1
Features
2nd Generation EE PROM-based Complex Programmable Logic Devices
–V
CCIO of 5.0V or 3.3V with 3.3V Operation being 5V Tolerant
32 - 256 Macrocells with Enhanced Features
Pin-compatible with Industry Standard Devices
Speeds to 5 ns Maximum Pin-to-pin Delay
Registered Operation to 250 MHz
Enhanced Macrocells with Logic DoublingFeatures
BuryEitherRegisterorCOMwhileUsingtheOtherforOutput
Dual Independent Feedback Allows Multiple Latch Functions per Macrocell
5 Product Terms per Macrocell, expandable to 40 per Macrocell with Cascade
Logic, Plus 15 more with Foldback Logic
D/T/Latch Configurable Flip-flops plus Transparent Latches
Global and/or per Macrocell Register Control Signals
Global and/or per Macrocell Output Enable
Programmable Output Slew Rate per Macrocell
Programmable Output Open Collector Option per Macrocell
Fast Registered Input from Product Term
Enhanced Connectivity
Single Level Switch Matrix for Maximum Routing Options
Up to 40 Inputs per Logic Block
Advanced Power Management Features
ITD (Input Transition Detection) Available Individually on Global Clocks, Inputs and
I/O for µA Level Standby Current for L Versions
Pin-controlled 1 mA Standby Mode
Reduced-power Option per Macrocell
Automatic Power Down of Unused Macrocells
Programmable Pin-keeper Inputs and I/Os
Available in Commercial and Industrial Temperature Ranges
Available in All Popular Packages Including PLCC, PQFP and TQFP
EE PROM Technology
100% Tested
Completely Reprogrammable
10,000 Program/Erase Cycles
20 Year Data Retention
2000V ESD Protection
200 mA Latch-up Immunity
JTAG Boundary-scan Testing Port per IEEE 1149.1-1990 and 1149.1a-1993
Pull-up Option on JTAG Pins TMS and TDI
IEEE 1532 Compatibility for Fast In-System Programmability (ISP) via JTAG
PCI-compliant
Security Fuse Feature
ATF15xxSE
Family
Datasheet
ATF1502SE(L)
ATF1504SE(L)
ATF1508SE(L)
ATF1516SE(L)
Preliminary
Rev. 2401D–PLD–09/02
2ATF15xxSE Family 2401D–PLD–09/02
General
Description Beginning with the introduction of the 100% connected ATF1500 with 32 enhanced macrocells
in 1996, Atmel’s CPLD products have delivered extra IO connectivity and logic reusability.
Atmel’s commitment to efficient, flexible architecture has continued with the current Atmel
ATF15xxSE Family of industry-standard, pin-compatible CPLDs. Atmel’s Logic Doubling
architecture consists of wider fan-in, additional routing and clock options, combined with
sophisticated, proprietary device fitters, extend CPLD place and route efficiency. Atmel
enhanced macrocell includes double independent buried feedback that allows designers to
pack more logic (particularly shifters and latches) into a smaller CPLD or leave spare room for
later revisions. The Atmel ATF15xxSE family delivers enhanced functionality and flexibility
with no additional design effort and is highly cost effective.
The Atmel ATF15xxSE Family includes all popular configurations and speeds.
The Atmel ATF15xxSE Family includes pin-compatible products in all popular packages.
Notes: 1. Contact Atmel for up-to-date information on device and package availability.
2. When the JTAG port is used for In System Programming (ISP) or Boundary-scan Testing
(BST), the four associated pins become JTAG pins and are unavailable for user I/O.
Table 1. ATF15xxSE Family Device Features
Feature ATF1502SE(L) ATF1504SE(L) ATF1508SE(L) ATF1516SE(L)
Usable Gates 750 1500 3000 6000
Macrocells 32 64 128 256
Logic Blocks 2 4 8 16
Max. # Pins 44 100 256 256
Max. User I/Os 36 68 100 164
TPD Grades (ns) 5, 6, 7, 10(15) 5, 6, 7, 10(15) 6, 7, 10(15) 7, 10(15)
Table 2. ATF15xxSE Family Device Packages and Number of Signal Pins(1)(2)
Packages ATF1502SE(L) ATF1504SE(L) ATF1508SE(L) ATF1516SE(L)
44-pin PLCC 36 36
44-pin TQFP 36 36
84-pin PLCC 68 68
100-pin TQFP 68 84
100-pin PQFP 84
160-pin PQFP 100
208-pin PQFP 164
208-pin RQFP 164
3
ATF15xxSE Family
2401D–PLD–09/02
Functional
Description The ATF15xxSE Family of 5.0 Volt supply, high-performance, high-density complex program-
mable logic devices (CPLDs) utilizes Atmel’s proven electrically erasable non-volatile
technology. With up to 512 macrocells, they easily integrate logic from several TTL, SSI, MSI,
LSI and classic PLDs. The ATF15xxSE Family’s enhanced macrocell architecture, switch
matrices and routing increase usable gate count for new designs and increase odds of suc-
cessful pin-locked design modifications while maintaining pin-compatibility with industry
standard CPLDs.
The ATF15xxSE Family devices have four dedicated input pins and depending on the type of
device and package, up to 208 bi-directional I/O pins. Each dedicated input pin can also serve
as a global control signal, register clock, register reset or output enable. Each of these control
signals can be selected for use individually within each macrocell. Each input and I/O pin also
feeds into the global bus.
The macrocells are organized into groups of sixteen called logic blocks. The switch matrix in
each logic block selects 40 individual signals from the global bus. Macrocells within a given
logic block may share their sixteen foldback signals on a regional foldback bus. Cascade logic
between macrocells in the Logic Block allows fast, efficient generation of complex logic func-
tions. All macrocells are capable of being I/Os, however, the actual number of I/O pins
depends on the device and package type. The ATF15xxSE Family members contain two, four,
eight, sixteen or thirty-two such logic blocks, each capable of creating sum term logic with a
fan-in of 40 inputs from the switch matrix having access to up to 80 product terms.
Unused macrocells are automatically disabled by the fitter software to decrease power con-
sumption. A security fuse, when programmed, protects the contents of the other fuses. Two
bytes (16 bits) of User Signature are accessible to the user for purposes such as storing
project name, part number, revision or date. The User Signature is accessible regardless of
the state of the security fuse.
The ATF15xxSE Family devices are in-system programmable (ISP) devices. They use the
industry-standard 4-pin JTAG interface (IEEE Std. 1149.1), and are fully-compliant with
JTAG’s Boundary-scan Description Language (BSDL). ISP allows the device to be pro-
grammed without removing it from the printed circuit board. In addition to simplifying the
manufacturing flow, ISP also allows design modifications to be made in the field via software.
Global Bus/Switch
Matrix The global bus (Figure 1) contains all input and I/O pin signals as well as the buried feedback
signals from all macrocells. The switch matrix in each logic block receives as its inputs all sig-
nals from the global bus. Up to 40 of these signals can be selected as inputs to the individual
logic blocks by the fitter software. Atmel’s ATF15xx Family of CPLDs use a single level switch
matrix signal distribution structure, where each logic block input has access to the same num-
ber of global bus inputs, maximizing the number of possible ways to route a global bus signal.
This single level structure is in contrast with split switch matrix structures used by others in
which routing a particular global bus input to a particular logic block input makes that signal
unavailable to some other logic blocks, thus greatly limiting the available opportunities to
route.
The ATF15xxSE Family macrocell, shown in Figure 2, consists of five sections: product terms
and product term select multiplexer, OR/XOR/CASCADE logic, foldback bus, a flip-flop and
output buffer. Extra fan-in and signal routing are provided throughout. Each macrocell can
generate a foldback logic term from the product term mux and a buried feedback with extra
routing that go to the global bus.
4ATF15xxSE Family 2401D–PLD–09/02
Figure 1. ATF15xxSE Family Typical Block Diagram
6to16
N
N-1
6to16
5
ATF15xxSE Family
2401D–PLD–09/02
Figure 2. ATF15xxSE Family Macrocell with Enhanced Features In Red
ProductTermsand
Select Mux Within each macrocell are five product terms. Each product term may receive as its inputs any
combination of the signals from the switch matrix or regional foldback bus. The product term
select multiplexer (PTMUX) allocates the five product terms as needed to the macrocell logic
gates and control signals. The PTMUX programming is determined by the fitter software,
which selects the optimum macrocell configuration.
OR/XOR/
CASCADE Logic Withinasinglemacrocell,alltheproducttermscanberoutedtotheORgate,creatinga5-
input AND/OR sum term. With the addition of the CASIN from neighboring macrocells, this can
be expanded to as many as 40 product terms with little additional delay.
The macrocell’s XOR gate allows efficient implementation of compare and arithmetic func-
tions. One input to the XOR comes from the OR sum term. The other XOR input can be a
product term or a fixed high- or low-level. For combinatorial outputs, the fixed level input
allows polarity selection. For registered functions, the fixed levels allow DeMorgan minimiza-
tion of product terms. The XOR gate may be fed from the flip-flop output to emulate T- and JK-
type flip-flops, or fed to the buried feedback to synthesize an extra latch.
Foldback Bus Each macrocell can also generate a foldback product term. This signal goes to the regional
bus and is available to the 16 macrocells in a given logic block. The foldback is an inverse
polarity of one of the macrocell’s product terms. Although Cascade Logic is the preferred
method for expanding the number of macrocell inputs to as many as 40, the 16 foldback terms
in each region can also generate additional fan-in sum terms with nominal additional delay.
REGIONAL
FOLDBACK
BUS
16
LOGIC
FOLDBACK
I/O Pin
3
GCK[0:2]
GCLEAR
CASOUT
D/T*/L
CE
AR
AP Q
CASIN
I/O Pin
SLEW
RATE
OPEN
COLLECTOR
6
GOE[0:5]
Reduced Power Option
SWITCH
MATRIX
80
GLOBAL BUS
40
1
2
3
4
5
ProductTermMUX
PT1
PT2
PT3
PT5
PT4
SWITCH
MATRIX
OUTPUTS
* T flip-flop synthesised
!Q
Q
!Q
CK/CK/LE
GOE
SWITCH
MATRIX
GOE [0:5]
6ATF15xxSE Family 2401D–PLD–09/02
Flip-flop The ATF15xxSE Family’s flip-flop has very flexible data and control functions. The data input
can come from either the XOR gate, from a separate product term or directly from the I/O pin.
Selecting the separate product term allows creation of a buried registered feedback within a
combinatorial output or vice-versa. (This enhanced function is automatically implemented by
the fitter software). The flip-flop can be configured for D, T, JK and SR operation, and changes
state on the clock’s rising edge. It can also be configured as a flow-through latch. In this mode,
data passes through when the clock is high and is latched when the clock is low.
When a GCK signal is used as the clock, one of the macrocell product terms can be selected
as a clock enable. When the clock enable function is active and the enable signal (product
term) is low, all clock edges are ignored. The flip-flop has asynchronous reset and preset. The
flip-flop’s asynchronous reset signal (AR) can be either the Global Clear (GCLEAR), a product
term, or always off. AR can also be a logic OR of GCLEAR with a product term. The asynchro-
nous preset (AP) can be a product term or always off.
Extra Feedback The ATF15xxSE Family macrocell output can be selected as registered or combinatorial. The
extra buried feedback signal can be either combinatorial or registered signal regardless of
whether the output is combinatorial or registered. (This enhanced function is automatically
implemented by the fitter software) Feedback of a buried combinatorial output allows the cre-
ation of a second latch within a macrocell.
I/O Control The output enable multiplexer (MOE) controls the output enable signal. Each I/O can be indi-
vidually configured as an input, output or for bi-directional operation. The output enable for
each macrocell can be selected from the true or compliment of the two output enable pins, a
subset of the I/O pins, or a subset of the I/O macrocells. This selection is automatically done
by the fitter software when the I/O is configured as an input, all macrocell resources are still
available, including the buried feedback, expander and cascade logic.
The buffer has a fast/slow slew rate option to control EMI and an open-collector option which
enables the device to provide control signals such as an interrupt that can be asserted by any
of the several devices.
Programmable
Pin-keeper Option
for Inputs and I/Os
The ATF15xxSE Family offers the option of programming all input and I/O pins with pin-keeper
circuits enabled. When any pin is driven high or low and then subsequently left floating, the pin
keeper circuit will hold it at that previous high or low-level. This circuitry prevents unused input
and I/O lines from floating to intermediate voltage levels, which causes unnecessary power
consumption and system noise. The pin-keeper circuits eliminate the need for external pull-up
resistors and eliminate their DC power consumption.
7
ATF15xxSE Family
2401D–PLD–09/02
Input Diagram
I/O Diagram
Speed/Power
Management The ATF15xxSE Family has several speed and power management features.
Multiple Power
Supplies, Power
Sequencing and
Hot-Socketing
Because the ATF15xxSE Family can be used in a system with mixture of power supplies, it
has been designed to function with the VCCINT and VCCIO power supplies applied in any
sequence. Also, until the power up sequence completes, the input/output buffers are kept in a
high impedance state, and so may be driven but do not drive power out.
PROGRAMMABLE
OPTION (PIN KEEPER)
PROGRAMMABLE
OPTION (PIN KEEPER)
8ATF15xxSE Family 2401D–PLD–09/02
Power-on Reset The ATF15xx Family devices are designed with a power-on reset, a feature critical for state
machine initialization. At a point delayed slightly from VCC crossing VRST, all registers will be
initialized, and the state of each output will depend on the polarity of its buffer. However, due
to the asynchronous nature of reset and uncertainty of how VCC actually rises in the system,
the following conditions are required:
1. The VCC rise must be monotonic,
2. After reset occurs, all input and feedback setup times must be met before driving the
clock pin high, and,
3. The clock must remain stable during TD.
The ATF15xx Family has two options for the hysteresis about the reset level, VRST,Smalland
Large. In applications where the supply voltage may drop below 4.0V, Atmel recommends that
during the fitting process users configure the device with the Power-on Reset hysteresis set to
Large to ensure a robust operating environment.
Power Down of
Unused
Macrocells
To conserve power, Atmel fitters automatically power down all unused macrocells.
Input Transition
Detection/
Automatic Power
Down
The ATF15xxSEL versions provide automatic power-down to µA level stand-by power (the “L”
suffix indicates Low power) through Atmel’s patented Input Transition Detection (ITD) cir-
cuitry on Global Clocks, Inputs and I/O. These ITD circuits automatically put the device into a
low-power standby mode when no logic transitions are occurring. This reduces power con-
sumption during inactive periods, and so provides proportional power savings for most
applications running at system speeds below fCRITICAL (~5 MHz).
In clocked applications, where the device is operated at a frequency high enough to keep the
device from going into stand-by (above fCRITICAL), the device will perform at the faster speeds
given in the next faster speed column. These higher speeds can be achieved in combinatorial
designs as well, as long as once activated by an initial input transition, the device continues to
receive input transitions often enough to keep the device from going into standby mode again.
That is, the time between input transitions is less than 1/fCRITICAL.
Reduced-Power
per Macrocell To further reduce power, each ATF15xxSE Family macrocell has a reduced-power bit feature.
With this feature the designer can reduce power by 50% or more for logic that does not need
to operate at the maximum switching speed. The reduced-power bit may be activated by
changing the default OFF to ON for any or all macrocells. For macrocells in reduced-power
mode (reduced-power bit turned on), the reduced- power adder, tRPA, must be added to the
AC parameters, which include the data paths tLAD,t
LAC,t
IC,t
ACL,t
ACH and tSEXP. All power-down
AC characteristic parameters are computed from external input or I/O pins, with the reduced-
power bit turned on.
Slew Rate Control Each output also has individual slew rate control. This may be used to reduce system noise by
slowing down outputs that do not need to operate at maximum speed. Outputs default to slow
switching. The slew rate option is selected in the design source file.
Pin Controlled
Power-down All ATF15xx Family devices also have an optional pin-controlled power-down mode. When
activated, one or both of two pins, PD1 and PD2, can act as power-down pins. The device
goes into power-down when either PD1 or PD2 pins (or both) are high, and the device supply
current is reduced to less than 1 mA. Also, all internal logic signals are latched and held, as
are any enabled outputs. Therefore, all registered and combinatorial output data remain valid.
Any outputs that were in a high-Z state at the onset will remain at high-Z. Input and I/O hold
9
ATF15xxSE Family
2401D–PLD–09/02
latches remain active to ensure that pins do not float to indeterminate levels, further reducing
system power. All pin transitions are ignored until the PD pin is brought low. When the power-
down feature is enabled for PD1 or PD2, that pin cannot be used as a logic input or output.
However, the pin’s macrocell may still be used to generate buried foldback and cascade logic
signals. The power-down option is selected in the design source file.
Power
Consumption
Estimates
An estimate of power consumption can be made based on typical designs and operation con-
ditions, but because it is sensitive to these factors, power consumption must be verified with
actual pattern and operation conditions. The equations given below are based on a pattern of
16-bit up/down counters in each logic block and may be used to estimate power consumption
for both operating modes.
Standby Power 1. Pstandby =I
ccstandby xV
supply
Where:
Iccstandby = the standby current given for the particular device and standby mode (e.g. pin con-
trolled Power Down)
Vsupply= the power supply voltage
Active Power 2. Pactive =P
internal +P
load =I
ccinternal xV
supply +P
load
Where:
Iccinternal = the internal current estimated from equation 3 below
Vsupply= the power supply voltage
Pload = depends on the device output load capacitance and switching frequency on each out-
put pin.
Pload and additional power savings at low frequencies using Atmel Input Transition Detection
(“L” versions) can be estimated according to the methods discussed in the Atmel Application
Note “Saving Power with Atmel PLDs”
3. Iccinternal =[K
1x(MC
inuse MCreducedpower )] + (K2xMC
reducedpower)+(K
3xMC
inuse xf
op x
NS)
Where:
MCreducedpower = the number of macrocells operating at reduced power (from fitter report file)
MCinuse= the number of macrocells in use (from fitter report file. Unused macrocells are pow-
ered down.)
NS = the proportion of logic nodes switching (typically 10-20%)
fop = the switching frequency
K1,K
2,and K3= device constants given in the table below.
Note: Shaded data is preliminary and subject to change without notice.
Device K1(mA/MC) K2(mA/MC) K3(mA/MC · MHz)
ATF1502SE 0.6 0.3 0.015
ATF1504SE 0.6 0.3 0.015
ATF1508SE 0.6 0.3 0.015
ATF1516SE 0.6 0.3 0.015
10 ATF15xxSE Family 2401D–PLD–09/02
Design
Software Atmel ATF15xxSE Family fitters allow logic synthesis using a variety of high-level description
languages and formats. ATF15xxSE Family designs are supported by Atmel specific design
tools as well as by several third-party tools. Free conversion software is also offered for indus-
try standard devices. Check the Atmel web site or contact your authorized Atmel sales
representative for up-to-date design software information.
Programming ATF15xxSE Family devices can be programmed using standard third-party programmers.
With third-party programmers, the JTAG ISP port can be disabled thereby allowing four addi-
tional I/O pins to be used for logic. Check the Atmel web site, contact your authorized Atmel
sales representative or Atmel PLD Applications for details of third-party programmers.
ATF15xxSE Family devices are in-system programmable (ISP) devices utilizing the 4-pin
JTAG protocol. This capability eliminates package handling normally required for program-
ming and facilitates rapid design iterations and field changes. Atmel provides ISP hardware
and software to allow programming of the ATF15xxSE Family via the PC. ISP is performed by
using either a download cable, a compatible board tester or a simple microprocessor interface.
It is most common to devote the JTAG pins to ISP, but it is possible to use ISP to program the
part through the JTAG pins, and set these four pins I/O pins. However, this will effectively dis-
able further ISP and the device will need to be erased on a programmer to re-enable ISP.
Contact Atmel PLD Applications by email at pld@atmel.com or call our Hotline at (408) 436-
4333 for details.
To allow ISP programming support by the Automated Test Equipment (ATE) vendors, Serial
Vector Format (SVF) files can be created by the Atmel ISP software. Conversion to other ATE
tester formats is also possible. Check the Atmel web site for up-to-date programming and soft-
ware support information.
ISP
Programming
Protection
The ATF15xxSE Family also incorporates a protection feature that locks the device and pre-
vents the inputs and I/O from driving if the programming process is interrupted for any reason.
The inputs and I/O default to high-Z state during such a condition. In addition the pin-keeper
option preserves the former state during device programming.
All ATF15xxSE Family devices are initially shipped in the erased state thereby making them
ready to use for ISP.
For more information refer to the “Designing for In-System Programmability with Atmel
CPLDs” application note.
Security Fuse
Usage A single fuse is provided to prevent unauthorized copying of the ATF15xxSE Family fuse pat-
terns. Once programmed, fuse verify is inhibited. However, the User Signature and device ID
remain accessible.
11
ATF15xxSE Family
2401D–PLD–09/02
JTAG-BST
Overview The JTAG-BST (JTAG boundary-scan testing) is controlled by the Test Access Port (TAP)
controller. The boundary-scan technique involves the inclusion of a shift-register stage (con-
tained in a boundary-scan cell) adjacent to each component so that signals at component
boundaries can be controlled and observed using scan testing principles. Each input pin and
I/O pin has its own Boundary-scan Cell (BSC) in order to support boundary-scan testing. The
ATF15xxSE Family does not currently include a Test Reset (TRST) input pin because the TAP
controller is automatically reset at power-up. The ATF15xxSE Family implements six BST
instructions, and seven Atmel-defined In System Programming (ISP) instructions. All ATF15xx
Family BST and ISP instructions have a length of 10 bits.
The ATF15xxSE Family BST implementation complies with the Boundary-scan Definition Lan-
guage (BSDL) described in the JTAG specification (IEEE Standard 1149.1). Any third-party
tool that supports the BSDL format can be used to perform BST on the ATF15xxSE Family.
The ATF15xxSE Family also has the option of using four JTAG-standard I/O pins for in-system
programming (ISP). The ATF15xxSE Family is programmable through the four JTAG pins
using programming-compatible with the IEEE JTAG Standard 1149.1. Programming is per-
formed by using 5V TTL-level programming signals from the JTAG ISP interface. The JTAG
feature is a programmable option. If JTAG (BST or ISP) is not needed, then the four JTAG
control pins are available as I/O pins. Refer to Atmel Application Note “Designing for In-Sys-
tem Programmability with Atmel CPLDs for more details.
JTAG BST Instructions Description
SAMPLE/PRELOAD Captures signals at the device pins for later examination,
or loads a data pattern prior to an EXTEST instruction.
EXTEST Allows testing of off-chip circuitry and interconnections
by forcing a pattern on the output pins or capturing
signals from the input pins.
BYPASS Places a single shift register stage between TDI and
TDO, allowing test BST data to pass through a particular
device in a chain of devices.
IDCODE Places the 32-bit IDCODE register between TDI and
TDO, allowing the IDCODE data to be shifted out of
TDO.
UESCODE Places the 16-bit user electronic signature register
between TDI and TDO, allowing the UESCODE data to
be shifted out of TDO.
HIGHZ Places the BYPASS register between TDI and TDO in a
high impedance mode, protecting the device from
damage from externally applied test signals.
7 ISP instructions These seven instructions allow in-system programming
via the four JTAG pins.
12 ATF15xxSE Family 2401D–PLD–09/02
JTAG
Boundary-scan
Cell (BSC)
Testing
The ATF15xxSE Family has four dedicated input pins and a number of I/O pins depending on
the device type and package type selected. Each input pin and I/O pin has a boundary-scan
cell (BSC) which supports boundary-scan testing as described in detail by IEEE Standard
1149.1. A typical BSC consists of three capture registers or scan registers and up to two
update registers. There are two types of BSCs, one for input or I/O pin, and one for the macro-
cells. The BSCs in the device are chained together through the (BST) capture registers. Input
to the capture register chain is fed in from the TDI pin while the output is directed to the TDO
pin. Capture registers are used to capture active device data signals, to shift data in and out of
the device and to load data into the update registers. Control signals are generated internally
by the JTAG TAP controller.
Note: Shaded data is preliminary and subject to change without notice.
Boundary-scan
Definition
Language
(BSDL) Models
These are now available in all package types via the Atmel web site. These models conform to
the IEEE 1149.1 standard and can be used for Boundary-scan Test Operation of the
ATF15xxSE Family.
The BSC configuration for the input and I/O pins and macrocells are shown on page 13.
Device Boundary-Scan
Register Length IDCODE
MSB LSB
ATF1502SE 96 0000,0001,0101,0100,0010,0000,0011,1111
ATF1504SE 192 0000,0001,0101,0100,0100,0000,0011,1111
ATF1508SE 352 0000,0001,0101,0100,1000,0000,0011,1111
ATF1516SE 672 0000,0001,0101,0101,0000,0000,0011,1111
13
ATF15xxSE Family
2401D–PLD–09/02
BSC
Configuration
for Pins (Except
JTAG TAP Pins)
BSC
Configuration
for Macrocell
0
1
0
1
DQ DQ
Capture
Register Update
Register
0
1
0
1
DQ DQ
TDI
OUTJ
OEJ
Shift Clock
Mode
TDO
Macrocell BSC
Pin
14 ATF15xxSE Family 2401D–PLD–09/02
PCI Compliance The ATF15xx Family also supports peripheral component interconnect (PCI) interface stan-
dard in PCI-based designs and specifications. The PCI interface calls for high current drivers,
which are much larger than the traditional TTL drivers.
PCI Voltage-to-
Current Curves for
+5V Signaling in
Pull-up Mode
PCI Voltage-to-
Current Curves for
+5V Signaling in
Pull-down Mode
2.4
VCC
1.4
-2 -44 -178
Current (mA)
AC drive
point
DC
drive point
Voltage
Pull Up
Test Point
2.2
VCC
0.55
3,6 95 380
Current (mA)
AC drive
point
DC
drive point
Voltage
Pull Down
Test Point
15
ATF15xxSE Family
2401D–PLD–09/02
PCI DC Characteristics
Note: Leakage current is without pin-keeper off.
PCI AC Characteristics
Notes: 1. Equation A: IOH =11.9(V
OUT - 5.25) * (VOUT + 2.45) for VCC >V
OUT >3.1V.
2. Equation B: IOL = 78.5 * VOUT *(4.4-V
OUT)for0V<V
OUT < 0.71V.
Symbol Parameter Conditions Min Max Units
VCC Supply Voltage 4.75 5.25 V
VIH Input High Voltage 2.0 VCC +0.5 V
VIL Input Low Voltage -0.5 0.8 V
IIH Input High Leakage Current VIN =2.7V 70 µA
IIL Input Low Leakage Current VIN = 0.5V -70 µA
VOH Output High Voltage IOUT =-2mA 2.4 V
VOL Output Low Voltage IOUT =3mA,6mA 0.55 V
CIN Input Pin Capacitance 10 pF
CCLK CLK Pin Capacitance 12 pF
CIDSEL IDSEL Pin Capacitance 8pF
LPIN Pin Inductance 20 nH
Symbol Parameter Conditions Min Max Units
IOH(AC) Switching 0 < VOUT 1.4 -44 mA
Current High 1.4 < VOUT < 2.4 -44+(VOUT - 1.4)/0.024 mA
3.1 < VOUT <V
CC Equation A mA
(Test High) VOUT =3.1V -142 µA
IOL(AC) Switching VOUT > 2.2V 95 mA
Current Low 2.2 > VOUT >0 V
OUT/0.023 mA
0.1 > VOUT > 0 Equation B mA
(Test Point) VOUT = 0.71 206 mA
ICL Low Clamp Current -5 < VIN -1 -25+(VIN +1)/0.015 mA
SLEWROutput Rise Slew Rate 0.4V to 2.4V load 0.5 3.0 V/ns
SLEWFOutput Fall Slew Rate 2.4V to 0.4V load 0.5 3.0 V/ns
16 ATF15xxSE Family 2401D–PLD–09/02
Note: 1. Junction temperature is package and device dependant and can be calculated as follows: TJ(MAX) =T
A(MAX) +(θJA|Air Flow =
0*P(MAX)). For more information see “Thermal Characteristics of Atmel Packages.
Absolute Maximum Ratings*
Ambient Temperature Under Bias.................. -65°C to +135°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affectdevice
reliability.
Note: 1. For currents less than 100 mA, minimum voltage
is -0.6 VDC and maximum voltage is VCC +
0.75 VDC. Pulses of less than 20µs may under-
shoot to -2.0V or overshoot to 7.0V.
Storage Temperature..................................... -6C to +150°C
Junction Temperature ..............................................15C(MAX)
Voltage on Any Pin with
Respect to Ground .........................................-2.0V to +7.0V(1)
Voltage on Input Pins
with Respect to Ground
During Programming.....................................-2.0V to +14.0V(1)
Programming Voltage with
Respect to Ground .......................................-2.0V to +14.0V(1)
DC Output Current per Pin ................................-25 to +25 mA
DC and AC Operating Conditions
Commercial Industrial
Operating Temperature (Ambient), TA0°C - 70°C -40°C - 85°C
Junction Temperature, TJ(1) ––
VCCINT (5.0V) Power Supply 5V ± 5% 5V ± 10%
VCCIO (5.0V) Power Supply 5V ± 5% 5V ± 10%
VCCIO (3.3V) Power Supply 3.0 - 3.6 3.0 - 3.6
VIInput Voltage -0.5 - VCCINT +.5 -0.5-V
CCINT +.5
VOOutput Voltage 0 - VCCIO 0-V
CCIO
tR40 ns Max 40 ns Max
tF40 ns Max 40 ns Max
17
ATF15xxSE Family
2401D–PLD–09/02
Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.
2. ICC3 refers to the current in the reduced-power mode when macrocell reduced-power is turned ON.
3. See characteristic curves for each device.
Notes: 1. For slow slew outputs, add tSSO.
2. Pin or product term.
DC Characteristics(1) ATFxxSE Family
Symbol Parameter Condition Min Typ Min Unit
IIL Input or I/O Low Leakage Current VIN =V
CC -2 -10 µA
IIH Input or I/O High Leakage Current 2 10 µA
IOZ Tri-State Output Off-State Current VO=V
CC or GND -40 40 µA
ICC1 Power Supply Current, Standby VCC =Max
VIN =0,V
CC
Std Mode Com. (3) mA
Ind. (3) mA
“ITD
Mode Com. 1 mA
Ind. 1 mA
ICC2 Power Supply Current,
Power-down Mode VCC =Max
VIN =0,V
CC
PD Mode 0.1 1 mA
ICC3(2) Reduced-power Mode Supply
Current, Standby VCC =Max
VIN =0,V
CC
Std Mode Com. (3) mA
Ind. (3) mA
VIL Input Low Voltage -0.3 0.8 V
VIH Input High Voltage 2.0 VCCINT
+0.5 V
VOL 5.0V Output Low Voltage (TTL) IOL =12mA,V
CCIO = 4.75V 0.45 V
3.3V Output Low Voltage (TTL) IOL =12mA,V
CCIO =3.0V 0.45 V
3.3V Output Low Voltage (CMOS) IOL =0.1mA,V
CCIO =3.0V 0.2 V
VOH 5.0V Output High Voltage (TTL) IOH =-4mA,V
CCIO = 4.75V 2.4 V
3.3V Output High Voltage (TTL) IOH =-4mA,V
CCIO = 3.0V 2.4 V
3.3V Output High Voltage (CMOS) IOH =-0.1mA,V
CCIO =3.0V V
CCIO –0.2 V
Power-down AC Characteristics(1) ATFxxSE Family
Symbol Parameter
-5 -6 -7 -10 -15
UnitMin Max Min Max Min Max Min Max Min Max
tIVDH Valid 1, I/O before PD High 5.0 6.0 7.0 10 15 ns
tGVDH Valid 1, OE(2) before PD High 5.0 6.0 7.0 10 15 ns
tCVDH Valid 1, Clock(2) before PD High 5.0 6.0 7.0 10 15 ns
tDHIX I, I/O Don’t Care after PD High 9.0 10.0 12 15.0 25 ns
tDHGX OE(2) Don’t Care after PD High 9.0 10.0 12 15.0 25 ns
tDHCX Clock(2) Don’t Care after PD High 9.0 10.0 12 15.0 25 ns
tDLIV PD Low to Valid I, I/O 1.0 1.0 1.0 1.0 1.0 µs
tDLGV PD Low to Valid OE, (Pin or Term) 1.0 1.0 1.0 1.0 1.0 µs
tDLCV PD Low to Valid Clock, (Pin or Term) 1.0 1.0 1.0 1.0 1.0 µs
tDLOV PD Low to Valid Output 1.0 1.0 1.0 1.0 1.0 µs
18 ATF15xxSE Family 2401D–PLD–09/02
Timing Model
Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. The OGI pin (high-voltage
pin during programming) has a maximum capacitance of 12 pF.
Input Test
Waveforms and
Measurement
Levels
Output AC Test
Loads
Pin Capacitance
Typ(1) Max Units Condition
CIN 810pFV
IN =0V;f=1.0MHz
CI/O 810pFV
OUT =0V;f=1.0MHz
U
(3.3V)
464
250
(703 )
(8060 )
5.0V
C=C
L
19
ATF1502SE
2401D–PLD–09/02
AC Characteristics(1) ATF1502SE(L)
Symbol Parameter
SE -5 SE -6 SE -7 SE -10 SEL -15(6)
UnitMin Max Min Max Min Max Min Max Min Max
tPD1 Input or Feedback to Non-
registered Output 5.0 6.0 7.5 10 15 ns
tPD2 I/O Input or Feedback to Non-
registered Feedback 5.0 6.0 7.5 10 12 ns
tSU Global Clock Setup Time 2.9 4.0 5.0 7.0 11 ns
tHGlobal Clock Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tFSU Global Clock Setup Time of Fast
Input 2.5 2.5 2.5 3.0 3.0 ns
tFH Global Clock Hold of Fast Input 0.0 0.0 0.0 0.0 1.0 ns
tCO1 Global Clock to Output Delay 3.2 3.5 4.3 5.0 8.0 ns
tCH Global Clock High Time 2.0 2.5 3.0 4.0 5.0 ns
tCL Global Clock Low Time 2.0 2.5 3.0 4.0 5.0 ns
tASU Array Clock Setup Time 0.7 0.9 1.1 2.0 4.0 ns
tAH Array Clock Hold Time 1.8 2.1 2.7 3.0 4.0 ns
tACO1 Array Clock Output Delay 5.4 5.4 6.6 8.2 15 ns
tACH Array Clock High Time 2.5 2.5 3.0 4.0 6.0 ns
tACL Array Clock Low Time 2.5 2.5 3.0 4.0 6.0 ns
tCNT Minimum Clock Global Period 5.7 7.0 8.6 10.0 13 ns
fCNT(3) Maximum Internal Global Clock
Frequency 175.4 143 117 100 77 or
100(6) MHz
tACNT Minimum Array Clock Period 5.7 7.0 8.6 10.0 13 ns
fACNT(4) Maximum Internal Array Clock
Frequency 175.4 143 117 100 77 or
100(6) MHz
fMAX(5) Maximum Clock Frequency 250 200 167 125 80 or
125(6) MHz
tIN Input Pad and Buffer Delay 0.2 0.2 0.3 0.5 1.0 ns
tIO I/O Input Pad and Buffer Delay 0.2 0.2 0.3 0.5 1.0 ns
tFIN Fast Input Delay 2.2 2.1 2.5 1.0 1.5 ns
tSEXP Foldback Term Delay 3.1 3.8 4.6 5.0 8.0 ns
tPEXP Cascade Logic Delay 0.9 1.1 1.4 0.8 1.0 ns
tLAD Logic Array Delay 2.6 3.3 4.0 5.0 6.0 ns
tLAC Logic Control Delay 2.5 3.3 4.0 5.0 6.0 ns
tIOE Internal Output Enable Delay 0.7 0.8 1.0 2.0 3.0 ns
tOD1 Output Buffer and Pad Delay
(slow slew rate = OFF; VCCIO =
5V; CL=35pF)
0.2 0.3 0.4 1.5 2.5 ns
20 ATF1502SE 2401D–PLD–09/02
Notes: 1. See ordering Information for valid part numbers.
2. The tRPA parameter must be added to the tLAD,t
LAC,t
IC,t
ACL and tSEXP parameters for macrocells running in the reduced-
power mode.
3. fCNT is the fastest 16-bit counter frequency available, using the local feedback when applicable, and a PIA fan-out of one
logic block (16 macrocells). fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG.
4. fACNT is the fastest 16-bit counter frequency available, using the internal array clock, local feedback when applicable and a
PIA fan-out of one logic block (16 macrocells).
5. fMAX is the fastest available frequency for pipelined data.
6. For clocked applications and frequencies above fCRITICAL, OR, non-clocked applications with dormant times less than 1/fCRIT-
ICAL, the device will achieve the speeds of the –10 column. See “Input Transition Detection/ Automatic Power Down on page
8.
tOD2 Output Buffer and Pad Delay
(slow slew rate = OFF; VCCIO =
3.3V; CL=35pF)
0.7 0.8 0.9 2.0 3.0 ns
tOD3 Output Buffer and Pad Delay
(slow slew rate = ON; VCCIO =5V
or 3.3V; CL=35pF)
5.2 5.3 5.4 5.5 6.0 ns
tZX1 Output Buffer Enable Delay
(slow slew rate = OFF; VCCIO =
5V; CL=35pF)
4.0 4.0 4.0 5.0 7.0 ns
tZX2 Output Buffer Enable Delay
(slow slew rate = OFF; VCCIO =
3.3V; CL=35pF)
4.5 4.5 4.5 5.5 7.0 ns
tZX3 Output Buffer Enable Delay
(slow slew rate = ON; VCCIO =5V
or 3.3V;
CL=35pF)
9.0 9.0 9.0 9.0 10 ns
tXZ Output Buffer Disable Delay
(CL=5pF) 4.0 4.0 4.0 5.0 6.0 ns
tSU Register Setup Time 0.8 1.0 1.3 2.0 4.0 ns
tHRegister Hold Time 1.7 2.0 2.5 3.0 4.0 ns
tFSU Register Setup Time of Fast
Input 1.9 1.7 1.7 3.0 5.0 ns
tFH Register Hold Time of Fast Input 0.6 0.7 0.8 0.5 2.0 ns
tRD Register Delay 1.2 1.6 1.2 2.0 2.0 ns
tCOMB Combinatorial Delay 0.9 1.1 1.0 2.0 2.0 ns
tIC Array Clock Delay 2.7 3.4 2.0 5.0 7.0 ns
tEN Register Enable Time 2.6 3.3 1.0 5.0 7.0 ns
tGLOB Global Control Delay 1.6 1.4 1.3 1.0 1.0 ns
tPRE Register Preset Time 2.0 2.4 1.9 3.0 5.0 ns
tCLR Register Clear Time 2.0 2.4 3.0 3.0 5.0 ns
tUIM Switch Matrix Delay 1.1 1.1 1.4 1.0 2.0 ns
tRPA(2) Reduced Power Adder 8 9 10 11 13 ns
AC Characteristics(1) ATF1502SE(L) (Continued)
Symbol Parameter
SE -5 SE -6 SE -7 SE -10 SEL -15(6)
UnitMin Max Min Max Min Max Min Max Min Max
21
ATF1502SE
2401D–PLD–09/02
STAND-BY ICC VS.
SUPPLY VOLTAGE (TA=25°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
4.54.85.05.35.5
SUPPLY VOLTAGE (V)
I
CC
(µA)
TBD
SUPPLY CURRENT VS.
INPUT FREQUENCY (VCC =5.0V,TA= 25°C)
0.000
20.000
40.000
60.000
80.000
100.000
120.000
140.000
0.0 0.5 2.5 5.0 7.5 10.0 25.0 37.5 50.0
FREQUENCY (MHz)
I
CC
(mA)
TBD
OUTPUT SOURCE CURRENT VS.
SUPPLY VOLTAGE (VOH =2.4V)
-50
-40
-30
-20
-10
0
4.04.55.05.56.0
SUPPLY VOLTAGE (V)
I
OH
(mA)
TBD
OUTPUT SINK CURRENT VS.
SUPPLY VOLTAGE (VOL =0.5V)
36
38
40
42
44
46
48
4.0 4.5 5.0 5.5 6.0
SUPPLY VOLTAGE (V)
Iol (mA)
TBD
NORMALIZED ICC VS. TEMP
0.4
0.6
0.8
1.0
1.2
1.4
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED Icc
TBD
SUPPLY CURRENT VS.
INPUT FREQUENCY (VCC =5.0V,T
A= 25°C)
0.000
0.200
0.400
0.600
0.800
1.000
0.0 0.5 2.5 5.0 7.5 10.0 25.0 37.5 50.0
FREQUENCY (MHz)
I
CC
(mA)
TBD
OUTPUT SOURCE CURRENT VS.
OUTPUT VOLTAGE (VCC =5.0V,T
A= 25°C)
-90.0
-80.0
-70.0
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
VOH (V)
I
OH
(mA)
TBD
OUTPUT SINK CURRENT VS.
OUTPUT VOLTAGE (VCC =5.0V,T
A=25°C)
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
SUPPLY VOLTAGE (V)
I
OL
(mA)
TBD
22 ATF1502SE 2401D–PLD–09/02
INPUT CLAMP CURRENT VS.
INPUT VOLTAGE (VCC =5.0V,T
A=35°C)
-120
-100
-80
-60
-40
-20
0
0.0 -0.2 -0.4 -0.6 -0.8 -1.0
INPUT VOLTAGE (V)
INPUT CURRENT
(mA)
TBD
NORMALIZED TPD VS. VCC
0.8
0.9
1.0
1.1
1.2
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
PD
TBD
NORMALIZED TCO VS. VCC
0.8
0.9
1.0
1.1
1.2
1.3
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
CO
TBD
NORMALIZED TSU VS. VCC
0.8
0.9
1.0
1.1
1.2
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
SU
TBD
INPUT CURRENT VS.
INPUT VOLTAGE (VCC =5.0V,TA= 25°C)
-30
-20
-10
0
10
20
30
40
0.0 1.0 2.0 3.0 4.0 5.0 6.0
INPUT VOLTAGE (V)
INPUT CURRENT
(uA)
TBD
NORMALIZED TPD VS.TEMP
0.8
0.9
1.0
1.1
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED T
PD
TBD
NORMALIZED TCO VS.TEMP
0.8
0.9
1.0
1.1
-40.0 0.0 25.0 75.0
TEMPERATURE (V)
NORMALIZED T
CO
TBD
NORMALIZED TSU VS.TEMP
0.8
0.9
1.0
1.1
1.2
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED T
CO
TBD
23
ATF1502SE
2401D–PLD–09/02
DELTA TPD VS.
OUTPUT LOADING
-2
0
2
4
6
8
0 50 100 150 200 250 300
OUTPUT LOADING (PF)
DELTA T
PD
(ns)
TBD
DELTA TPD VS. # OF OUTPUT SWITCHING
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
NUMBER OF OUTPUTS SWITCHING
DELTA T
PD
(ns)
TBD
DELTA TCO VS.
OUTPUT LOADING
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
50 100 150 200 250 300
NUMBER OF OUTPUTS LOADING
DELTA T
CO
(ns)
TBD
DELTA TCO VS. # OF OUTPUT SWITCHING
-0.3
-0.2
-0.1
0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
NUMBER OF OUTPUTS SWITCHING
DELTA T
CO
(ns)
TBD
24 ATF1502SE 2401D–PLD–09/02
ATF1502SE(L) Pinouts
44-lead TQFP - Top View
44-lead PLCC - Top View
7
8
9
10
11
12
13
14
15
16
17
39
38
37
36
35
34
33
32
31
30
29
TDI/I/O
I/O
I/O
GND
PD1/I/O
I/O
I/O/TMS
I/O
VCC
I/O
I/O
I/O
I/O/TDO
I/O
I/O
VCC
I/O
I/O
I/O/TCK
I/O
GND
I/O
6
5
4
3
2
1
44
43
42
41
40
18
19
20
21
22
23
24
25
26
27
28
I/O
I/O
I/O
I/O
GND
VCC
I/O
PD2/I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
GCK2/OE2/I
GCLR/I
OE1/I
GCK1/I
GND
I/O/GCLK3
I/O
ATF1502SE(L)
ATF1504SE(L)
1
2
3
4
5
6
7
8
9
10
11
33
32
31
30
29
28
27
26
25
24
23
I/O/TDI
I/O
I/O
GND
PD1/I/O
I/O
TMS/I/O
I/O
VCC
I/O
I/O
I/O
I/O/TDO
I/O
I/O
VCC
I/O
I/O
I/O/TCK
I/O
GND
I/O
44
43
42
41
40
39
38
37
36
35
34
12
13
14
15
16
17
18
19
20
21
22
I/O
I/O
I/O
I/O
GND
VCC
I/O
PD2/I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
I/OE2/GCK2
GCLR/I
I/OE1
GCK1/I
GND
GCK3
I/O
ATF1502SE(L)
ATF1504SE(L)
25
ATF1502SE
2401D–PLD–09/02
OE (1, 2) Global OE pins
GCLR Global Clear pin
GCLK (1, 2, 3) Global Clock pins
PD (1, 2) Power-down pins
TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming
GNDINT Ground pins for the internal device logic
GNDIO Ground pins for the I/O drivers
VCCINT VCC pins for the internal device logic (+3.3V)
VCCIO VCC for the I/O drivers
ATF1502SE(L) Dedicated Pinouts
Dedicated Pin 44-PLCC
J-lead 44-lead
TQFP
INPUT/GCLK1 43 37
INPUT/GCLR 139
INPUT/OE1 44 38
INPUT/OE2/GCLK2 2 40
I/O/GCLK3 41 35
I/O/PD (1,2) 11,25 5,19
I/O/TDI (JTAG) 7 1
I/O/TMS (JTAG) 13 7
I/O/TCK (JTAG) 32 26
I/O/TDO (JTAG) 38 32
GNDINT 22, 42 16, 36
GNDIO 10,30 4,24
VCCINT 3, 23 17, 41
VCCIO 15,35 9,29
# of Signal Pins 36 36
# User I/O Pins 32 32
26 ATF1502SE 2401D–PLD–09/02
ATF1502SE(L) I/O Pinouts
MC PLC 44-lead PLCC 44-lead TQFP
1A442
2A543
3A644
4/TDI A71
5A82
6A93
7/PD1 A115
8A126
9/TMS A137
10 A 14 8
11 A 16 10
12 A 17 11
13 A 18 12
14 A 19 13
15 A 20 14
16 A 21 15
17 B 41 35
18 B 40 34
19 B 39 33
20/TDO B3832
21 B 37 31
22 B 36 30
23 B 34 28
24 B 33 27
25/TCK B3226
26 B 31 25
27 B 29 23
28 B 28 22
29 B 27 21
30 B 26 20
31/PD2 B2519
32 B 24 18
27
ATF1502SE
2401D–PLD–09/02
Using C” Product for Industrial
To use commercial product for industrial temperature ranges, downgrade one speed grade from the “I” to the “C” device,
and de-rate power by 30%.
ATF1502SE(L) Ordering Information
tPD
(ns) tCO1
(ns) FMAX
(MHz) Ordering Code Package Operation Range
5.0 3.2 250 ATF1502SE-5 AC44
ATF1502SE-5 JC44 44A
44J Commercial
(0°Cto70°C)
6.0 3.5 200 ATF1502SE-6 AC44
ATF1502SE-6 JC44 44A
44J Commercial
(0°Cto70°C)
7.5 4.3 167 ATF1502SE-7 AC44
ATF1502SE-7 JC44 44A
44J Commercial
(0°Cto70°C)
ATF1502SE-7 AI44
ATF1502SE-7 JI44 44A
44J Industrial
(-40°Cto+85°C)
10 5.0 125 ATF1502SE-10 AC44
ATF1502SE-10 JC44 44A
44J Commercial
(0°Cto70°C)
ATF1502SE-10 AI44
ATF1502SE-10 JI44 44A
44J Industrial
(-40°Cto+85°C)
15 8.0 77 ATF1502SEL-15 AC44
ATF1502SEL-15 JC44 44A
44J Commercial
(0°Cto70°C)
Package Type
44A 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)
44J 44-lead, Plastic J-leaded Chip Carrier (PLCC)
28 ATF1504SE(L) 2401D–PLD–09/02
AC Characteristics(1) ATF1504SE(L)
Symbol Parameter
SE -5 SE -6 SE -7 SE -10 SEL -15(6)
UnitMin Max Min Max Min Max Min Max Min Max
tPD1 Input or Feedback to Non-
registered Output 5.0 6.0 7.5 10 15 ns
tPD2 I/O Input or Feedback to Non-
registered Feedback 5.0 6.0 7.5 10 12 ns
tSU Global Clock Setup Time 2.9 3.6 6.0 7.0 11 ns
tHGlobal Clock Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tFSU Global Clock Setup Time of Fast
Input 2.5 2.5 3.0 3.0 3.0 ns
tFH Global Clock Hold of Fast Input 0.0 0.0 0.5 0.5 1.0 ns
tCO1 Global Clock to Output Delay 3.2 4.0 4.5 5.0 9.0 ns
tCH Global Clock High Time 2.0 2.5 3.0 4.0 5.0 ns
tCL Global Clock Low Time 2.0 2.5 3.0 4.0 5.0 ns
tASU ArrayClockSetupTime0.70.92.02.05.0ns
tAH Array Clock Hold Time 1.8 2.9 2.0 3.0 4.0 ns
tACO1 Array Clock Output Delay 5.4 6.7 7.5 10.0 15 ns
tACH Array Clock High Time 2.5 2.5 3.0 4.0 6.0 ns
tACL Array Clock Low Time 2.5 2.5 3.0 4.0 6.0 ns
tCNT Minimum Clock Global Period 5.7 7.1 8.0 10 13 ns
fCNT(3) Maximum Internal Global Clock
Frequency 176 141 125 100 77 MHz
tACNT Minimum Array Clock Period 5.7 7.1 8.0 10 13 ns
fACNT(4) Maximum Internal Array Clock
Frequency 176 141 125 100 77 MHz
fMAX(5) Maximum Clock Frequency 250 200 167 125 77 MHz
tIN Input Pad and Buffer Delay 0.2 0.2 0.5 0.5 1.0 ns
tIO I/O Input Pad and Buffer Delay 0.2 0.2 0.5 0.5 1.0 ns
tFIN Fast Input Delay 2.2 2.6 1.0 1.0 2.0 ns
tSEXP Foldback Term Delay 3.1 3.8 4.0 5.0 8.0 ns
tPEXP Cascade Logic Delay 0.9 1.1 0.8 0.8 1.0 ns
tLAD Logic Array Delay 2.6 3.2 3.0 5.0 6.0 ns
tLAC Logic Control Delay 2.5 3.2 3.0 5.0 6.0 ns
tIOE Internal Output Enable Delay 0.7 0.8 2.0 2.0 3.0 ns
tOD1 Output Buffer and Pad Delay
(slow slew rate = OFF; VCCIO =
5V; CL=35pF)
0.2 0.3 2.0 1.5 2.5 ns
29
ATF1504SE(L)
2401D–PLD–09/02
Notes: 1. See ordering Information for valid part numbers.
2. The tRPA parameter must be added to the tLAD,t
LAC,t
IC,t
ACL and tSEXP parameters for macrocells running in the reduced-
power mode.
3. fCNT is the fastest 16-bit counter frequency available, using the local feedback when applicable, and a PIA fan-out of one
logic block (16 macrocells). fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG.
4. fACNT is the fastest 16-bit counter frequency available, using the internal array clock, local feedback when applicable and a
PIA fan-out of one logic block (16 macrocells).
5. fMAX is the fastest available frequency for pipelined data.
6. For clocked applications and frequencies above fCRITICAL, OR, non-clocked applications with dormant times less than 1/fCRIT-
ICAL, the device will achieve the speeds of the –10 column. See “Input Transition Detection/ Automatic Power Down on page
8.
tOD2 Output Buffer and Pad Delay
(slow slew rate = OFF; VCCIO =
3.3V; CL=35pF)
0.7 0.8 2.5 2.0 3.0 ns
tOD3 Output Buffer and Pad Delay
(slowslewrate=ON;V
CCIO =5V
or 3.3V; CL=35pF)
5.2 5.3 7.0 5.5 6.0 ns
tZX1 Output Buffer Enable Delay
(slow slew rate = OFF; VCCIO =
5V; CL=35pF)
4.0 4.0 4.0 5.0 7.0 ns
tZX2 Output Buffer Enable Delay
(slow slew rate = OFF; VCCIO =
3.3V; CL=35pF)
4.5 4.5 4.5 5.5 7.0 ns
tZX3 Output Buffer Enable Delay
(slowslewrate=ON;V
CCIO =5V
or 3.3V; CL=35pF)
9.0 9.0 9.0 9.0 10 ns
tXZ Output Buffer Disable Delay
(CL=5pF) 4.0 4.0 4.0 5.0 6.0 ns
tSU Register Setup Time 0.8 1.0 3.0 2.0 5.0 ns
tHRegister Hold Time 1.7 2.0 2.0 3.0 4.0 ns
tFSU Register Setup Time of Fast
Input 1.9 1.8 3.0 3.0 5.0 ns
tFH Register Hold Time of Fast Input 0.6 0.7 0.5 0.5 2.0 ns
tRD Register Delay 1.2 1.6 1.0 2.0 2.0 ns
tCOMB Combinatorial Delay 0.9 1.0 1.0 2.0 2.0 ns
tIC Array Clock Delay 2.7 3.3 3.0 5.0 6.0 ns
tEN Register Enable Time 2.6 3.2 3.0 5.0 6.0 ns
tGLOB Global Control Delay 1.6 1.9 1.0 1.0 2.0 ns
tPRE Register Preset Time 2.0 2.4 2.0 3.0 4.0 ns
tCLR Register Clear Time 2.0 2.4 2.0 3.0 4.0 ns
tUIM Switch Matrix Delay 1.1 1.3 1.0 1.0 2.0 ns
tRPA(2) Reduced Power Adder 8.0 9.0 1.0 11 13 ns
AC Characteristics(1) ATF1504SE(L) (Continued)
Symbol Parameter
SE -5 SE -6 SE -7 SE -10 SEL -15(6)
UnitMin Max Min Max Min Max Min Max Min Max
30 ATF1504SE(L) 2401D–PLD–09/02
STAND-BY ICC VS.
SUPPLY VOLTAGE (TA=25°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
4.54.85.05.35.5
SUPPLY VOLTAGE (V)
I
CC
(µA)
TBD
SUPPLY CURRENT VS.
INPUT FREQUENCY (VCC =5.0V,TA= 25°C)
0.000
20.000
40.000
60.000
80.000
100.000
120.000
140.000
0.0 0.5 2.5 5.0 7.5 10.0 25.0 37.5 50.0
FREQUENCY (MHz)
I
CC
(mA)
TBD
OUTPUT SOURCE CURRENT VS.
SUPPLY VOLTAGE (VOH =2.4V)
-50
-40
-30
-20
-10
0
4.04.55.05.56.0
SUPPLY VOLTAGE (V)
I
OH
(mA)
TBD
OUTPUT SINK CURRENT VS.
SUPPLY VOLTAGE (VOL =0.5V)
36
38
40
42
44
46
48
4.0 4.5 5.0 5.5 6.0
SUPPLY VOLTAGE (V)
Iol (mA)
TBD
NORMALIZED ICC VS. TEMP
0.4
0.6
0.8
1.0
1.2
1.4
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED Icc
TBD
SUPPLY CURRENT VS.
INPUT FREQUENCY (VCC =5.0V,T
A= 25°C)
0.000
0.200
0.400
0.600
0.800
1.000
0.0 0.5 2.5 5.0 7.5 10.0 25.0 37.5 50.0
FREQUENCY (MHz)
I
CC
(mA)
TBD
OUTPUT SOURCE CURRENT VS.
OUTPUT VOLTAGE (VCC =5.0V,TA= 25°C)
-90.0
-80.0
-70.0
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
VOH (V)
I
OH
(mA)
TBD
OUTPUT SINK CURRENT VS.
OUTPUT VOLTAGE (VCC =5.0V,T
A= 25°C)
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
SUPPLY VOLTAGE (V)
I
OL
(mA)
TBD
31
ATF1504SE(L)
2401D–PLD–09/02
INPUT CLAMP CURRENT VS.
INPUT VOLTAGE (VCC =5.0V,T
A=35°C)
-120
-100
-80
-60
-40
-20
0
0.0 -0.2 -0.4 -0.6 -0.8 -1.0
INPUT VOLTAGE (V)
INPUT CURRENT
(mA)
TBD
NORMALIZED TPD VS. VCC
0.8
0.9
1.0
1.1
1.2
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
PD
TBD
NORMALIZED TCO VS. VCC
0.8
0.9
1.0
1.1
1.2
1.3
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
CO
TBD
NORMALIZED TSU VS. VCC
0.8
0.9
1.0
1.1
1.2
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
SU
TBD
INPUT CURRENT VS.
INPUT VOLTAGE (VCC =5.0V,TA= 25°C)
-30
-20
-10
0
10
20
30
40
0.0 1.0 2.0 3.0 4.0 5.0 6.0
INPUT VOLTAGE (V)
INPUT CURRENT
(uA)
TBD
NORMALIZED TPD VS.TEMP
0.8
0.9
1.0
1.1
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED T
PD
TBD
NORMALIZED TCO VS.TEMP
0.8
0.9
1.0
1.1
-40.0 0.0 25.0 75.0
TEMPERATURE (V)
NORMALIZED T
CO
TBD
NORMALIZED TSU VS.TEMP
0.8
0.9
1.0
1.1
1.2
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED T
CO
TBD
32 ATF1504SE(L) 2401D–PLD–09/02
DELTA TPD VS.
OUTPUT LOADING
-2
0
2
4
6
8
0 50 100 150 200 250 300
OUTPUT LOADING (PF)
DELTA T
PD
(ns)
TBD
DELTA TPD VS. # OF OUTPUT SWITCHING
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
NUMBER OF OUTPUTS SWITCHING
DELTA T
PD
(ns)
TBD
DELTA TCO VS.
OUTPUT LOADING
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
50 100 150 200 250 300
NUMBER OF OUTPUTS LOADING
DELTA T
CO
(ns)
TBD
DELTA TCO VS. # OF OUTPUT SWITCHING
-0.3
-0.2
-0.1
0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
NUMBER OF OUTPUTS SWITCHING
DELTA T
CO
(ns)
TBD
33
ATF1504SE(L)
2401D–PLD–09/02
ATF1504SE(L) Pinouts
44-lead TQFP Top View
44-lead PLCC Top View
1
2
3
4
5
6
7
8
9
10
11
33
32
31
30
29
28
27
26
25
24
23
I/O/TDI
I/O
I/O
GND
PD1/I/O
I/O
TMS/I/O
I/O
VCC
I/O
I/O
I/O
I/O/TDO
I/O
I/O
VCC
I/O
I/O
I/O/TCK
I/O
GND
I/O
44
43
42
41
40
39
38
37
36
35
34
12
13
14
15
16
17
18
19
20
21
22
I/O
I/O
I/O
I/O
GND
VCC
I/O
PD2/I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
I/OE2/GCK2
GCLR/I
I/OE1
GCK1/I
GND
GCK3
I/O
ATF1502SE(L)
ATF1504SE(L)
7
8
9
10
11
12
13
14
15
16
17
39
38
37
36
35
34
33
32
31
30
29
TDI/I/O
I/O
I/O
GND
PD1/I/O
I/O
I/O/TMS
I/O
VCC
I/O
I/O
I/O
I/O/TDO
I/O
I/O
VCC
I/O
I/O
I/O/TCK
I/O
GND
I/O
6
5
4
3
2
1
44
43
42
41
40
18
19
20
21
22
23
24
25
26
27
28
I/O
I/O
I/O
I/O
GND
VCC
I/O
PD2/I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
GCK2/OE2/I
GCLR/I
OE1/I
GCK1/I
GND
I/O/GCLK3
I/O
ATF1502SE(L)
ATF1504SE(L)
34 ATF1504SE(L) 2401D–PLD–09/02
84-lead PLCC Top View
100-lead TQFP Top View
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
I/O/PD1
VCCIO
I/O/TDI
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O/TMS
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
GND
I/O/TDO
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O/TCK
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
11
10
9
8
7
6
5
4
3
2
1
84
83
82
81
80
79
78
77
76
75
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
GND
VCCINT
I/O
I/O/PD2
I/O
GND
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
VCCINT
INPUT/OE2/GCLK2
INPUT/GCLR
INPUT/OE1
INPUT/GCLK1
GND
I/O/GCLK3
I/O
I/O
VCCIO
I/O
I/O
I/O
ATF1504SE(L)
ATF1508SE(L)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
I/O/PD1
I/O
VCCIO
I/O/TDI
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O/TMS
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O/TDO
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O/TCK
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
26
27
28
29
30
31
33
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
GND
VCCINT
I/O
I/O/PD2
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
VCCINT
INPUT/OE2/GCLK2
INPUT/GCLR
INPUT/OE1
INPUT/GCLK1
GND
I/O/GCLK3
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O
I/O
I/O
ATF1508SE(L)
35
ATF1504SE(L)
2401D–PLD–09/02
OE (1, 2) Global OE pins
GCLR Global Clear pin
GCLK (1, 2, 3) Global Clock pins
PD (1, 2) Power-down pins
TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming
GNDINT Ground pins for the internal device logic
GNDIO Ground pins for the I/O pins
VCCINT VCC pins for the internal device logic
VCCIO VCC for the I/O drivers
ATF1504SE(L) Dedicated Pinouts
Dedicated Pin 44-lead
TQFP 44-lead
PLCC 84-lead
PLCC 100-lead
TQFP
INPUT/GCLK137438387
INPUT/GCLR 39 1 1 89
INPUT/OE1 38448488
INPUT/OE2/GCLK2 40 2 2 90
I/O/GCLK3 35418185
I/O/PD (1,2) 5, 19 11, 25 20, 46 12, 42
I/O/TDI(JTAG)1 7144
I/O/TMS (JTAG) 7 13 23 15
I/O/TCK(JTAG)26326262
I/O/TDO(JTAG)32387173
GNDINT 16, 36 22, 44 42, 82 38, 86
GNDIO 4, 24 10, 30 7, 18, 32,47, 69, 72 11, 26, 43,
59, 74, 95
VCCINT 17, 41 3, 23 3, 43 39, 91
VCCIO 9, 29 15, 35 13, 26, 33,
53, 66, 78 3, 18, 34,
51, 66, 82
N/C - - - 1, 2, 5, 7, 22,
24, 27, 28, 49,
50, 53, 55, 70,
72, 77, 78
#ofSignalPins36366868
# User I/O Pins 32 32 64 64
36 ATF1504SE(L) 2401D–PLD–09/02
ATF1504SE(L) I/O Pinouts
MC PLC 44-lead
PLCC 44-lead
TQFP 84-lead
PLCC 100-lead
TQFP MC PLC 44-lead
PLCC 44-lead
TQFP 84-lead
PLCC 100-lead
TQFP
1 A 12 6 22 14 33 C 24 18 44 40
2 A - - 21 13 34 C - - 45 41
3A/
PD1 11 5 201235C/
PD2 25 19 46 42
4 A 9 3 18 10 36 C 26 20 48 44
5 A 8 2 17 9 37 C 27 21 49 45
6A--16838C--5046
7A--15639C--5147
8/
TDI A 7 1 14 4 40 C 28 22 52 48
9 A - - 1210041 C 29235452
10A - - 119942C - - 5554
11 A 6 44 10 98 43 C - - 56 56
12 A - - 9 97 44 C - - 57 57
13 A - - 8 96 45 C - - 58 58
14 A 5 43 6 94 46 C 31 25 60 60
15 A - - 5 93 47 C - - 61 61
16 A 4 42 4 92 48/
TCK C32266262
17 B 21 15 41 37 49 D 33 27 63 63
18B - - 403650D - - 6464
19 B 20 14 39 35 51 D 34 28 65 65
20 B 19 13 37 33 52 D 36 30 67 67
21 B 18 12 36 32 53 D 37 31 68 68
22B - - 353154D - - 6969
23B - - 343055D - - 7071
24 B 1711332956/
TDO D38327173
25 B 16 10 31 25 57 D 39 33 73 75
26B - - 302358D - - 7476
27B - - 292159D - - 7579
28B - - 282060D - - 7680
29B - - 271961D - - 7781
30 B 14 8 25 17 62 D 40 34 79 83
31B - - 241663D - - 8084
32/
TMS B 13 7 23 15 64 D/
GCLK3 41 35 81 85
37
ATF1504SE(L)
2401D–PLD–09/02
Using C” Product for Industrial
To use commercial product for industrial temperature ranges, down grade one speed grade from the “I” to the “C” device,
and de-rate power by 30%.
ATF1504SE(L) Ordering Information
tPD
(ns) tCO1
(ns) fMAX
(MHz) Ordering Code Package Operation Range
5.0 3.2 250 ATF1504SE-5 AC44
ATF1504SE-5 JC44
ATF1504SE-5 JC84
ATF1504SE-5 AC100
44A
44J
84J
100A
Commercial
(0°Cto70°C)
6.0 4.0 200 ATF1504SE-6 AC44
ATF1504SE-6 JC44
ATF1504SE-6 JC84
ATF1504SE-6 AC100
44A
44J
84J
100A
Commercial
(0°Cto70°C)
7.5 4.5 167 ATF1504SE-7 AC44
ATF1504SE-7 JC44
ATF1504SE-7 JC84
ATF1504SE-7 AC100
44A
44J
84J
100A
Commercial
(0°Cto70°C)
ATF1504SE-7 AI44
ATF1504SE-7 JI44
ATF1504SE-7 J84
ATF1504SE-7 AI100
44A
44J
84J
100A
Industrial
(-40°Cto+85°C)
10 5.0 125 ATF1504SE-10 AC44
ATF1504SE-10 JC44
ATF1504SE-10 JC84
ATF1504SE-10 AC100
44A
44J
84J
100A
Commercial
(0°Cto70°C)
ATF1504SE-10 AI44
ATF1504SE-10 JI44
ATF1504SE-10 JI84
ATF1504SE-10 AI100
44A
44J
84J
100A
Industrial
(-40°Cto+85°C)
15 9.0 77 ATF1504SEL-15 AC44
ATF1504SEL-15 JC44
ATF1504SEL-15 JC84
ATF1504SEL-15 AC100
44A
44J
84J
100A
Commercial
(0°Cto70°C)
Package Type
44A 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)
44J 44-lead, Plastic J-leaded Chip Carrier (PLCC)
84J 84-lead, Plastic J-leaded Chip Carrier (PLCC)
100A 100-lead, Very Thin Plastic Gull Wing Quad Flatpack (TQFP)
38 ATF1508SE(L) 2401D–PLD–09/02
AC Characteristics(1) ATF1508SE(L)
Symbol Parameter
SE -6 SE -7 SE -10 SEL -15(6)
UnitMin Max Min Max Min Max Min Max
tPD1 Input or Feedback to Non-registered Output 6 7.5 10 15 ns
tPD2 I/O Input or Feedback to Non-registered Feedback 6 7.5 10 15 ns
tSU Global Clock Setup Time 3.4 6.0 7.0 11 ns
tHGlobal Clock Hold Time 0.0 0.0 0.0 0.0 ns
tFSU Global Clock Setup Time of Fast Input 2.5 3.0 3.0 3.0 ns
tFH Global Clock Hold of Fast Input 0 0.5 0.5 1 ns
tCO1 Global Clock to Output Delay 4.0 4.5 5.0 8.0 ns
tCH Global Clock High Time 3 3.0 4.0 5.0 ns
tCL Global Clock Low Time 3 3.0 4.0 5.0 ns
tASU Array Clock Setup Time 0.9 3.0 2.0 4.0 ns
tAH Array Clock Hold Time 1.8 2.0 5.0 4.0 ns
tACO1 Array Clock Output Delay 6.5 7.5 10 15 ns
tACH Array Clock High Time 3.0 3 4.0 6.0 ns
tACL Array Clock Low Time 3.0 3 4.0 6.0 ns
tCNT Minimum Clock Global Period 6.8 8.0 10 13 ns
fCNT(3) Maximum Internal Global Clock Frequency 150 125 100 77 MHz
tACNT Minimum Array Clock Period 6.8 8.0 10 13 ns
fACNT(4) Maximum Internal Array Clock Frequency 150 125 100 77 MHz
fMAX(5) Maximum Clock Frequency 167 167 125 100 MHz
tIN Input Pad and Buffer Delay 0.2 0.5 0.5 2.0 ns
tIO I/O Input Pad and Buffer Delay 0.2 0.5 0.5 2.0 ns
tFIN Fast Input Delay 2.6 1.0 1.0 2.0 ns
tSEXP Foldback Term Delay 3.7 4.0 5.0 8.0 ns
tPEXP Cascade Logic Delay 1.1 0.8 0.0 1.0 ns
tLAD Logic Array Delay 3.0 3.0 5.0 6.0 ns
tLAC Logic Control Delay 3.0 3.0 5.0 6.0 ns
tIOE Internal Output Enable Delay 0.7 2.0 2.0 3.0 ns
tOD1 Output Buffer and Pad Delay
(slow slew rate = OFF; VCCIO =5V;C
L=35pF) 0.4 2.0 1.5 4.0 ns
tOD2 Output Buffer and Pad Delay
(slow slew rate = OFF; VCCIO =3.3V;C
L=35pF) 0.9 2.5 2.0 5.0 ns
tOD3 Output Buffer and Pad Delay
(slow slew rate = ON; VCCIO =5Vor3.3V;
CL=35pF)
5.4 7.0 5.5 8.0 ns
tZX1 Output Buffer Enable Delay
(slow slew rate = OFF; VCCIO =5V;C
L=35pF) 4.0 4.0 5 6.0 ns
39
ATF1508SE(L)
2401D–PLD–09/02
Notes: 1. See ordering Information for valid part numbers.
2. The tRPA parameter must be added to the tLAD,t
LAC,t
IC,t
ACL and tSEXP parameters for macrocells running in the reduced-
power mode.
3. fCNT is the fastest 16-bit counter frequency available, using the local feedback when applicable, and a PIA fan-out of one
logic block (16 macrocells). fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG.
4. fACNT is the fastest 16-bit counter frequency available, using the internal array clock, local feedback when applicable and a
PIA fan-out of one logic block (16 macrocells).
5. fMAX is the fastest available frequency for pipelined data.
6. For clocked applications and frequencies above fCRITICAL, OR, non-clocked applications with dormant times less than 1/fCRIT-
ICAL, the device will achieve the speeds of the –10 column. See “Input Transition Detection/ Automatic Power Down” on page
8.
tZX2 Output Buffer Enable Delay
(slow slew rate = OFF; VCCIO =3.3V;C
L=35pF) 4.5 4.5 5.5 7.0 ns
tZX3 Output Buffer Enable Delay
(slow slew rate = ON; VCCIO =5Vor3.3V;
CL=35pF)
99910.0ns
tXZ Output Buffer Disable Delay (CL= 5 pF) 4 4 5 6.0 ns
tSU Register Setup Time 1.0 3.0 2.0 4.0 ns
tHRegister Hold Time 1.7 2.0 5.0 4.0 ns
tFSU Register Setup Time of Fast Input 1.9 3.0 3.0 2.0 ns
tFH Register Hold Time of Fast Input 0.6 0.5 0.5 1.0 ns
tRD Register Delay 1.4 1.0 2.0 1.0 ns
tCOMB Combinatorial Delay 1.0 1.0 2.0 1.0 ns
tIC Array Clock Delay 3.1 3.0 5.0 6.0 ns
tEN Register Enable Time 3.0 3.0 5.0 6.0 ns
tGLOB Global Control Delay 2.0 1.0 1.0 1.0 ns
tPRE Register Preset Time 2.4 2.0 3.0 4.0 ns
tCLR Register Clear Time 2.4 2.0 3.0 4.0 ns
tUIM Switch Matrix Delay 1.4 1.0 1.0 2.0 ns
tRPA(2) Reduced Power Adder 10 10 11 13 ns
AC Characteristics(1) ATF1508SE(L) (Continued)
Symbol Parameter
SE -6 SE -7 SE -10 SEL -15(6)
UnitMin Max Min Max Min Max Min Max
40 ATF1508SE(L) 2401D–PLD–09/02
STAND-BY ICC VS.
SUPPLY VOLTAGE (TA=25°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
I
CC
(µA)
TBD
SUPPLY CURRENT VS.
INPUT FREQUENCY (VCC =5.0V,T
A= 25°C)
0.000
20.000
40.000
60.000
80.000
100.000
120.000
140.000
0.0 0.5 2.5 5.0 7.5 10.0 25.0 37.5 50.0
FREQUENCY (MHz)
I
CC
(mA)
TBD
OUTPUT SOURCE CURRENT VS.
SUPPLY VOLTAGE (VOH =2.4V)
-50
-40
-30
-20
-10
0
4.0 4.5 5.0 5.5 6.0
SUPPLY VOLTAGE (V)
I
OH
(mA)
TBD
OUTPUT SINK CURRENT VS.
SUPPLY VOLTAGE (VOL =0.5V)
36
38
40
42
44
46
48
4.0 4.5 5.0 5.5 6.0
SUPPLY VOLTAGE (V)
Iol (mA)
TBD
NORMALIZED ICC VS. TEMP
0.4
0.6
0.8
1.0
1.2
1.4
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED Icc
TBD
SUPPLY CURRENT VS.
INPUT FREQUENCY (VCC =5.0V,T
A= 25°C)
0.000
0.200
0.400
0.600
0.800
1.000
0.0 0.5 2.5 5.0 7.5 10.0 25.0 37.5 50.0
FREQUENCY (MHz)
I
CC
(mA)
TBD
OUTPUT SOURCE CURRENT VS.
OUTPUT VOLTAGE (VCC =5.0V,TA= 25°C)
-90.0
-80.0
-70.0
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
VOH (V)
I
OH
(mA)
TBD
OUTPUT SINK CURRENT VS.
OUTPUT VOLTAGE (VCC =5.0V,T
A= 25°C)
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
SUPPLY VOLTAGE (V)
I
OL
(mA)
TBD
41
ATF1508SE(L)
2401D–PLD–09/02
INPUT CLAMP CURRENT VS.
INPUT VOLTAGE (VCC =5.0V,T
A=35°C)
-120
-100
-80
-60
-40
-20
0
0.0 -0.2 -0.4 -0.6 -0.8 -1.0
INPUT VOLTAGE (V)
INPUT CURRENT
(mA)
TBD
NORMALIZED TPD VS. VCC
0.8
0.9
1.0
1.1
1.2
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
PD
TBD
NORMALIZED TCO VS. VCC
0.8
0.9
1.0
1.1
1.2
1.3
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
CO
TBD
NORMALIZED TSU VS. VCC
0.8
0.9
1.0
1.1
1.2
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
SU
TBD
INPUT CURRENT VS.
INPUT VOLTAGE (VCC =5.0V,T
A= 25°C)
-30
-20
-10
0
10
20
30
40
0.0 1.0 2.0 3.0 4.0 5.0 6.0
INPUT VOLTAGE (V)
INPUT CURRENT
(uA)
TBD
NORMALIZED TPD VS. TEMP
0.8
0.9
1.0
1.1
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED T
PD
TBD
NORMALIZED TCO VS. TEMP
0.8
0.9
1.0
1.1
-40.0 0.0 25.0 75.0
TEMPERATURE (V)
NORMALIZED T
CO
TBD
NORMALIZED TSU VS. TEMP
0.8
0.9
1.0
1.1
1.2
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED T
CO
TBD
42 ATF1508SE(L) 2401D–PLD–09/02
DELTA TPD VS.
OUTPUT LOADING
-2
0
2
4
6
8
0 50 100 150 200 250 300
OUTPUT LOADING (PF)
DELTA T
PD
(ns)
TBD
DELTA TPD VS. # OF OUTPUT SWITCHING
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
NUMBER OF OUTPUTS SWITCHING
DELTA T
PD
(ns)
TBD
DELTA TCO VS.
OUTPUT LOADING
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
50 100 150 200 250 300
NUMBER OF OUTPUTS LOADING
DELTA T
CO
(ns)
TBD
DELTA TCO VS. # OF OUTPUT SWITCHING
-0.3
-0.2
-0.1
0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
NUMBER OF OUTPUTS SWITCHING
DELTA T
CO
(ns)
TBD
43
ATF1508SE(L)
2401D–PLD–09/02
ATF1508SE(L) Pinouts
84-lead PLCC Top View
100-lead TQFP Top View
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
I/O/PD1
VCCIO
I/O/TDI
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O/TMS
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
GND
I/O/TDO
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O/TCK
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
11
10
9
8
7
6
5
4
3
2
1
84
83
82
81
80
79
78
77
76
75
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
GND
VCCINT
I/O
I/O/PD2
I/O
GND
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
VCCINT
INPUT/OE2/GCLK2
INPUT/GCLR
INPUT/OE1
INPUT/GCLK1
GND
I/O/GCLK3
I/O
I/O
VCCIO
I/O
I/O
I/O
ATF1504SE(L)
ATF1508SE(L)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
I/O/PD1
I/O
VCCIO
I/O/TDI
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O/TMS
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O/TDO
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O/TCK
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
26
27
28
29
30
31
33
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
GND
VCCINT
I/O
I/O/PD2
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
VCCINT
INPUT/OE2/GCLK2
INPUT/GCLR
INPUT/OE1
INPUT/GCLK1
GND
I/O/GCLK3
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O
I/O
I/O
ATF1508SE(L)
44 ATF1508SE(L) 2401D–PLD–09/02
100-lead PQFP Top View
160-lead TQFP Top View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
NC
NC
I/O
I/O
VCCIO
I/O/TDI
NC
I/O
NC
I/O
I/O
I/O
GND
I/O/PD1
I/O
I/O
I/O/TMS
I/O
I/O
VCCIO
I/O
I/O
I/O
NC
I/O
NC
I/O
GND
NC
NC
NC
NC
I/O
I/O
GND
I/O/TDO
NC
I/O
NC
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
I/O/TCK
I/O
I/O
GND
I/O
I/O
I/O
NC
I/O
NC
I/O
VCCIO
NC
NC
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
I/O
I/O
I/O
I/O
I/O
VCCIO
I/O
I/O
I/O
GND
VCCINT
I/O
I/O
I/O/PD2
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
VCCINT
INPUT/OE2/GCLK2
INPUT/GCLR
INPUT/OE1
INPUT/GCLK1
GND
I/O/GCLK3
I/O
I/O
VCCIO
I/O
I/O
I/O
1
20
120
101
160
141
41
60
80
ATF1508SE(L)
45
ATF1508SE(L)
2401D–PLD–09/02
OE (1,2) Global OE pins.
GCLR Global Clear pin.
GCLK (1,2,3) Global Clock pins.
TDI, TMS, TCK, TDO JTAG pins used for In System Programming or Boundary-scan Testing.
GNDINT Ground pins for the internal device logic.
GNDIO Ground pins for the I/O drivers.
VCCINT VCC pins for the internal device logic.
VCCIO VCC pins for the I/O drivers.
ATF1508SE(L) Dedicated Pinouts
Dedicated Pin 84-PLCC J-
Lead 100-pin TQFP 100-pin PQFP 160-lead PQFP
INPUT/GCLK1 83 87 89 139
INPUT/GCLR 1 89 91 141
INPUT/OE1 84 88 90 140
INPUT/OE2/GCK2 2 90 92 142
I/O/GCLK3 81 85 87 137
I/O PD (1,2) 12, 45 1,41 3, 43 63,159
TDI (JTAG) 14 4 6 9
TMS (JTAG) 23 15 17 22
TCK (JTAG) 62 62 64 99
TDO (JTAG) 71 73 75 112
GNDINT 42, 82 38,86 40,88 60,138
GNDIO 7, 19, 32, 47,
59, 72 11, 26, 43, 59,
74, 95 13, 28, 61,
76, 45, 97 17, 42,113, 66, 95,148
VCCINT 3, 43 39, 91 41,93 61,143
VCCIO 13, 26, 38, 53,
66, 78 3, 18, 34, 51,
66, 82 5,20,36,53,68,84 8,26,55,79,104,133
No Connect - -
1,2,3,4,5,6,7,34,35,36,
37,38,39,40,44,45,46,
47,74,75,76,77,81,82,
83,84,85,86,87,114,
115,116,117,118,119,
120,124,125,126,127,
154,155,156,157
# of Signal pins 68 84 84 100
# of User I/O pins 64 80 80 96
46 ATF1508SE(L) 2401D–PLD–09/02
ATF1508SE(L) I/O Pinouts
MC PLB 84-PLCC
J-lead 100-lead
PQFP 100-lead
TQFP 160-lead
PQFP MC PLB 84-PLCC
J-lead 100-lead
PQFP 100-lead
TQFP 160-lead
PQFP
1A–4216033C272541
2A––––34C–––
3/PD1 A 12 3 115935 C31262433
4A–––15836C––32
5 A 11 2 100 153 37 C 30 25 23 31
6 A 10 1 9915238 C29242230
7A––––39C–––
8 A 9 100 98 151 40 C 28 23 21 29
9 A 99 97 150 41 C 22 20 28
10A––––42C––––
11 A 8 98 96 149 43 C 27 21 19 27
12 A 147 44 C 25
13 A 6 96 94 146 45 C 25 19 17 24
14 A 5 95 93 145 46 C 24 18 16 23
15A––––47C––––
16 A 4 94 92 144 48/TMS C23171522
17 B 22 16 14 21 49 D 41 39 37 59
18B––––50D––––
19 B 21 15 13 20 51 D 40 38 36 58
20 B 19 52 D 57
21 B 20 14 12 18 53 D 39 37 35 56
22 B 12 10 16 54 D 35 33 54
23B––––55D––––
24 B 1811 9 1556 D37343253
25 B 1710 8 1457 D36333152
26B––––58D––––
27 B 16 9 7 13 59 D 35 32 30 51
28 B 12 60 D 50
29 B 15 8 6 11 61 D 34 31 29 49
30 B 7 5 10 62 D 30 28 48
31B––––63D––––
32/
TDI B/ 14 6 4 9 64 D 33 29 27 43
47
ATF1508SE(L)
2401D–PLD–09/02
65 E 44 42 40 62 97 G 63 65 63 100
66E––––98G––––
67/PD2 E45 43 41 63 99 G 64 66 64 101
68 E 64 100 G 102
69 E 46 44 42 65 101 G 65 67 65 103
70 E 46 44 67 102 G 69 67 105
71E––––103G––––
72 E 48 47 45 68 104 G 67 70 68 106
73 E 49 48 46 69 105 G 68 71 69 107
74E––––106G––––
75 E 50 49 47 70 107 G 69 72 70 108
76 E 71 108 G 109
77 E 51 50 48 72 109 G 70 73 71 110
78 E 51 49 73 110 G 74 72 111
79E––––111G––––
80 E 52 52 50 78 112/TDO G 71 75 73 112
81 F 54 52 80 113 H 77 75 121
82F––––114H–––
83 F 54 55 53 88 115 H 73 78 76 122
84 F 89 116 H 123
85 F 55 56 54 90 117 H 74 79 77 128
86 F 56 57 55 91 118 H 75 80 78 129
87F––––119H–––
88 F 57 58 56 92 120 H 76 81 79 130
89 F 59 57 93 121 H 82 80 131
90F––––122H–––
91 F 58 60 58 94 123 H 77 83 81 132
92 F 96 124 H 134
93 F 60 62 60 97 125 H 79 85 83 135
94 F 61 63 61 98 126 H 80 86 84 136
95F––––127H–––
96 F/
TCK 62 64 62 99 128/GCLK3 H 81 87 85 137
ATF1508SE(L) I/O Pinouts (Continued)
MC PLB 84-PLCC
J-lead 100-lead
PQFP 100-lead
TQFP 160-lead
PQFP MC PLB 84-PLCC
J-lead 100-lead
PQFP 100-lead
TQFP 160-lead
PQFP
48 ATF1508SE(L) 2401D–PLD–09/02
Using C” Product for Industrial
To use commercial product for industrial temperature ranges, down-grade one speed grade from the “I” to the “C” device
and de-rate power by 30%.
ATF1508SE(L) Ordering Information
tPD
(ns) tCO1
(ns) fMAX
(MHz) Ordering Code Package Operation Range
6.0 4.0 167 ATF1508SE-5 JC84
ATF1508SE-5 AC100
ATF1508SE-5 QC100
ATF1508SE-5 QC160
84J
100A
100Q4
160Q1
Commercial
(0°Cto70°C)
7.5 4.5 167 ATF1508SE-7 JC84
ATF1508SE-7 AC100
ATF1508SE-7 QC100
ATF1508SE-7 QC160
84J
100A
100Q4
160Q1
Commercial
(0°Cto70°C)
ATF1508SE-7 JI84
ATF1508SE-7 AI100
ATF1508SE-7 QI100
ATF1508SE-7 QI160
84J
100A
100Q4
160Q1
Industrial
(-40°Cto+85°C)
10 5.0 125 ATF1508SE-10 JC84
ATF1508SE-10 AC100
ATF1508SE-10 QC100
ATF1508SE-10 QC160
84J
100A
100Q4
160Q1
Commercial
(0°Cto70°C)
ATF1508SE-10 JI84
ATF1508SE-10 AI100
ATF1508SE-10 QI100
ATF1508SE-10 QI160
84J
100A
100Q4
160Q1
Industrial
(-40°Cto+85°C)
15 8.0 100 ATF1508SEL-15 JC84
ATF1508SEL-15 AC100
ATF1508SEL-15 QC100
ATF1508SEL-15 QC160
84J
100A
100Q4
160Q1
Commercial
(0°Cto70°C)
Package Type
84J 84-lead, Plastic J-leaded Chip Carrier (PLCC)
100A 100-lead, Very Thin Plastic Gull Wing Quad Flatpack (TQFP)
100Q4 100-lead, Plastic Quad Pin Flat Package (PQFP)
160Q1 160-lead, Plastic Quad Pin Flat Package (PQFP)
49
ATF1516SE(L)
2401D–PLD–09/02
AC Characteristics(1) ATF1516SE(L)
Symbol Parameter
SE -7 SE -10 SEL -15(6)
UnitMin Max Min Max Min Max
tPD1 Input or Feedback to Non-registered Output 7.5 10 15 ns
tPD2 I/O Input or Feedback to Non-registered Feedback 7.5 10 12 ns
tSU Global Clock Setup Time 3.9 7.0 11 ns
tHGlobal Clock Hold Time 0.0 0.0 0.0 ns
tFSU Global Clock Setup Time of Fast Input 3.9 3.0 3.0 ns
tFH Global Clock Hold of Fast Input 0.0 0.5 1 ns
tCO1 Global Clock to Output Delay 4.7 5.0 8.0 ns
tCH Global Clock High Time 3.0 4.0 5.0 ns
tCL Global Clock Low Time 3.0 4.0 5 ns
tASU Array Clock Setup Time 0.8 2.0 4.0 ns
tAH Array Clock Hold Time 1.9 3.0 4.0 ns
tACO1 Array Clock Output Delay 7.3 1 10 15 ns
tACH Array Clock High Time 3.0 4 6 ns
tACL Array Clock Low Time 3.0 4 6 ns
tCNT Minimum Clock Global Period 7.8 10 13 ns
fCNT(3) Maximum Internal Global Clock Frequency 130 100 77 MHz
tACNT Minimum Array Clock Period 7.8 10 13 ns
fACNT(4) Maximum Internal Array Clock Frequency 130 100 77 MHz
fMAX(5) Maximum Clock Frequency 167 125 100 MHz
tIN Input Pad and Buffer Delay 0.3 0.5 2.0 ns
tIO I/O Input Pad and Buffer Delay 0.3 0.5 2.0 ns
tFIN Fast Input Delay 3.4 1.0 2.0 ns
tSEXP Foldback Term Delay 3.9 5.0 8.0 ns
tPEXP Cascade Logic Delay 1.1 0.8 1.0 ns
tLAD Logic Array Delay 2.6 5.0 6.0 ns
tLAC Logic Control Delay 2.6 5.0 6.0 ns
tIOE Internal Output Enable Delay 0.8 2.0 3.0 ns
tOD1 Output Buffer and Pad Delay
(slow slew rate = OFF; VCCIO =5V;C
L=35pF) 0.5 1.5 4.0 ns
tOD2 Output Buffer and Pad Delay
(slow slew rate = OFF; VCCIO =3.3V;C
L=35pF) 1.0 2.0 5.0 ns
tOD3 Output Buffer and Pad Delay
(slow slew rate = ON; VCCIO =5Vor3.3V;
CL=35pF)
5.5 5.5 8.0 ns
tZX1 Output Buffer Enable Delay
(slow slew rate = OFF; VCCIO =5V;C
L=35pF) 4.0 5.0 6.0 ns
50 ATF1516SE(L) 2401D–PLD–09/02
Notes: 1. See ordering Information for valid part numbers.
2. The tRPA parameter must be added to the tLAD,t
LAC,t
IC,t
ACL and tSEXP parameters for macrocells running in the reduced-
power mode.
3. fCNT is the fastest 16-bit counter frequency available, using the local feedback when applicable, and a PIA fan-out of one
logic block (16 macrocells). fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG.
4. fACNT is the fastest 16-bit counter frequency available, using the internal array clock, local feedback when applicable and a
PIA fan-out of one logic block (16 macrocells).
5. fMAX is the fastest available frequency for pipelined data.
6. For clocked applications and frequencies above fCRITICAL, OR, non-clocked applications with dormant times less than 1/fCRIT-
ICAL, the device will achieve the speeds of the –10 column. See “Input Transition Detection/ Automatic Power Down on page
8.
tZX2 Output Buffer Enable Delay
(slow slew rate = OFF; VCCIO =3.3V;C
L=35pF) 4.5 5.5 7.0 ns
tZX3 Output Buffer Enable Delay
(slow slew rate = ON; VCCIO =5Vor3.3V;C
L=35
pF)
9.0 9.0 10.0 ns
tXZ Output Buffer Disable Delay (CL= 5 pF) 4.0 5.0 6.0 ns
tSU Register Setup Time 1.1 2.0 4.0 ns
tHRegister Hold Time 1.6 3.0 4.0 ns
tFSU Register Setup Time of Fast Input 2.4 3.0 2.0 ns
tFH Register Hold Time of Fast Input 0.6 0.5 1.0 ns
tRD Register Delay 1.1 2.0 1.0 ns
tCOMB Combinatorial Delay 1.1 2.0 1.0 ns
tIC Array Clock Delay 2.9 5.0 6.0 ns
tEN Register Enable Time 2.6 5.0 6.0 ns
tGLOB Global Control Delay 2.8 1.0 1.0 ns
tPRE Register Preset Time 2.7 3.0 4.0 ns
tCLR Register Clear Time 2.7 3.0 4.0 ns
tUIM Switch Matrix Delay 3.0 1.0 2.0 ns
tRPA Reduced Power Adder(2) 10 11 13 ns
AC Characteristics(1) ATF1516SE(L) (Continued)
Symbol Parameter
SE -7 SE -10 SEL -15(6)
UnitMin Max Min Max Min Max
51
ATF1516SE(L)
2401D–PLD–09/02
STAND-BY ICC VS.
SUPPLY VOLTAGE (TA=25°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
I
CC
(µA)
TBD
SUPPLY CURRENT VS.
INPUT FREQUENCY (VCC =5.0V,T
A= 25°C)
0.000
20.000
40.000
60.000
80.000
100.000
120.000
140.000
0.0 0.5 2.5 5.0 7.5 10.0 25.0 37.5 50.0
FREQUENCY (MHz)
I
CC
(mA)
TBD
OUTPUT SOURCE CURRENT VS.
SUPPLY VOLTAGE (VOH =2.4V)
-50
-40
-30
-20
-10
0
4.0 4.5 5.0 5.5 6.0
SUPPLY VOLTAGE (V)
I
OH
(mA)
TBD
OUTPUT SINK CURRENT VS.
SUPPLY VOLTAGE (VOL =0.5V)
36
38
40
42
44
46
48
4.0 4.5 5.0 5.5 6.0
SUPPLY VOLTAGE (V)
Iol (mA)
TBD
NORMALIZED ICC VS. TEMP
0.4
0.6
0.8
1.0
1.2
1.4
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED Icc
TBD
SUPPLY CURRENT VS.
INPUT FREQUENCY (VCC =5.0V,T
A= 25°C)
0.000
0.200
0.400
0.600
0.800
1.000
0.0 0.5 2.5 5.0 7.5 10.0 25.0 37.5 50.0
FREQUENCY (MHz)
I
CC
(mA)
TBD
OUTPUT SOURCE CURRENT VS.
OUTPUT VOLTAGE (VCC =5.0V,TA= 25°C)
-90.0
-80.0
-70.0
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
VOH (V)
I
OH
(mA)
TBD
OUTPUT SINK CURRENT VS.
OUTPUT VOLTAGE (VCC =5.0V,T
A=25°C)
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
SUPPLY VOLTAGE (V)
I
OL
(mA)
TBD
52 ATF1516SE(L) 2401D–PLD–09/02
INPUT CLAMP CURRENT VS.
INPUT VOLTAGE (VCC =5.0V,TA=35°C)
-120
-100
-80
-60
-40
-20
0
0.0 -0.2 -0.4 -0.6 -0.8 -1.0
INPUT VOLTAGE (V)
INPUT CURRENT
(mA)
TBD
NORMALIZED TPD VS. VCC
0.8
0.9
1.0
1.1
1.2
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
PD
TBD
NORMALIZED TCO VS. VCC
0.8
0.9
1.0
1.1
1.2
1.3
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
CO
TBD
NORMALIZED TSU VS. VCC
0.8
0.9
1.0
1.1
1.2
4.5 4.8 5.0 5.3 5.5
SUPPLY VOLTAGE (V)
NORMALIZED T
SU
TBD
INPUT CURRENT VS.
INPUT VOLTAGE (VCC =5.0V,TA= 25°C)
-30
-20
-10
0
10
20
30
40
0.0 1.0 2.0 3.0 4.0 5.0 6.0
INPUT VOLTAGE (V)
INPUT CURRENT
(uA)
TBD
NORMALIZED TPD VS.TEMP
0.8
0.9
1.0
1.1
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED T
PD
TBD
NORMALIZED TCO VS.TEMP
0.8
0.9
1.0
1.1
-40.0 0.0 25.0 75.0
TEMPERATURE (V)
NORMALIZED T
CO
TBD
NORMALIZED TSU VS.TEMP
0.8
0.9
1.0
1.1
1.2
-40.0 0.0 25.0 75.0
TEMPERATURE (C)
NORMALIZED T
CO
TBD
53
ATF1516SE(L)
2401D–PLD–09/02
DELTA TPD VS.
OUTPUT LOADING
-2
0
2
4
6
8
0 50 100 150 200 250 300
OUTPUT LOADING (PF)
DELTA T
PD
(ns)
TBD
DELTA TPD VS. # OF OUTPUT SWITCHING
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
NUMBER OF OUTPUTS SWITCHING
DELTA T
PD
(ns)
TBD
DELTA TCO VS.
OUTPUT LOADING
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
50 100 150 200 250 300
NUMBER OF OUTPUTS LOADING
DELTA T
CO
(ns)
TBD
DELTA TCO VS. # OF OUTPUT SWITCHING
-0.3
-0.2
-0.1
0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
NUMBER OF OUTPUTS SWITCHING
DELTA T
CO
(ns)
TBD
54 ATF1516SE(L) 2401D–PLD–09/02
ATF1516SE(L) Dedicated Pinouts
208-lead PQFP and RQFP Top View
1
26
156
131
208
183
53
78
104
ATF1516SE(L)
55
ATF1516SE(L)
2401D–PLD–09/02
OE (1,2) Global OE pins.
GCLR Global Clear pin.
GCLK (1,2,3) Global Clock pins.
TDI, TMS, TCK, TDO JTAG pins used for In System Programming or Boundary-scan Testing.
GNDINT Ground pins for the internal device logic.
GNDIO Ground pins for the I/O drivers.
VCCINT VCC pins for the internal device logic.
VCCIO VCC pins for the I/O drivers.
ATF1516SE(L) Dedicated Pinouts
Dedicated Pin 208-pin PQFP 208-pin RQFP
INPUT/GCLK1 184 184
INPUT/GCLR 182 182
INPUT/OE1 183 183
INPUT/OE2/GCK2 181 181
I/O/GCLK3 TBD TBD
I/O PD (1,2) TBD TBD
TDI (JTAG) 176 176
TMS (JTAG) 127 127
TCK (JTAG) 30 30
TDO (JTAG) 189 189
GNDINT 75, 82, 180, 185 75, 82, 180, 185
GNDIO 14, 32, 50, 72, 94, 116, 134, 152, 174,
200 14, 32, 50, 72, 94, 116, 134, 152, 174,
200
VCCINT 74, 83, 179, 186 74, 83, 179, 186
VCCIO 5, 23, 41, 63, 85, 107, 125, 143, 165, 191 5, 23, 41, 63, 85, 107, 125, 143, 165, 191
No Connect 1,2, 51, 52, 53, 54, 103, 104, 105, 106,
155, 156, 157, 158, 207, 208 1,2, 51, 52, 53, 54, 103, 104, 105, 106,
155, 156, 157, 158, 207, 208
# of Signal pins 164 164
# of User I/O pins 160 160
56 ATF1516SE(L) 2401D–PLD–09/02
ATF1516SE(L) I/O Pinouts
MC PLB 208-pin PQFP 208-pin RQRP MC PLB 208-pin PQFP 208-pin RQFP
1 A 153 153 33 C 108 108
2A - - 34C - -
3 A 154 154 35 C 109 109
4A - - 36C - -
5 A 159 159 37 C 110 110
6 A 160 160 38 C 111 111
7A - - 39C - -
8 A 161 161 40 C 112 112
9 A 162 162 41 C 113 113
10 A - - 42 C - -
11 A 163 163 43 C 114 114
12 A - - 44 C - -
13 A 164 164 45 C 115 115
14 A 166 166 46 C 117 117
15 A - - 47 C - -
16 A 167 167 48 C 118 118
17 B 141 141 49 D 92 92
18 B - - 50 D - -
19 B 142 142 51 D 93 93
20 B - - 52 D - -
21 B 144 144 53 D 95 95
22 B 145 145 54 D 96 96
23 B - - 55 D - -
24 B 146 146 56 D 97 97
25 B 147 147 57 D 98 98
26 B - - 58 D - -
27 B 148 148 59 D 99 99
28 B - - 60 D - -
29 B 149 149 61 D 100 100
30 B 150 150 62 D 101 101
31 B - - 63 D - -
32 B 151 151 64 D 102 102
57
ATF1516SE(L)
2401D–PLD–09/02
65 E 168 168 97 G 119 119
66 E - - 98 G - -
67 E 169 169 99 G 120 120
68 E - - 100 G - -
69 E 170 170 101 G 121 121
70 E 171 171 102 G 122 122
71 E - - 103 G - -
72 E 172 172 104 G 123 123
73 E 173 173 105 G 124 124
74 E - - 106 G - -
75 E 175 175 107 G 126 126
76 E - - 108 G - -
77 E 176 176 109 G 127 127
78 E 177 177 110 G 128 128
79 E - - 111 G - -
80 E 178 178 112 G 129 129
81 F 130 130 113 H 79 79
82 F - - 114 H - -
83 F 131 131 115 H 80 80
84 F - - 116 H - -
85 F 132 132 117 H 81 81
86 F 133 133 118 H 84 84
87 F - - 119 H - -
88 F 135 135 120 H 86 86
89 F 136 136 121 H 87 87
90 F - - 122 H - -
91 F 137 137 123 H 88 88
92 F - - 124 H - -
93 F 138 138 125 H 89 89
94 F 139 139 126 H 90 90
95 F - - 127 H - -
96 F 140 140 128 H 91 91
ATF1516SE(L) I/O Pinouts (Continued)
MC PLB 208-pin PQFP 208-pin RQRP MC PLB 208-pin PQFP 208-pin RQFP
58 ATF1516SE(L) 2401D–PLD–09/02
129 I 197 197 161 K 38 38
130 I - - 162 K - -
131 I 196 196 163 K 37 37
132 I - - 164 K - -
133 I 195 195 165 K 36 36
134 I 194 194 166 K 35 35
135 I - - 167 K - -
136 I 193 193 168 K 34 34
137 I 192 192 169 K 33 33
138 I - - 170 K - -
139 I 190 190 171 K 31 31
140 I - - 172 K - -
141 I 189 189 173 K 30 30
142 I 188 188 174 K 29 29
143 I - - 175 K - -
144 I 187 187 176 K 28 28
145 J 27 27 177 L 78 78
146 J - - 178 L - -
147 J 26 26 179 L 77 77
148 J - - 180 L - -
149 J 25 25 181 L 76 76
150 J 24 24 182 L 73 73
151 J - - 183 L - -
152 J 22 22 184 L 71 71
153 J 21 21 185 L 70 70
154 J - - 186 L - -
155 J 20 20 187 L 69 69
156 J - - 188 L - -
157 J 19 19 189 L 68 68
158 J 18 18 190 L 67 67
159 J - - 191 L - -
160 J 17 17 192 L 66 66
ATF1516SE(L) I/O Pinouts (Continued)
MC PLB 208-pin PQFP 208-pin RQRP MC PLB 208-pin PQFP 208-pin RQFP
59
ATF1516SE(L)
2401D–PLD–09/02
193 M 4 4 225 O 49 49
194 M - - 226 O - -
195 M 3 3 227 O 48 48
196 M - - 228 O - -
197 M 206 206 229 O 47 47
198 M 205 205 230 O 46 46
199 M - - 231 O - -
200 M 204 204 232 O 45 45
201 M 203 203 233 O 44 44
202 M - - 234 O - -
203 M 202 202 235 O 43 43
204 M - - 236 O - -
205 M 201 201 237 O 42 42
206 M 199 199 238 O 40 40
207 M - - 239 O - -
208 M 198 198 240 O 39 39
209 N 16 16 241 P 65 65
210 N - - 242 P - -
211 N 15 15 243 P 64 64
212 N - - 244 P - -
213 N 13 13 245 P 62 62
214 N 12 12 246 P 61 61
215 N - - 247 P - -
216 N 11 11 248 P 60 60
217 N 10 10 249 P 59 59
218 N - - 250 P - -
219 N 9 9 251 P 58 58
220 N - - 252 P - -
221 N 8 8 253 P 57 57
222 N 7 7 254 P 56 56
223 N - - 255 P - -
224 N 6 6 256 P 55 55
ATF1516SE(L) I/O Pinouts (Continued)
MC PLB 208-pin PQFP 208-pin RQRP MC PLB 208-pin PQFP 208-pin RQFP
60 ATF1516SE(L) 2401D–PLD–09/02
Using C” Product for Industrial
To use commercial product for industrial temperature ranges, down-grade one speed grade from the “I” to the “C” device,
and de-rate power by 30%.
ATF1516SE(L) Ordering Information
tPD
(ns) tCO1
(ns) fMAX
(MHz) Ordering Code Package Operation Range
7.5 4.7 167 ATF1516SE-7 QC208
ATF1516SE-7 RC208 208Q1
208Q2 Commercial
(0°Cto70°C)
ATF1516SE-7 QI208
ATF1516SE-7 RI208 208Q1
208Q2 Industrial
(-40°Cto+85°C)
10 5.0 125 ATF1516SE-10 QC208
ATF1516SE-10 RC208 208Q1
208Q2 Commercial
(0°Cto70°C)
ATF1516SE-10 QI208
ATF1516SE-10 RI208 208Q1
208Q2 Industrial
(-40°Cto+85°C)
15 8.0 100 ATF1516SEL-15 QC208
ATF1516SEL-15 RC208 208Q1
208Q2 Commercial
(0°Cto70°C)
Package Type
208Q1 208-lead, 28 x 28 mm Body, 2.6 Form Opt., Plastic Quad Flatpack (PQFP)
208Q2 208-lead, 28 x 28 mm Body, 2.6 Form Opt., Plastic Quad Flatpack with Heat Spreader (PQFP)
61
ATF1516SE(L)
2401D–PLD–09/02
Package Information
44A TQFP
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) B
44A
10/5/2001
PIN 1 IDENTIFIER
0˚~7˚
PIN 1
L
C
A1 A2 A
D1
D
eE1 E
B
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
Notes: 1. This package conforms to JEDEC reference MS-026, Variation ACB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
A 1.20
A1 0.05 0.15
A2 0.95 1.00 1.05
D 11.75 12.00 12.25
D1 9.90 10.00 10.10 Note 2
E 11.75 12.00 12.25
E1 9.90 10.00 10.10 Note 2
B 0.30 0.45
C 0.09 0.20
L 0.45 0.75
e 0.80 TYP
62 ATF1516SE(L) 2401D–PLD–09/02
44J–PLCC
Notes: 1. This package conforms to JEDEC reference MS-018, Variation AC.
2. Dimensions D1 and E1 do not include mold protrusion.
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1
and E1 include mold mismatch and are measured at the extreme
material condition at the upper or lower parting line.
3. Lead coplanarity is 0.004" (0.102 mm) maximum.
A 4.191 4.572
A1 2.286 3.048
A2 0.508
D 17.399 17.653
D1 16.510 16.662 Note 2
E 17.399 17.653
E1 16.510 16.662 Note 2
D2/E2 14.986 16.002
B 0.660 0.813
B1 0.330 0.533
e 1.270 TYP
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
1.14(0.045) X 45° PIN NO. 1
IDENTIFIER
1.14(0.045) X 45°
0.51(0.020)MAX
0.318(0.0125)
0.191(0.0075)
A2
45° MAX (3X)
A
A1
B1 D2/E2
B
e
E1 E
D1
D
44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) B
44J
10/04/01
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
63
ATF1516SE(L)
2401D–PLD–09/02
84J–PLCC
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
84J, 84-lead, Plastic J-leaded Chip Carrier (PLCC) B
84J
10/04/01
1.14(0.045) X 45° PIN NO. 1
IDENTIFIER
1.14(0.045) X 45°
0.51(0.020)MAX
0.318(0.0125)
0.191(0.0075)
A2
45° MAX (3X)
A
A1
B1 D2/E2
B
e
E1 E
D1
D
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
Notes: 1. This package conforms to JEDEC reference MS-018, Variation AF.
2. Dimensions D1 and E1 do not include mold protrusion.
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1
and E1 include mold mismatch and are measured at the extreme
material condition at the upper or lower parting line.
3. Lead coplanarity is 0.004" (0.102 mm) maximum.
A 4.191 4.572
A1 2.286 3.048
A2 0.508
D 30.099 30.353
D1 29.210 29.413 Note 2
E 30.099 30.353
E1 29.210 29.413 Note 2
D2/E2 27.686 28.702
B 0.660 0.813
B1 0.330 0.533
e 1.270 TYP
64 ATF1516SE(L) 2401D–PLD–09/02
100A TQFP
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) C
100A
10/5/2001
PIN 1 IDENTIFIER
0˚~7˚
PIN 1
L
C
A1 A2 A
D1
D
eE1 E
B
A––1.20
A1 0.05 0.15
A2 0.95 1.00 1.05
D 15.75 16.00 16.25
D1 13.90 14.00 14.10 Note 2
E 15.75 16.00 16.25
E1 13.90 14.00 14.10 Note 2
B 0.17 0.27
C 0.09 0.20
L 0.45 0.75
e 0.50 TYP
Notes: 1. This package conforms to JEDEC reference MS-026, Variation AED.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.08 mm maximum.
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
65
ATF1516SE(L)
2401D–PLD–09/02
100Q4 PQFP
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
100Q4 A
3/29/02
100Q4, 100-lead, 14 x 20 mm Body, 3.2 Form Opt.,
Plastic Quad Flat Pack (PQFP)
Side View
Top View Bottom View
E1
D1 D
E
A2
A1 ebL1
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
A1 0.25 0.50 5
A2 2.50 2.70 2.90
D 23.20 BSC 2
D1 20.00 BSC 3
E 17.20 BSC 2
E1 14.00 BSC 3
e 0.65 BSC
b 0.22 0.40 4
L1 1.60 REF
Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing
MS-022, Variation GC-1, for additional information.
2. To be determined at seating plane.
3. Regardless of the relative size of the upper and lower body sections,
dimensions D1 and E1 are determined at the largest feature of the body
exclusive of mold Flash and gate burrs, but including any mismatch
between the upper and lower sections of the molded body.
4. Dimension b does not include Dambar protrusion. The Dambar
protrusion(s) shall not cause the lead width to exceed b maximum by more
than 0.08 mm. Dambar cannot be located on the lower radius or the lead
foot.
5. A1 is defined as the distance from the seating plane to the lowest
point of the package body.
66 ATF1516SE(L) 2401D–PLD–09/02
160Q1 PQFP
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
160Q1 A
3/28/02
160Q1, 160-lead, 28 x 28 mm Body, 3.2 Form Opt.,
Plastic Quad Flat Pack (PQFP)
E
D
E1
D1
A2
A1 bL1
e
Side View
Top View Bottom View
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
A1 0.25 0.50 5
A2 3.20 3.40 3.60
D 31.20 BSC 2
D1 28.00 BSC 3
E 31.20 BSC 2
E1 28.00 BSC 3
e 0.65 BSC
b 0.22 0.40 4
L1 1.60 REF
Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing
MS-022, Variation DD-1, for additional information.
2. To be determined at seating plane.
3. Regardless of the relative size of the upper and lower body sections,
dimensions D1 and E1 are determined at the largest feature of the body
exclusive of mold Flash and gate burrs, but including any mismatch
between the upper and lower sections of the molded body.
4. Dimension b does not include Dambar protrusion. The Dambar
protrusion(s) shall not cause the lead width to exceed b maximum by more
than 0.08 mm. Dambar cannot be located on the lower radius or the lead
foot.
5. A1 is defined as the distance from the seating plane to the lowest point of
the package body.
67
ATF1516SE(L)
2401D–PLD–09/02
208Q1 PQFP
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
208Q1 B
07/23/02
L1
A2
A1
A1
b
D1
D
E1
E
e
Side View
Bottom View
Top View
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
208Q1, 208-lead (28 x 28 mm Body, 2.6 Form Opt.),
Plastic Quad Flat Pack (PQFP)
A1 0.25
0.50
A2 3.20 3.40 3.60
D 30.60 BSC
D1 28.00 BSC 2, 3
E 30.60 BSC
E1 28.00 BSC 2, 3
e 0.50 BSC
b 0.17
0.27 4
L1 1.30 REF
Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-129, Variation FA-1, for proper dimensions, tolerances, datums, etc.
2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm.
3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic
body size dimensions including mold mismatch.
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum b
dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion
and an adjacent lead is 0.07 mm.
68 ATF1516SE(L) 2401D–PLD–09/02
208Q2 PQFP
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
208Q2 A
07/23/02
L1
A2
A1
A1
b
D1
D
E1
E
e
Side View
Bottom View
Top View
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
208Q2, 208-lead (28 x 28 mm Body, 2.6 Form Opt.),
Plastic Quad Flat Pack (PQFP)
A1 0.05
0.25
A2 3.20 3.40 3.60
D 30.60 BSC
D1 28.00 BSC 2, 3
E 30.60 BSC
E1 28.00 BSC 2, 3
e 0.50 BSC
b 0.17
0.27 4
L1 1.30 REF
Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-129, Variation FA-2, for proper dimensions, tolerances, datums, etc.
2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm.
3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic
body size dimensions including mold mismatch.
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum b
dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion
and an adjacent lead is 0.07 mm.
Printed on recycled paper.
© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Companys standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmels products are not authorized for use as critical
components in life support devices or systems.
Atmel Headquarters Atmel Operations
Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80
e-mail
literature@atmel.com
Web Site
http://www.atmel.com
2401D–PLD–09/02 xM
ATMEL®is the registered trademark of Atmel; Logic Doublingis the trademark of Atmel.
Other terms and product names may be the trademarks of others.