, V+
from 5 V to 26 V.
(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the
state of the output so no loading change exists on the input lines.
(4) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at 25°C). The
upper end of the common-mode voltage range is V+1.5 V (at 25°C), but either or both inputs can go to 32 V without damage (26 V for
LM2904), independent of the magnitude of V+.
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Electrical Characteristics: LM158A, LM358A, LM158, LM258 (continued)
V+= +5.0 V, See(1), unless otherwise stated LM158A LM358A LM158, LM258
PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX MIN TYP MAX MIN TYP MAX
Power Supply V+= 5 V to 30 V 65 100 65 100 65 100 dB
Rejection Ratio (LM2904, V+= 5 V to 26 V),
TA= 25°C
Amplifier-to-Amplifier f = 1 kHz to 20 kHz, TA=120 120 120 dB
Coupling 25°C (Input Referred), See(5)
Output Current Source VIN+= 1 V,
VIN= 0 V, 20 40 20 40 20 40 mA
V+= 15 V,
VO= 2 V, TA= 25°C
Sink VIN= 1 V, VIN+= 0 V
V+= 15 V, TA= 25°C, 10 20 10 20 10 20 mA
VO= 2 V
VIN= 1 V,
VIN+= 0 V 12 50 12 50 12 50 μA
TA= 25°C, VO= 200 mV,
V+= 15 V
Short Circuit to Ground TA= 25°C, See(6), V+= 15 V 40 60 40 60 40 60 mA
Input Offset Voltage See(2) 4 5 7 mV
Input Offset Voltage Drift RS= 0Ω7 15 7 20 7 μV/°C
Input Offset Current IIN(+) IIN()30 75 100 nA
Input Offset Current Drift RS= 0Ω10 200 10 300 10 pA/°C
Input Bias Current IIN(+) or IIN()40 100 40 200 40 300 nA
Input Common-Mode V+= 30 V, See(4) (LM2904, 0 V+2 0 V+2 0 V+2 V
Voltage Range V+= 26 V)
Large Signal Voltage Gain V+= +15 V
(VO= 1 V to 11 V) 25 15 25 V/mV
RL2 kΩ
Output VOH V+= +30 V RL= 2 26 26 26 V
kΩ
Voltage RL= 27 28 27 28 27 28 V
(LM2904, V+= 26 V) 10 kΩ
Swing VOL V+= 5V, RL= 10 kΩ5 20 5 20 5 20 mV
Output Current Source VIN+= +1 V, VIN= 0 V, 10 20 10 20 10 20 mA
V+= 15 V, VO= 2 V
Sink VIN= +1 V, VIN+= 0 V, 10 15 5 8 5 8 mA
V+= 15 V, VO= 2 V
(5) Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This
typically can be detected as this type of capacitance increases at higher frequencies.
(6) Short circuits from the output to V+can cause excessive heating and eventual destruction. When considering short circuits to ground,
the maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15
V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result
from simultaneous shorts on all amplifiers.
6Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
6.6 Electrical Characteristics: LM358, LM2904
V+= +5.0 V, See(1), unless otherwise stated LM358 LM2904
PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX MIN TYP MAX
Input Offset Voltage See(2) , TA= 25°C 2 7 2 7 mV
Input Bias Current IIN(+) or IIN(), TA= 25°C, 45 250 45 250 nA
VCM = 0 V, See(3)
Input Offset Current IIN(+) IIN(), VCM = 0 V, TA= 25°C 5 50 5 50 nA
Input Common-Mode V+= 30 V, See(4) V+1.
0 0 V+1.5 V
Voltage Range (LM2904, V+= 26 V), TA= 25°C 5
Supply Current Over Full Temperature Range
RL=on All Op Amps
V+= 30 V (LM2904 V+= 26 V) 1 2 1 2 mA
V+= 5 V 0.5 1.2 0.5 1.2 mA
Large Signal Voltage V+= 15V, TA= 25°C,
Gain RL2 kΩ, (For VO= 1 V to 11 V) 25 100 25 100 V/mV
Common-Mode TA= 25°C, 65 85 50 70 dB
Rejection Ratio VCM = 0 V to V+1.5 V
Power Supply V+= 5 V to 30 V 65 100 50 100 dB
Rejection Ratio (LM2904, V+= 5 V to 26 V), TA= 25°C
Amplifier-to-Amplifier Coupling f = 1 kHz to 20 kHz, TA= 25°C 120 120 dB
(Input Referred), See(5)
Output Current Source VIN+= 1 V,
VIN= 0 V, 20 40 20 40 mA
V+= 15 V,
VO= 2 V, TA= 25°C
Sink VIN= 1 V, VIN+= 0 V
V+= 15V, TA= 25°C, 10 20 10 20 mA
VO= 2 V
VIN= 1 V,
VIN+= 0 V 12 50 12 50 μA
TA= 25°C, VO= 200 mV,
V+= 15 V
Short Circuit to Ground TA= 25°C, See(6), V+= 15 V 40 60 40 60 mA
Input Offset Voltage See(2) 9 10 mV
Input Offset Voltage Drift RS= 0 Ω7 7 μV/°C
Input Offset Current IIN(+) IIN()150 45 200 nA
Input Offset Current Drift RS= 0 Ω10 10 pA/°C
Input Bias Current IIN(+) or IIN()40 500 40 500 nA
(1) These specifications are limited to –55°C TA+125°C for the LM158/LM158A. With the LM258/LM258A, all temperature specifications
are limited to 25°C TA85°C, the LM358/LM358A temperature specifications are limited to 0°C TA70°C, and the LM2904
specifications are limited to –40°C TA85°C.
(2) VO1.4 V, RS= 0 Ωwith V+from 5 V to 30 V; and over the full input common-mode range (0 V to V+1.5 V) at 25°C. For LM2904, V+
from 5 V to 26 V.
(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the
state of the output so no loading change exists on the input lines.
(4) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at 25°C). The
upper end of the common-mode voltage range is V+1.5 V (at 25°C), but either or both inputs can go to 32 V without damage (26 V for
LM2904), independent of the magnitude of V+.
(5) Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This
typically can be detected as this type of capacitance increases at higher frequencies.
(6) Short circuits from the output to V+can cause excessive heating and eventual destruction. When considering short circuits to ground,
the maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15
V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result
from simultaneous shorts on all amplifiers.
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Electrical Characteristics: LM358, LM2904 (continued)
V+= +5.0 V, See(1), unless otherwise stated LM358 LM2904
PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX MIN TYP MAX
Input Common-Mode V+= 30 V, See(4) (LM2904, V+= 26 V) 0 V+2 0 V+2 V
Voltage Range
Large Signal Voltage Gain V+= +15 V
(VO= 1 V to 11 V) 15 15 V/mV
RL2 kΩ
Output VOH V+= 30 V RL= 2 kΩ26 22 V
Voltage (LM2904, V+= 26 V) RL= 10 kΩ27 28 23 24 V
Swing VOL V+= 5 V, RL= 10 kΩ5 20 5 100 mV
Output Current Source VIN+= 1 V, VIN= 0 V, 10 20 10 20 mA
V+= 15 V, VO= 2 V
Sink VIN= 1 V, VIN+= 0 V, 5 8 5 8 mA
V+= 15 V, VO= 2 V
8Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
6.7 Typical Characteristics
Figure 1. Input Voltage Range Figure 2. Input Current
Figure 3. Supply Current Figure 4. Voltage Gain
Figure 6. Common-Mode Rejection Ratio
Figure 5. Open Loop Frequency Response
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Typical Characteristics (continued)
Figure 8. Voltage Follower Pulse Response (Small Signal)
Figure 7. Voltage Follower Pulse Response
Figure 9. Large Signal Frequency Response Figure 10. Output Characteristics Current Sourcing
Figure 11. Output Characteristics Current Sinking Figure 12. Current Limiting
10 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
Typical Characteristics (continued)
Figure 13. Input Current (LM2902 Only) Figure 14. Voltage Gain (LM2902 Only)
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
7 Detailed Description
7.1 Overview
The LM158 series are operational amplifiers which can operate with only a single power supply voltage, have
true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 VDC. These
amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At
25°C amplifier operation is possible down to a minimum supply voltage of 2.3 VDC.
Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes
are not needed, no large input currents result from large differential input voltages. The differential input voltage
may be larger than V+without damaging the device. Protection should be provided to prevent the input voltages
from going negative more than 0.3 VDC (at 25°C). An input clamp diode with a resistor to the IC input terminal
can be used.
7.2 Functional Block Diagram
Figure 15. (Each Amplifier)
7.3 Feature Description
The amplifier's differential inputs consist of a non-inverting input (+IN) and an inverting input (–IN). The amplifer
amplifies only the difference in voltage between the two inpus, which is called the differential input voltage. The
output voltage of the op-amp Vout is given by Equation 1:
VOUT = AOL (IN+ - IN-)
where
AOL is the open-loop gain of the amplifier, typically around 100dB (100,000x, or 10uV per Volt). (1)
To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which
converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output
currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power
capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to
bias the on-chip vertical PNP transistor for output current sinking applications.
For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be
used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover
distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.
Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values
of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop
gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.
The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power
supply voltage over the range of 3 VDC to 30 VDC.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can
be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase
in IC chip power dissipation which will cause eventual failure due to excessive junction temperatures. Putting
direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive
levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the
amplifiers. The larger value of output source current which is available at 25°C provides a larger output current
capability at elevated temperatures (see Typical Characteristics) than a standard IC op amp.
12 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
7.4 Device Functional Modes
Figure 16. Schematic Diagram
The circuits presented in the Typical Single-Supply Applications emphasize operation on only a single power
supply voltage. If complementary power supplies are available, all of the standard op-amp circuits can be used.
In general, introducing a pseudo-ground (a bias voltage reference of V+/2) will allow operation above and below
this value in single power supply systems. Many application circuits are shown which take advantage of the wide
input common-mode voltage range which includes ground. In most cases, input biasing is not required and input
voltages which range to ground can easily be accommodated.
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
8 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
The LM158 family bring performance, economy, and ease-of-use to a wide variety of op-amp applications.
8.2 Typical Applications
8.2.1 Noninverting DC Gain
Figure 17 shows a high input impedance non-inverting circuit. This circuit gives a closed-loop gain equal to the
ratio of the sum of R1 and R2 to R1 and a closed-loop 3 dB bandwidth equal to the amplifier unity-gain frequency
divided by the closed-loop gain. This design has the benefit of a very high input impedance, which is equal to the
differential input impedance multiplied by loop gain. (Open loop gain/Closed loop gain.) In DC coupled
applications, input impedance is not as important as input current and its voltage drop across the source
resistance. Note that the amplifier output will go into saturation if the input is allowed to float. This may be
important if the amplifier must be switched from source to source.
*R not needed due to temperature independent IIN
Figure 17. Non-Inverting DC Gain (0-V Output)
8.2.1.1 Design Requirements
For this example application, the supply voltage is +5V, and 100x±5% of noninverting gain is necessary. Signal
input impedance is approx 10kΩ.
8.2.1.2 Detailed Design Procedure
Using the equation for a non-inverting amplifier configuration ; G = 1+ R2/R1, set R1 to 10kΩ, and R2 to 99x the
value of R1, which would be 990kΩ. Replacing the 990kΩwith a 1MΩwill result in a gain of 101, which is within
the desired gain tolerance.
The gain-frequency characteristic of the amplifier and its feedback network must be such that oscillation does not
occur. To meet this condition, the phase shift through amplifier and feedback network must never exceed 180°
for any frequency where the gain of the amplifier and its feedback network is greater than unity. In practical
applications, the phase shift should not approach 180° since this is the situation of conditional stability. Obviously
the most critical case occurs when the attenuation of the feedback network is zero.
14 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
Typical Applications (continued)
8.2.1.3 Application Curve
Figure 18. Transfer Curve for Non-Inverting Configuration
8.2.2 System Examples
8.2.2.1 Typical Single-Supply Applications
(V+= 5.0 VDC)
VO=0VDC for VIN =0VDC
Where: VO= V1+ V2V3V4AV= 10
(V1+ V2)(V3+ V4) to keep VO> 0 VDC
Figure 19. DC Summing Amplifier Figure 20. Power Amplifier
(VIN'S 0 VDC and VO0 VDC)
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Typical Applications (continued)
(V+= 5.0 VDC)
fo= 1 kHz
Q = 50
Av= 100 (40 dB)
Figure 21. “BI-QUAD” RC Active Bandpass Filter Figure 22. Lamp Driver
Figure 23. LED Driver Figure 24. Driving TTL
16 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
www.ti.com
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
Typical Applications (continued)
(V+= 5.0 VDC)
VO= VIN
Figure 25. Voltage Follower Figure 26. Pulse Generator
Figure 27. Squarewave Oscillator Figure 28. Pulse Generator
Copyright © 2000–2014, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N
LM158-N
,
LM258-N
,
LM2904-N
,
LM358-N
SNOSBT3I JANUARY 2000REVISED DECEMBER 2014
www.ti.com
Typical Applications (continued)
(V+= 5.0 VDC)
HIGH ZIN IO= 1 amp/volt VIN
LOW ZOUT (Increase REfor IOsmall)
Figure 29. Low Drift Peak Detector Figure 30. High Compliance Current Sink
*WIDE CONTROL VOLTAGE RANGE: 0 VDC VC
2 (V+1.5V DC)
Figure 31. Comparator with Hysteresis Figure 32. Voltage Controlled Oscillator (VCO)
18 Submit Documentation Feedback Copyright © 2000–2014, Texas Instruments Incorporated
Product Folder Links: LM158-N LM258-N LM2904-N LM358-N