82547GI/82547EI Gigabit Ethernet
Controller
Networking Silicon
Datasheet
Product Features
CSA Port
PCI- X revisio n 1.0a, up to 133 MHz
Uses dedicated port for client LAN controller
directly on MCH device
High-speed interface with twice the peak
bandwidth of 32-bit, 33 MHz PCI bus
PCI power managemen t registers by MCH
MAC Specific
Optimized transmit and receive queues
IEEE 802. 3x-complian t flow-control suppor t
with software-con trol la ble thresho ld s
Caches up to 64 packet descriptors in a single
burst
Programmabl e host memory receive b uffers
(256 B to 16 KB) and cache line size (16 B to
256 B)
Wide, optimized internal data path
architecture
40 KB configurable Transmit and Receive
FIFO buffers
Descriptor ring management hardware for
transmit and receive
Optimized descriptor fetching and write-
back mechanisms
Mechanism available for reducing interrupts
generated by transmit and receive operations
Support for tran smission and recept i on of
packets up to 16 KB
PHY Specific
Integrated for 10/100/1000 Mb/s full- and
half-d up le x operat i on
IEEE 802. 3a b Auto -Ne go tiatio n an d PHY
complianc e and compa tib ilit y
State-of-the-art DSP architecture implements
digital adaptive eq ualization, echo and cross-
talk cancellation
PHY cable correction and diagnostics
Automatic detectio n of cable lengths
and MDI vs. MDI-X cable at all speeds
Host Off-Loading
Transmit and receive IP, TCP, and UDP
checksum off-loading capabilities
Transmit TCP segmen tation and ad vanced
packed filtering
IEEE 802. 1Q VLAN ta g insertio n an d
strippin g and pa c ket filte rin g for up to 4096
VLAN tags
Jumbo frame support up to 16 KB
Intelligent Interrupt generation (multiple
packets per i nterrupt)
Manageability
On-chip SMBus 2.0 port
ASF 1.0 and 2.0
Compliance with PCI Power Management
v1.1/ACPI v2.0
Wake on LAN* (WoL) support
Additional Device
Four programm able LED outputs
On -chip power regulator c o ntro l circuitr y
BIOS LAN Disable pin
JTAG (IEEE 1149.1) Test Access Port built
in silicon
Lead-freea 196-p in Ball Grid A rray (BGA).
Devices that are lead-free are mark ed with a
circled “e1” and have the product code:
LUxxxxxx.
a. Thi s d ev ice is le ad-fr ee. Tha t is , lead has not been inte n tiona lly added, but lead may s t ill exis t as an imp urity at
<1000 ppm. The Material Declaration Data Sheet, which includes lead impurity levels and the concentration of other
Restriction on Hazardou s Substances (RoHS)-banned materials, is available at:
ftp://download.intel.com/design/packtech/material_content_IC_Package.pdf#pagemode=bookmarks
In addition, this device has been tested and conforms to the sa me para metric specifications as previous versions of
the device.
For more in form ation regardi ng lead-free prod uc ts from Intel Corporation, contac t your Intel Field Sal es re pre s en-
tative
Revision 2.1
November 2004
ii Datasheet
Revision History
Date Revision Notes
Aug 2003 2.0 Non-classified release.
Nov 2004 2.1 Added Architecture Overview chapter.
Update signal names to match Design Guide and EEPROM Map and
Programming Application Note.
Updated lead-free information.
Added information about migrating from a 2-layer 0.36 mm wide-trace
substrate to a 2-layer 0.32 mm wide-trace substrate. Refer to the sec-
tion on Package and Pinout Information.
Added statement that no changes to existing soldering processes are
needed for the 2-layer 0.32 mm wide-trace substrate change in the sec-
tion describing “Package Information”.
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to the m.
The 82547GI/82547EI may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on re quest.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by cal ling 1-8 00-
548-4725 or by visiting Intel's website at http://www.intel.com.
Copyright © 2004 Intel Corporation
*Third-party brands and names are the property of their respective owners.
Networking Silicon —82547GI(EI)
Datasheet iii
Contents
1.0 Introduction.........................................................................................................................1
1.1 Document Scope...................................................................................................1
1.2 Reference Doc uments. ....... ...... ....... ...... ...... ....... ...... .......................... ....... ............2
1.3 Product Codes.......................................................................................................2
2.0 Architectural Overview .......................................................................................................3
2.1 Internal Architecture Block Diagram......................................................................3
2.2 Internal MAC Architecture Block Diagram.............................................................4
2.3 Integrated 10/100/1000 Mbps PHY.......................................................................5
2.4 CSA Controlle r Interface .... ...... ....... ...... ...... ....... ...... ....... ...... ....... ...... ...................5
3.0 Signal Descriptions.............................................................................................................7
3.1 Signal Type Definitions..........................................................................................7
3.2 CSA Port Interface ................................ ...... .......................... ....... .........................7
3.2.1 CSA Data, Strobe and Control Signals ....................................................7
3.2.2 CSA Termin ation Sig nals ................................... .......................... ............7
3.2.3 System Signals.........................................................................................8
3.2.4 Power Management Signals ....................................................................8
3.2.5 SMB Signals.............................................................................................8
3.3 EEPROM and Serial Flash and Interface Signals.................................................9
3.4 Miscellaneous Signals...........................................................................................9
3.4.1 LED Signals..............................................................................................9
3.5 Other Signa ls .............. .......................... .......................... .......................... ............9
3.5.1 Crystal Signals .......................................................................................10
3.5.2 Analog Signa ls ................... ...... .......................... .......................... ..........1 0
3.6 Test Interface Signals..........................................................................................10
3.7 Power Supply Connections.................................................................................11
3.7.1 Digital and Analog Supplies ...................................................................11
3.7.2 Grounds, Reserved Pins and No Connects ...........................................11
3.7.3 Voltage Regulation Control Signals........................................................11
4.0 Voltage, Temperature, and Timing Specifications............................................................13
4.1 Absolute Maximum Ratings.................................................................................13
4.2 Recommended Operating Conditions.................................................................14
4.3 DC Specificat ion s..................... ....... ...... ...... ....... ...... ....... ...... ....... .......................14
4.4 AC Characteristics...............................................................................................18
4.5 Timing Specifications ..........................................................................................19
4.5.1 Link Interface Timing..............................................................................19
4.5.2 EEPROM Interface.................................................................................19
5.0 Package and Pinout Information......................................................................................21
5.1 Package Information ...........................................................................................21
5.2 Thermal Specifications........................................................................................23
5.3 Pinout Information...............................................................................................24
5.4 Visual Pin Assignments.......................................................................................33
82547GI(EI)— Networking Silicon
iv Datasheet
Note: This page intentionall y lef t blank .
Networking Silicon — 82547GI(EI)
Datasheet 1
1.0 Introduction
The Intel® 82547GI(EI) Gigabit Ethernet Controller is a single, compact component with
integrated Gigabit Ethernet Media Access Control (MAC) and physical layer (PHY) functions.
This device uses the Communications Streaming Architecture (CSA) port of the Intel® 865 and
Intel® 875 Chipset. The Intel® 82547GI(EI) allows for a Gigabit Ethernet implementation in a
very small area that is footprint compatible with current generation 10/100 Mbps Fast Ethernet
designs.
The Intel® 82547GI(EI) integrates Intel’s fifth generation gigabit MAC design with fully
integrated, physical layer circuitry to provide a standard IEEE 802.3 Ethernet interface for
1000BASE-T, 100BASE_TX, and 10BASE-T applications (802.3, 802.3u, and 802.3ab). The
controller is capable of transmitting and receiving data at rates of 1000 Mbps, 100 Mbps, or 10
Mbps. In addition to managing MAC and PHY layer functions, the controller uses dedicat ed CSA
port capability with a theoretical bandwidth of 266 MB/s.
The 82547GI(EI) on-board System Management Bus (SMB ) port enables n e twork manageability
implementations required by information technology personnel for remote control and alerting via
the LAN. With SMB, management packets can be routed to or from a management processor. The
SMB port enables industry standards, such as Intelligent Platform Management Interface (IPMI)
and Alert Standard Forum (ASF) 2.0, to be implemented using the 82547GI(EI). In addi tion, on-
chip ASF 2.0 circuitry provides alerting and remote control capabilities with standardized
interfaces.
The 82547GI(EI ) Gigabit Ethernet Controller with CSA is desig ned for high performance and low
memory latency. The CSA port architecture is invis ible to both system software and the operating
system, allowing a conventional PCI-like configuration.
Wide internal data paths eliminate performance bottlenecks by efficiently handling large address
and data word s. The 82547GI(EI) controller includes advanced interrupt handling features. The
82547GI(EI) uses efficient ring buffer descriptor data structures, with up to 64 packet descriptors
cached on chip. A large 40 KB on-chip packet buffer maintain s superior performance. In additio n,
by using hardware acceleration, the controller offloads tasks from the host, such as TCP/UDP/IP
checksum calculations and TCP segmentation.
The 82547GI(EI) is packaged in a 15 mm X 15 mm, 196-ball grid array and is footprint comp atible
with 82562EZ/82562EX Platform LAN Connect devices.
1.1 Document Scope
The 82547GI(EI) is the original device and is now in being manufactured in a B0 stepping. The
82547GI is pin compatible and is a B1 stepping of the same product, however a different Intel
software driver is requ ired. This document contains datasheet specifications for the 82547GI(EI)
Gigabit Ethern et Controlle r, including sign al descript ions, DC and AC paramet ers, packaging data ,
and pinout information.
82547GI(EI) — Networking Silicon
2Datasheet
1.2 Ref e rence Doc u m ents
This document assumes that the designer is acquainted with high-speed design and board layout
techniques. The foll owing docu ment s provide appli cati on infor mat ion:
82562EZ(EX)/82547GI(EI) Dual Footprint Design Guide. Intel Corporation.
82547GI(EI)/82541(PI/GI/EI) EEPROM Map and Programming Information Guide. Intel
Corporation.
PCI Local Bus Specification, Revision 2.3. PCI Special Interest Group (SIG).
PCI Bus Power Management Interface Specification, Revi sion 1.1. PCI Special Interest Group
(SIG).
IEEE S tandard 802. 3, 2000 Edition. Incorporates variou s IEEE standards previous ly publis hed
separately. Institute of Electrical and Electronic Engineers (IEEE).
Intel Ethernet Controllers Timing Device Selection Guide. Intel Corporation.
Software driver developers should contact their local Intel representatives for pr ogramming
information.
1.3 Product Codes
The product ordering codes for the 82547GI(EI) controller are:
GD82547GI
GD82547EI
LU82547GI
LU82547EI
Networking Silicon — 82547GI(EI)
Datasheet 3
2.0 Architectural Overview
2.1 Inter n a l A rc h i t ec t u re Blo c k D i agram
The 82547GI( EI) arch itecture is a derivati ve of the 8 2542, 8 2543, an d 8254 4 designs that p rovide d
Media Access Controller (MAC) functionality as well as an integrated 10/100/1000Mbps copper
PHY. The 82547GI(EI) architecture now adds SMBus-based manageability and an integrated ASF
controller functionality to the MAC (see Figure 1).
Figure 1. 82547GI(EI) External Architecture Block Diagram
CSA Port
S
/W Defined
P
ins
M
DI
I
nterfac
e
D
esign For Tes
t
I
nterface
L
ED's
E
EPROM
Flash Interface
S
M Bus
I
nterface
MAC/Con troller
10/100/1000 PHY
DIO
I
nterfac
e
GMII /MII
I
nterface
82547GI(EI) — Networking Silicon
4Datasheet
2.2 Internal MAC Architecture Block Diagram
Figure 2 shows the major internal function blocks of 82547GI(EI) MAC device. Compared to its
predecessors, the 82547GI(EI) MAC adds improved receive-packet filtering to support SMBus-
based manageability, as well as the ability to support transmit of SMBus-based manag eability
packets. In addition, an ASF-compliant TCO controller is integrated into the MAC for reduced-
cost basic ASF manageability.
Figure 2. 82547GI(EI) Internal MAC Architecture Block Diagram
VLA
N
PCI Core EEPROM FLASH
Slave
Access
Logic
DMA Function
Descriptor Management
Control
Status
Logic
Statistics
TX/RX MAC
CSMA/CD
40KB
Packet
RAM
RX Filters
(Perfect,
Multicast,
VLAN)
Management
Interface
PHY
Control
Side-stream
Scrambler/
Descrambler
Media Dependent Interface
ECHO, NEXT,
FEXT
Cancellers
Trellis Viterbi
Encoder/Decoder
Line DriverHybrid
Pulse Shaper,
DAC, Filter
AGC, A/D
Timing
Recovery
4DPAM5
Encoder
8 bits
8 bits
4 bits
4 bits
CSA Port
Networking Silicon — 82547GI(EI)
Datasheet 5
2.3 Integrated 10/100/1000 Mbps PHY
The 82547GI(EI) contains an integrated 10/100/1000Mbps-capable Copper PHY. This PHY
communicates with the MAC controller using a standard GMII/MII interface internal to the
component to transfer transmit and receive data. A standard MDIO interface, accessible to
software via MAC control regis ters, is used to c onfigure and moni tor the PHY operation.
2.4 CSA Controller Interface
The 82547EI Gigabit Ethernet Controller conn ects to the mo therboard chipset through a
Communications Streaming Architecture (CSA) port. CSA is designed for low memory latency
and higher performance than a comparable PCI interface.
The Communications Streaming Architecture is derived from the Intel Hub Architecture. The
82547GI(EI) controller’s CSA port consists of 11 data and control signal s, two strobes, a 66 MHz
clock, and driver compensation resistor connections. The CSA port has a th eoretical bandwidth of
266 MB/s — approximately twice the peak bandwidth of a 32-bit 33 MHz PCI bus.
82547GI(EI) — Networking Silicon
6Datasheet
Note: This page intentionall y lef t blank .
Networking Silicon — 82547GI(EI)
Datasheet 7
3.0 Signal Descriptions
3.1 Signal Type Definitions
The signals of the 82547GI(EI) controller are electrically defined as follows:
3.2 CSA Port Interface
When the Reset signal (RST#) is asserted, the 82547GI(EI) does not drive the CSA Port interface.
The Power Management Event signal (PME#) can still be activated, subject to programming.
3.2.1 CSA Data, Strobe and Control Signals
3.2.2 CSA Termination Signals
Name Definition
IInput. Standard input only digital signal.
OOutput. Standard output only digital signal.
TS Tri-state. Bi-directional three-state digital input/output signal.
OD
Open Drain. Wired-OR with other agents.
The signaling agent asserts the OD signal, but the signal is returned to the inac tive state by a
weak pull-up resistor . The pull-up resistor may require two or three clock periods to fully restore
the signal to the de-asserted state.
AAnalog. PHY analog data signal.
PPower. Power connection, voltage reference, or other reference connection.
Symbol Type Name and Fun c tion
CI[10:0] TS Communications Streaming Architecture Interface. High-speed, 1 1-pin interface for
sending/receiving packet data t o the GMCH (Mem ory Control Hub). The CSA port is
implemented with Invert Gunning Transceiver Logic (IGTL)
CI_CLK I CSA Interface Clock. The clock signal provides timing for all transactions on the CSA
port and is an input to the 82547GI(EI) device. Timing parameters are defined with
respect to this reference.
Symbol Type Name and Fun c tion
CI_
RCOMP PCSA Compensation Resistor . Connect a 30 ohm 1% resistor between this pin and the
1.2 V supply for I/O circuit compensation (process, temperature, voltage).
CI_SWING P CSA Swing Voltage. Biased to 0.8 V reference with an external voltage divider
network.
CI_VREF P CSA Voltage Reference. Biased to 0.35 V reference with an external voltage divider
network.
82547GI(EI) — Networking Silicon
8Datasheet
3.2.3 System Signals
3.2.4 Power Management Signals
3.2.5 SMB Signals
Symbol Type Name and Function
RST# I
Reset. When the Reset signal is asserted, the CSA port is inactivated and all input
signals are ignored. The controller can still activate the Power Management Event
signal (PME#) and PME# context is preserved according to power management
settings.
Symbol Type Name and Function
LAN_
PWR_
GOOD I
Power Good (Po wer-o n Reset). The Power Good signal i s used to indicate that st able
power is available for the 82547GI(EI). When the signal is low, the 82547GI(EI) holds
itself in reset state. LAN_PWR_GOOD acts as a master reset of the entire chip. It is
level sensitive. While deasserted, the registers are reset and the CSA interface is quiet
PME# OD
Power Ma nagement Event. The 82547GI(EI) device drives this signal low when it
receives a wake-up event and either the PME Enable bit in the Power Management
Control/S tatus Register or the Advanced Power Management Enable (APME) bit of the
Wake-up Control Register (WUC) is 1b.
AUX_PWR I Auxiliary Power. If the Auxiliary Power signal is high, then auxiliary power is available
and the 82547GI(EI) device should support the D3cold power state.
Symbol Type Name and Function
SMBCLK I/O SMB Clock. The SMB Clock signal is an open drain signal for serial SMB
interface.
SMBDATA I/O SMB Data. The SMB Data signal is an open drain signal for serial SMB
interface.
SMB_ ALERT# I/O SMB Alert. The SMB Alert signal is open drain for serial SMB interface. In
ASF mode, this signal acts as POWER GOOD input.
Networking Silicon — 82547GI(EI)
Datasheet 9
3.3 EEPROM and Serial Flash and Interface Signals
3.4 Miscellaneous Signals
3.4.1 LED Signals
3.5 Other Signals
Symbol Type Name and Fun c tion
EEMODE I
EEPROM Mode. The EEPROM Mode pin is used to select the interface and source of
the EEPROM used to initialize the device. For a MIcrowire* EEPROM on the standard
EEPROM pins, tie this pin to ground with a pull-down resistor . For an SPI* EEPROM,
use a pull-up resistor.
EEDI O EEPROM Data Input. The EEPROM Data Input pin is used for output to the memory
device.
EEDO I EEPROM Data Output. The EEPROM Data Output pin is used for input fro m the
memory device. The EEDO includes an internal pull-up resistor.
EECS O EEPROM Chip Select. The EEPROM Chip Select signal is used to enable the device.
EE_SK O EEPROM Serial Clock. The EEP RO M Shift Clock provides the clock rate for the
EEPROM interface. The clock rate of the serial FLASH interface is approximately
1 MHz for Microwire* and 2 MHz for SPI* EEPROMs
FLSH_CE# O FLASH Chip Ena ble Output. Used to enable FLASH device.
FLSH_SCK O FLASH Serial Clock Output.
FLSH_SI O FLASH Serial Data Input. This pin is an output to the memory device.
FLSH_SO/
LAN_
DISABLE# IFLASH Serial Data Output/LAN Disable. Input from an external FLASH memory.
Alternatively, it can be used to dis able the LAN port from a system GP (General
Purpose) port under BIOS control. This pin has an internal pull-up device.
Symbol Type Name and Function
LED0 / LINK_UP# O LED0 / LINK Up. Programmable LED indication. Defaults to indicate link
connectivity..
LED1 / ACTIVITY# O LED1 / Activity. Programmable LED indication. Defaults to flash to indicate
transmit or receive activity..
LED2 / LINK100# O LED2 / LINK 100. Progr amm able LED indication. Defaults to indicate link at
100 Mbps.
LED3 / LINK1000# O LED3 / LINK 1000. Programmable LED indication. Default s to indicate link at
1000 Mbps.
Symbol Type Name and Fun c tion
SDP[3:0] TS
Software Defi ned Pin. The Software Defined Pins are programmable with respect to
input and output capability. SDP[3:2] can be optionally configured as interrupt inputs .
SDP signals default to inputs upon power-up but can be configured differently by the
EEPROM.
82547GI(EI) — Networking Silicon
10 Datasheet
3.5.1 Crystal Signals
3.5.2 Analog Signals
3.6 Test Interface Signals
Symbol Type Name and Function
XTAL1 I Crystal One. The Crystal One pin is a 25 MHz +/- 30 ppm input signal. It should be
connected to a crystal, and the other end of the cry stal should be connected to XTAL2.
XTAL2 O Crystal Two. Crystal Two is the output of an internal oscillator circuit used to drive a
crystal into oscillation.
Symbol Type Name and Function
MDI[0]+/- A
Media Dependent Interface [0].
1000BASE-T: In MDI configuration, MDI[0]+/- corresponds to BI_DA+/-, and in MDI-X
configuration, MDI[0]+/- corresponds to BI_DB+/-.
100BASE_TX: In MDI configuration, MDI[0]+/- is used for the transmit pair, and in MDI-X
configuration, MDI[0]+/- is used for the receive pair.
10BASE-T: In MDI configuration, MDI[0]+/- is used for the transmit pair, and in MDI-X
configuration, MDI[0]+/- is used for the receive pair.
MDI[1]+/- A
Media Dependent Interface [1].
1000BASE-T: In MDI configuration, MDI[1]+/- corresponds to BI_DB+/-, and in MDI-X
configuration, MDI[1]+/- corresponds to BI_DA+/-.
100BASE_TX: In MDI configuration, MDI[1]+/- is used for the receive pair , and in MDI-X
configuration, MDI[1]+/- is used for the transit pair.
10BASE-T: In MDI configuration, MDI[1]+/- is used for the receive pair, and in MDI-X
configuration, MDI[1]+/- is used for the transit pair.
MDI[2]+/- A
Media Dependent Interface [2].
1000BASE-T: In MDI configuration, MDI[2]+/- corresponds to BI_DC+/-, and in MDI-X
configuration, MDI[2]+/- corresponds to BI_DD+/-.
100BASE_TX: Unused.
10BASE-T: Unused.
MDI[3]+/- A
Media Dependent Interface [3].
1000BASE-T: In MDI configuration, MDI[3]+/- corresponds to BI_DD+/-, and in MDI-X
configuration, MDI[3]+/- corresponds to BI_DC+/-.
100BASE_TX: Unused.
10BASE-T: Unused.
Symbol Type Name and Function
JTAG_TCK I JTAG Test Access Port Clock.
JTAG_TDI I JTAG Test Access Port Test Data In.
JTAG_TDO O JTAG Test Access Port Test Data Out.
JTAG_TMS I JTAG Test Access Port Mode Select.
Networking Silicon — 82547GI(EI)
Datasheet 11
3.7 Power Supply Connections
3.7.1 Digital and Analog Supplies
3.7.2 Grounds, Reserved Pins and No Connects
3.7.3 Voltage Regulation Control Signals
JTAG_TRST# I JTAG Test Access Port Reset. This is an active low reset signal for JTAG.
This signal should be terminated using a pull-down resistor to ground. It
must not be left unconnected.
TEST I Factory Test Pin. Connect directly to ground for normal operation.
IEEE_TEST+/- A IEEE Test Pins. Differential output used for IEEE PHY conformance
testing.
Symbol Type Name and Fun c tion
3.3V P 3.3 V I/ O Powe r Supply.
1.8V P 1.8 V Analog Power Supply.
1.2V P 1.2 V Power Supply. For analog, CSA, and digital circuits.
Symbol Type Name and Fun c tion
GND P Ground. Connects to analog or digital circuits.
RSVD_
3.3V PReserved, 3.3V. T his pin is reserved by Intel and may have factory test functions. For
normal operation, connect to 3.3V.
RSVD_
GND PReserved, Ground T his pin is reserved by Intel and may have factory test functions.
For normal operation, connect to ground.
RSVD_ NC P Reserved, No Connect. This pin is reserved by Intel and may have factory test
functions. For normal operation, do not connect any circuitry to these pins. Do not
connect pull-up or pull-down resistors.
NC P No Connect. This pin is not connected int ernally.
Symbol Type Name and Fun c tion
CTRL12 A
1.2V Control. LDO voltage regulator output to drive external PNP pass transistor. If
1.2V is already present in the system, leave output unconnected. To achieve optimal D3
power consumption, leave the output unconnected and use a high-efficiency ext ernal
switching regulator.
CTRL18 A
1.8V Control. LDO voltage regulator output to drive external PNP pass transistor. If
1.8V is already present in the system, leave output unconnected. To achieve optimal D3
power consumption, leave the output unconnected and use a high-efficiency ext ernal
switching regulator.
Symbol Type Name and Function
82547GI(EI) — Networking Silicon
12 Datasheet
Note: This page intentionall y lef t blank .
Networking Silicon — 82547GI(EI)
Datasheet 13
4.0 Volta ge, Temperature, and Timing Specifications
4.1 Absolute Maximum Ratings
Table 1. Absolute Maximum Ratingsa
a. Maximum ratings are referenced to ground (VSS). Permanent device damage is likely to occur if the ratings in this table are
exceeded. These values should not be used as the limits for normal device operations.
Symbol Parameter Min Max Unit
VDD (3.3) DC supply voltage on 3.3 V pins
with respect to VSS VSS - 0.5 4.6 V
VDD (1.8) DC supply voltage on 1.8 V pins
with respect to VSS VSS - 0.5 2.5 or
VDD (1.8) + 0.5b
b. The maximum value is the lesser value of 2.5V or VDD(2.5) + 0.5 V. This specification applies to biasing the device to a steady
state for an indefinite duration. During normal device power-up, explicit power sequencing is not required.
V
VDD (1.2) DC supply voltage on 1.2V pins
with respect to VSS VSS - 0.5 1.7 or
VDD (1.5) + 0.5c
c. The maxi mu m value is the less er value of 1.7V or VD D(2. 5) + 0.5 V.
V
VDD DC supply voltage VSS - 0.5 4.6 V
VI / VO LVTTL input voltage VSS - 0.5 4.6 V
IO
DC output current (by cell type):
IOL = 2 mA
IOL = 4 mA
IOL = 8 mA
IOL - 12 mA
5
10
20
30
mA
TSTG Storage temperat ure range -40 125 C
ESD per MIL_STD-883 Test
Method 3015, Specif ication 2001V
Latchup Over/Undersho ot: 150
mA, 125 C
VDD overstress:
VDD(3.3)(7.2 V) V
82547GI(EI) — Networking Silicon
14 Datasheet
4.2 Recommended Operating Conditions
4.3 DC Specifications
Table 4. Power Specifications - D0a
Table 2. Recommended Operating Conditions a
a. Sustained operation of the device at conditions exceeding these values, even if they are within the absolute maximum rating
limits, might result in unreliable operation or permanent damage.
Symbol Parameter Min Max Unit
VDD (3.3) DC supply volt age on 3.3 V pins 3.0 3.6 V
VDD (1.8) DC supply volt age on 1.8 V pinsbc
b. It is recommended for 3.3 V pins to be of a value greater than 1.8 V pins, with a value greater than 1.2 V pins, during power-
up (3.3 V pins > 1.8 V pins > 1.2 V pins). However, voltage sequencing is not a strict requirement if the power supply ramp is
faster than approximately 20 ms.
c. Includes both the DC component of the voltage and the AC ripple that may be present when using the internal voltage regulator
control circuits with PNP pass transistors.
1.71 1.89 V
VDD (1.2) DC supply volt age on 1.2 V pinsbc 1.14 1.26 V
tR / tF Input rise/fall time (normal input) 0 200 ns
tr/tf input rise/fall time (Schmitt input) 0 10 ms
TA Operating temperature range
(ambient) 055°C
TJ Junction temperature 125 °C
Table 3. DC Characteristics
Symbol Parameter Condition Min Typ Max Units
VDD (3.3) DC supply voltage on 3.3 V
pins 3.00 3.3 3.60 V
VDD (1.8) DC supply voltage on 1.8 V
pins 1.71 1.8 1.89 V
VDD (1.2) DC supply voltage on 1.2 V
pins 1.14 1.5 1.26 V
D0a
Unplugged
No Link @10 Mbps @ 100Mbps @ 1000 Mbps
T yp Icc
(mA)aMax Icc
(mA)bT yp Icc
(mA)aMax Icc
(mA)bT yp Icc
(mA)aMax Icc
(mA)bT yp Icc
(mA)aMax Icc
(mA)b
3.3V 8194 5 810810
Networking Silicon — 82547GI(EI)
Datasheet 15
Table 5. Power Specifications - D3cold
1.8V 21 25 10 95 115 120 320 325
1.2V 55 65 145 160 160 170 440 485
Total
Device
Power 135 150 435 1.1W 1.2W
a. Typical cond itions : operat ing tempe ratur e (TA) = 25 C, nomina l voltag es, mode rate ne twork traf fic
at full duplex, and PCI 33 MHz system interface.
b. Maximum conditions: minimum operating temperature (TA) values, maximum voltage values, con-
tinuous network traffic at full duplex, and PCI 33 MHz system interface.
D3cold - wake-up enabled D3cold-wake
disabled
unplugged link @10 Mbps @100Mbps
T yp Icc
(mA)a
a. T ypica l conditi ons: ope rating te mpera ture (T A) = 25 C, no minal vol tages, m oderate ne twor k traffic
at full duplex, and PCI 33 MHz system interface.
Max Icc
(mA)b
b. Maximum conditions: minimum operating temperature (TA) values, maximum voltage values, con-
tinuous network traffic at full duplex, and PCI 33 MHz system interface.
T yp Icc
(mA)aMax Icc
(mA)bT yp Icc
(mA)aMax Icc
(mA)bT yp Icc
(mA)aMax Icc
(mA)b
3.3V810810810816
1.8V 21 25 27 30 115 120 22 25
1.2V 50 55 70 80 115 130 45 50
Total
Device
Power 125 160 380 125
D0a
Unplugged
No Link @10 Mbps @ 100Mbps @ 1000 Mbps
T yp Icc
(mA)aMax Icc
(mA)bT yp Icc
(mA)aMax Icc
(mA)bT yp Icc
(mA)aMax Icc
(mA)bT yp Icc
(mA)aMax Icc
(mA)b
82547GI(EI) — Networking Silicon
16 Datasheet
Table 6. Power Specifications - D(r) Uninitialized
Table 7. Power Specifications - Complete Subsystem
D(r) Uninitialized (FLSH_SO/LAN_DISABLE # = 0)
Typ Icc (mA) Max Icc (mA)
3.3V 20 25
1.8V 1 1
1.2V 8 8
Total
Device
Power 80
Complete Subsystem (Reference Design) Including Magnetics, LED,
REgulator Circuits
D3cold - wake
disabled
D3cold wake-
enabled @
10Mbps
D0 @100Mbps
active D0 @ 1000Mbps
active
T yp Icc
(mA)a
a. Typical conditions: operating temperature (TA) = 25 C, nominal voltages, moderate network traffic at full du-
plex, and PCI 33 MHz system interface.
Max Icc
(mA)b.
b. Maximum conditions: minimum operating temperature (TA) values, maximum voltage values, continuous
network traffic at full duplex, and PCI 33 MHz system interface.
T yp Icc
(mA)aMax Icc
(mA)bTyp Icc
(mA)aMax Icc
(mA)bT yp Icc
(mA)aMax Icc
(mA)b
3.3V 8 10131518201315
1.8V 22 25 35 40 140 145 415 420
1.2V 45 50 65 80 115 130 440 485
Subsystem
3.3V Current 125 65 145 710
Table 8. I/O Characteristics (Sheet 1 of 2)
Symbol Parameter Condition Min Typ Max Units
VIH Input high voltage LVTTL 2.0 VDD
(3.3) V
VIL Input low voltage LVTTL VSS 0.8 V
VT+ Switching
threshold:
positive edge LVTTL 1.2 2.4 V
VT- Switching
threshold:
negative edge LVTTL 0.6 1.8 V
VH Schmitt trigger-
hysteresis 0.3 1.5 V
Networking Silicon — 82547GI(EI)
Datasheet 17
IIN
Input current VIN = VDD(3.3) or
VSS -5 5
µA
Input with pull-
down resistor (50
K)VIN = VDD(3.3) 28 191
Inputs with pull-
up resistor (50
K)VIN = VSS -28 -191
IOL Output low
current:
0 <= VOUT <=
3.6V
0 <= VOUT <=
1.3V
1.3V <= VOUT
<= 3.6V
100 VOUT
48 VOUT
5.7 VOUT+ 55
mA
IOH Output high
current:
0 <= (VDD-
VOUT) <= 3.6V
0 <= (VDD-
VOUT) <= 1.2V
1.2V <= (VDD-
VOUT) <= 1.9V
•-74(V
DD -
VOUT)
•-32(V
DD -
VOUT)
-1.1(VDD -
VOUT)-25.2
-1.8(VDD -
VOUT)-42.7
mA
VOH
Output high
voltage: V
LVTTL IOH = 0 mA VDD(3.3) -
0.1
VOL Output low
voltage: V
LVTTL IOL = 0 mA 0.1
IOZ Off-stat e o u tp u t
leakage current VO = VDD or VSS -10 10 µA
IOS Output short
circuit current -250 µA
CIN Input
capacitanceaInput and bi-
directional buffers 4pF
COUT Output
capacitance Output buffers 6 pF
a. VDD (3.3) = 0 V; TA = 25 C; f = 1 Mhz
Table 8. I/O Characteristics (Sheet 2 of 2) (Continued)
Symbol Parameter Condition Min Typ Max Units
82547GI(EI) — Networking Silicon
18 Datasheet
4.4 AC Characteristics
Table 9. 25 MHz Clock Input Requirements
Symbol Parametera
a. This parameter applies to an oscillator connected to the Crystal One (XTAL1) input. Alternatively, a crystal may be connected
to XTAL1 and XTAL2 as the frequency source for the internal oscillator.
Min Typ Max Unit
fi_TX_CLK TX_CLK_IN frequency 25 - 50 ppm 25 25 + 50
ppm MHz
Table 10. Link Interface Clock Requirements
Symbol Parameter Min Typ Max Unit
fGTXaGTX_CLK frequency 125 MHz
a. GTX_CLK is used externally for test purposes only.
Table 11. EEPROM Interface Clock Requirements
Symbol Parameter Min Typ Max Unit
fSK MI crowire EEPROM Clock 1 MHz
SPI EEPR OM Clock 2 MHz
Table 12. AC Test Loads for General Output Pins
Symbol Signal Name Value Units
CL TDO 10 pF
CL PME#, SDP[3 :0] 16 pF
CL EEDI, EESK 18 pF
CL LED[3:0] 20 pF
Figure 3. AC Test Loads for General Output Pins
C
L
Networking Silicon — 82547GI(EI)
Datasheet 19
4.5 Timing Specifications
Note: Timing specifications are preliminary and subject to chan ge. Verify with your local Intel sales
office that you have the latest information before finalizing a design.
4.5.1 Link Interf ac e Timing
4.5.2 EEPROM Interface
Table 13. Rise and Fall Times
Symbol Parameter Condition Min Max Unit
TR Clock rise time 0.8 V to 2.0 V 0.7 ns
TF Clock fall time 2.0 V to 0.8 V 0.7 ns
TR Data rise time 0.8 to 2.0 V 0.7 ns
TF Data fall time 2.0 V to 0.8 V 0.7 ns
Figure 4. Link Interface Rise/Fall Timing
Table 14. EEPROM Interface Clock Requirements
Symbol Parametera
a. The EEPROM clock is derived from a 125 MHz internal clock.
Min Typ Max Unit
TPW Microwire EESK pulse width TPERIOD x 64 ns
SPI EESK p u l se width TPERIOD x 32 ns
Table 15. EEPROM Interface Clock Requirements
Symbol Parametera
a. The EEDO setup and hold time is a function of the internal data bus clock cycle time but is referenced to
O_EESK.
Min Typ Max Unit
TDOS EE_DO setup time TCYC*2 ns
TDOH EE_DO hold time 0 ns
2.0 V
0.8 V
T
F
T
R
82547GI(EI) — Networking Silicon
20 Datasheet
Note: This page is intentionally left blank .
Networking Silicon —82547GI(EI)
Datasheet 21
5.0 Package and Pinout Information
This section describes the 82547GI(EI) device physical characteristics. The pin number-to-signal
mapping is indicated beginning with Table 14.
5.1 Package Information
The 82547GI(EI) device is a 196-lead plastic ball grid array (BGA) measuring 15 mm by 15mm.
The package dimensions are detailed as follows. The nominal ball pitch is 1 mm.
Note: No changes to exis ting soldering processes are needed for the 0.32 mm substrate change.
Figure 1. 82547GI(EI) Mechanical Specifications
Substrate change from
0.36 mm to 0.32 mm
0.32 +/-0.04
Note: All dimensions are in millimeters.
0.40 +/-0.10 Seating Plate
0.85
1.56 +/-0.19
30 o
82547GI(EI)— Networking Silicon
22 Datasheet
Figure 2. 196 PBGA Package Pad Detail
As shown, the Ethernet controller package uses solder mask designed pads. The copper area is
0.60mm and the opening in the solder mask is 0.45 mm. The nominal ball sphere diameter is
0.50mm.
0.45
Solder Resist Opening
0.60
Metal Diameter
Detail Area
Networking Silicon —82547GI(EI)
Datasheet 23
5.2 Thermal Specifications
The 82547GI(EI) device is specified for operation when the ambient temperature (TA) is within the
range of 0° C to 70° C.
TC (case temperature) is calculated using the equation:
TC = TA + P (θJA - θJC)
TJ (junction temperature) is calculated using the equation:
TJ = TA + P θJA
P (power co nsumption) i s calculated by usin g the typical ICC, as ind icated in Table 4 of Section 4.3,
and nominal VCC. The preliminary thermal resistances are shown in Table 13.
Thermal resistances are determined empirically with test devices mounted on standard thermal test
boards. R eal system designs may hav e dif ferent character istics due to board thickness, arr angement
of ground planes, and proximity of other components. The case temperature measurements should
be used to assure that the 82547GI(EI) device is operating under recommended conditions.
Table 13. Thermal Characteristics
Symbol Parameter
Preliminary Value at specified
airflow (m/s) Units
012
θJA Thermal resistance, junction-to-ambient 29.0 25.0 23.5 C/Watt
θJC Thermal resistance, junction-to-case 11.1 11.1 11.1 C/Watt
82547GI(EI)— Networking Silicon
24 Datasheet
5.3 Pinout Information
Table 14. CSA Port Signals
Signal Pin Signal Pin Signal Pin
CI[0] J1 CI[6] M1 CI_STRS L1
CI[1] J2 CI[7] N2 CL_RCOMP N3
CI[2] J3 CI[8] H3 CI_SWING P3
CI[3] K1 CI[9] G2 CI_VREF N4
CI[4] L3 CI[10] H1 CI_CLK G1
CI[5] M2 CI_STRF L2
Table 15. System Signals
Signal Pin
RST# B9
Table 16. Power Management Signals
Signal Pin Signal Pin Signal Pin
LAN_PWR_
GOOD A9 AUX_PWR J12 PME# A6
Table 17. SMB Signals
Signal Pin Signal Pin Signal Pin
SMBCLK A10 SMBDATA C9 SMB_ALERT# B10
Table 18. EEPROM and Serial FLASH Interface Signals
Signal Pin Signal Pin Signal Pin
EEMODE C4 EECS P7 FLSH_SI M11
EESK M10 EEDI P10 FLSH_SCK N9
EEDO N10 FLSH_CE# M9 FLSH_SO/
LAN_DISABLE# P9
Table 19. LED Signals
Signal Pin Signal Pin
LED0 / LINK_UP# A12 LED2 / LINK100# B11
LED1 / ACTIVITY# C11 LED3 / LINK1000# B12
Networking Silicon —82547GI(EI)
Datasheet 25
Table 20. Other Signals
Signal Pin Signal Pin Signal Pin
SDP[0] N14 SDP[3] M12
SDP[1] P13 CTRL12 P11
SDP[2] N13 CTRL18 B13
Table 21. PHY Signals
Signal Pin Signal Pin Signal Pin
XTAL1 K14 MDI[1]- E14 MDI[3]- H14
XTAL2 J14 MDI[1]+ E13 MDI[3]+ H13
MDI[0]- C14 MDI[2]- F14
MDI[0]+ C13 MDI[2]+ F13
Table 22. Test Interface Signals
Signal Pin Signal Pin Signal Pin
JTAG_TCK L14 JTAG_TDO M14 JTAG_TRST# L13
JTAG_TDI M13 JTAG_TMS L12 TEST A13
IEEE_TEST+ B14 IEEE_TEST- D14
82547GI(EI)— Networking Silicon
26 Datasheet
Table 23. Power Signals
Signal Pin Signal Pin Signal Pin
3.3V A3 1.2V G5 1.2V K5
3.3V A7 1.2V G6 1.2V K6
3.3V A11 1.2V G13 1.2V K7
3.3V E1 1.2V H4 1.2V K8
3.3V K3 1.2V H5 1.2V K9
3.3V K13 1.2V H6 1.2V K10
3.3V N6 1.2V H7 1.2V K11
3.3V N8 1.2V H8 1.2V L4
3.3V P2 1.2V H11 1.2V L5
3.3V P12 1.2V J4 1.2V L9
1.8V D11 1.2V J5 1.2V L10
1.8V D12 1.2V J6 1.2V M4
1.8V G12 1.2V J7 1.2V M5
1.8V J13 1.2V J8 1.2V N5
1.2V E11 1.2V J9
1.2V E12 1.2V J10
1.2V G4 1.2V J11
Table 24. Ground Signals
Signal Pin Signal Pin Signal Pin
GND B3 GND E9 GND G14
GND B7 GND F4 GND H2
GND C10 GND F6 GND H9
GND C12 GND F7 GND H10
GND D5 GND F8 GND K2
GND D7 GND F9 GND K12
GND D8 GND F10 GND L6
GND D13 GND F11 GND L11
GND E2 GND G7 GND M3
GND E5 GND G8 GND M6
GND E6 GND G9 GND N1
GND E7 GND G10 GND N12
GND E8 GND G11 GND P8
Networking Silicon —82547GI(EI)
Datasheet 27
Table 25. Reserved and No Connect Signals
Signal Pin Signal Pin Signal Pin Signal Pin
RSVD_3.3V K 4 RSVD_ NC B4 RSVD_ NC D2 R SVD_ NC M7
RSVD_ GND D4 RSVD_ NC B5 RSVD_ NC D3 RSVD_ NC M8
RSVD_ GND D6 RSVD_ NC B6 RSVD_ NC D9 RSVD_ NC N7
RSVD_ GND E 4 RSVD_ NC B8 RSVD_ NC D10 RSVD _ NC N11
RSVD_ GND E10 RSVD_ NC C1 RS VD_ NC E 3 RSVD_ NC P4
RSVD_ GND F 5 RSVD_ NC C2 RSVD_ NC F1 RSVD_ NC P5
RSVD_ NC A2 RSVD_ NC C3 RSVD_ NC F2 RSVD_ NC P6
RSVD_ NC A4 RSVD_ NC C5 RSVD_ NC F3 NC A1
RSVD_ NC A5 RSVD_ NC C6 RSVD_ NC F12 NC A 14
RSVD_ NC A8 RS VD_ NC C7 RSVD_ NC G3 NC H12
RSVD_ NC B1 RSVD_ NC C8 RSVD_ NC L7 NC P 1
RSVD_ NC B2 RSVD_ NC D1 RSVD_ NC L8 NC P 14
Table 26. Signal Names in Pin Order (Sheet 1 of 6)
Signal Name Pin
NC A1
RSVD_NC A2
3.3V A3
RSVD_NC A4
RSVD_NC A5
PME# A6
3.3V A7
RSVD_NC A8
LAN_PWR_GOOD A9
SMBCLK A10
3.3V A11
LED0 / LINK_UP# A12
TEST A13
NC A14
RSVD_NC B1
RSVD_NC B2
GND B3
RSVD_NC B4
RSVD_NC B5
RSVD_NC B6
82547GI(EI)— Networking Silicon
28 Datasheet
GND B7
RSVD_NC B8
RST# B9
SMB_ALERT# B10
LED2 / LINK100# B11
LED3 / LINK1000# B12
CTRL18 B13
IEEE_TEST+ B14
RSVD_NC C1
RSVD_NC C2
RSVD_NC C3
EEMODE C4
RSVD_NC C5
RSVD_NC C6
RSVD_NC C7
RSVD_NC C8
SMBDATA C9
GND C10
LED1 / ACTIVITY# C11
GND C12
MDI[0]+ C13
MDI[0]- C14
RSVD_NC D1
RSVD_NC D2
RSVD_NC D3
RSVD_GND D4
GND D5
RSVD_GND D6
GND D7
GND D8
RSVD_NC D9
RSVD_NC D10
1.8V D11
1.8V D12
GND D13
IEEE_TEST- D14
3.3V E1
GND E2
Table 26. Signal Names in Pin Order (Sheet 2 of 6) (Continued)
Signal Name Pin
Networking Silicon —82547GI(EI)
Datasheet 29
RSVD_NC E3
RSVD_GND E4
GND E5
GND E6
GND E7
GND E8
GND E9
RSVD_GND E10
1.2V E11
1.2V E12
MDI[1]+ E13
MDI[1]- E14
RSVD_NC F1
RSVD_NC F2
RSVD_NC F3
GND F4
RSVD_GND F5
GND F6
GND F7
GND F8
GND F9
GND F10
GND F11
RSVD_NC F12
MDI[2]+ F13
MDI[2]- F14
CI_CLK G1
CI[9] G2
RSVD_NC G3
1.2V G4
1.2V G5
1.2V G6
GND G7
GND G8
GND G9
GND G10
GND G11
1.8V G12
Table 26. Signal Names in Pin Order (Sheet 3 of 6) (Continued)
Signal Name Pin
82547GI(EI)— Networking Silicon
30 Datasheet
1.2V G13
GND G14
CI[10] H1
GND H2
CI[8] H3
1.2V H4
1.2V H5
1.2V H6
1.2V H7
1.2V H8
GND H9
GND H10
1.2V H11
NC H12
MDI[3]+ H13
MDI[3]- H14
CI[0] J1
CI[1] J2
CI_2 J3
1.2V J4
1.2V J5
1.2V J6
1.2V J7
1.2V J8
1.2V J9
1.2V J10
1.2V J11
AUX_PWR J12
1.8V J13
XTAL2 J14
CI[3] K1
GND K2
3.3V K3
RSVD_3.3V K4
1.2V K5
1.2V K6
1.2V K7
1.2V K8
Table 26. Signal Names in Pin Order (Sheet 4 of 6) (Continued)
Signal Name Pin
Networking Silicon —82547GI(EI)
Datasheet 31
1.2V K9
1.2V K10
1.2V K11
GND K12
3.3V K13
XTAL1 K14
CI_STRS L1
CI_STRF L2
CI[4] L3
1.2V L4
1.2V L5
GND L6
RSVD_NC L7
RSVD_NC L8
1.2V L9
1.2V L10
GND L11
JTAG_TMS L12
JTAG_TRST# L13
JTAG_TCK L14
CI]6] M1
CI[5] M2
GND M3
1.2V M4
1.2V M5
GND M6
RSVD_NC M7
RSVD_NC M8
FLSH_CE# M9
EESK M10
FLSH_SI M11
SDP[3] M12
JTAG_TDI M13
JTAG_TDO M14
GND N1
CI[7] N2
CI_RCOMP N3
CI_VREF N4
Table 26. Signal Names in Pin Order (Sheet 5 of 6) (Continued)
Signal Name Pin
82547GI(EI)— Networking Silicon
32 Datasheet
1.2V N5
3.3V N6
RSVD_NC N7
3.3V N8
FLSH_SCK N9
EEDO N10
RSVD_NC N11
GND N12
SDP[2] N13
SDP[0] N14
NC P1
3.3V P2
CI_SWING P3
RSVD_NC P4
RSVD_NC P5
RSVD_NC P6
EECS P7
GND P8
FLSH_SO/LAN_DISABLE# P9
EEDI P10
CTRL12 P11
3.3V P12
SDP[1] P13
NC P14
Table 26. Signal Names in Pin Order (Sheet 6 of 6) (Continued)
Signal Name Pin
Networking Silicon —82547GI(EI)
Datasheet 33
5.4 Visual Pin Assignments
Figure 3. Visual Pin Assignments
3.3V CI_CLK NC
VSS
NC
VSS CI[9] 3.3V
VSS
VSS 3.3V3.3V
EEMODE VSS VSS VSS CSA_
1.2V 1.2V 1.2V3.3V
VSS VSS VSS 1.2V 1.2V 1.2V 1.2V1.2V
VSS VSS VSS 1.2V 1.2V 1.2V 3.3VVSSVSS1.2VPME#
VSS VSS VSS VSS VSS 1.2V 1.2V EECS
NC
1.2V3.3V
VSS VSS VSS VSS 1.2V 1.2V VSS3.3V
NC
NC1.2V
RST# SMBDATA NC VSS VSS VSS VSS 1.2V
FLSH_
SO/LAN_
DISABLE#
FLSH_
SCK
FLSH_
CE#
1.2V1.2V
LAN_
PWR_
GOOD
SMB_
ALERT VSS NC VSS VSS VSS VSS 1.2V EEDIEEDOEESK1.2V1.2VSMBCLK
LED2/
LINK
100#
LED1/
ACTIVITY# 1.8V ANALOG_
1.2V VSS VSS ANALOG_
1.2V 1.2V CTRL12
NC
FLSH_
SI
VSS1.2V3.3V
LED3/
LINK
1000#
1.8V ANALOG_
1.2V NC 1.8V NC AUX_
PWR 3.3VVSSSDP[3]
JTAG_
TMS
LED0/
LINK_
UP#
CTRL18 MDI[0]+ MDI[1]+ MDI[2]+ ANALOG_
1.2V MDI[3]+ 1.8V SDP[1]SDP[2]
JTAG_
TDI
JTAG_
TRST#
3.3VTEST
IEEE_
TEST+ MDI[0]- IEEE_
TEST- MDI[1]- MDI[2]- MDI[3]- XTAL2 NCSDP[0]
JTAG_
TDO
JTAG_
TCK
XTAL1NC
ABCDE FGHJ KLMNP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
ANALOG_
VSS
NC
NC
NC
ANALOG_
VSS
NC
NC
NC
NC NC
ANALOG_
VSS
CSA_
CI[8]
CSA_
1.2V
CI[10] CI[0]
CI[1]
CI[2]
CSA_
1.2V
CI[3]
CSA_
ANALOG_
VSS
CI_STRS
CI_STRF
CI[4]
CI[6]
CI[5]
CSA_
VSS
CSA_
1.2V
1.2V
NC
CSA_
CI[7]
CI_RCOMP
CI_VREF
1.2V
NC
CI_SWING
NC
NC
NC
82547GI(EI)— Networking Silicon
34 Datasheet
Note: This page is intentionally left blank .