BTS5016SDA
Smart High-Side Power Switch
PROFET™
One Channel
Datasheet, Rev. 1.1, Nov. 2008
Automotive Power
Datasheet 2 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Table of Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Pin Assignment BTS5016SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1 Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Output On-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Output Inductive Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3.1 Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Short circuit impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 Reverse Polarity Protection - Reversave™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4 Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.5 Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.6 Loss of Vbb Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table of Contents
PG-TO252-5-11
Type Package Marking
BTS5016SDA PG-TO252-5-11 5016SDA
Datasheet 3 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
PROFET™
One Channel
BTS5016SDA
1Overview
Features
Part of scalable product family
Load current sense
Reversave™
Very low standby current
Current controlled input pin
Improved electromagnetic compatibility (EMC)
Fast demagnetization of inductive loads
Stable behavior at under-voltage
Green Product (RoHS compliant)
AEC Qualified
The BTS5016SDA is a one channel high-side power switch in PG-TO252-5-11 package providing embedded
protective functions.
The power transistor is built by a N-channel vertical power MOSFET with charge pump. The design is based on
Smart SIPMOS chip on chip technology.
The BTS5016SDA has a current controlled input and offers a diagnostic feedback with load current sense and a
defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown.
Operating voltage Vbb(on) 5.5..20V
Minimum overvoltage protection VON(CL) 39 V
Maximum on-state resistance at Tj = 150 °C RDS(ON) 32 m
Nominal load current IL(nom) 5.5 A
Minimum current limitation IL4(SC) 45 A
Maximum stand-by current for whole device with load at Tj = 25 °C Ibb(OFF) A
Smart High-Side Power Switch
BTS5016SDA
Overview
Datasheet 4 Rev. 1.1, 2008-11-04
Protective Functions
Reversave™, channel switches on in case of reverse polarity
Reverse battery protection without external components
Short circuit protection with latch
Overload protection
Multi-step current limitation
Thermal shutdown with restart
Overvoltage protection (including load dump)
Loss of ground protection
Loss of Vbb protection (with external diode for charged inductive loads)
Electrostatic discharge protection (ESD)
Diagnostic Functions
Proportional load current sense (with defined fault signal in case of overload operation, overtemperature
shutdown and/or short circuit shutdown)
Open load detection in ON-state by load current sense
Applications
µC compatible high-side power switch with diagnostic feedback for 12 V grounded loads
All types of resistive, inductive and capacitive loads
Most suitable for loads with high inrush currents, so as lamps
Replaces electromechanical relays, fuses and discrete circuits
Datasheet 5 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Block Diagram and Terms
2 Block Diagram and Terms
2.1 Block Diagram
Figure 1 Block Diagram
2.2 Terms
Following figure shows all terms used in this data sheet.
Figure 2 Terms
logic IC base chip V
bb
IS OUT
IN
LOAD
ES D
R
IS
V
IS
V
IN
I
IN
I
L
Ov er v ie w . em f
T
driver
logic
gate control
&
charge pump
load current
sense
over
temperature clamp for
inductive load
current
limitation
forward voltage drop detection
voltage sensor
IIS
Rbb
Ter ms. em f
V
IN
OUT
V
IS
I
IS
V
bb
I
L
V
OUT
I
bb
IN VBB
IS
I
IN
V
bIN
V
bIS
V
ON
R
IN
R
IS
BTS5016SDA
Smart High-Side Power Switch
BTS5016SDA
Pin Configuration
Datasheet 6 Rev. 1.1, 2008-11-04
3 Pin Configuration
3.1 Pin Assignment BTS5016SDA
Figure 3 Pin Configuration
3.2 Pin Definitions and Functions
Pin Symbol Function
1OUT Output; output to the load; pin 1 and 5 must be externally shorted.1)
1) Not shorting all outputs will considerably increase the on-state resistance, reduce the peak current capability, the clamping
capability and decrease the current sense accuracy.
2IN Input; activates the power switch if shorted to ground.
3V
bb Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted.
4IS Sense Output; Diagnostic feedback; provides at normal operation a sense current
proportional to the load current; in case of overload, overtemperature and/or short
circuit a defined current is provided (see Table 1 “Truth Table” on Page 21).
5OUT Output; output to the load; pin 1 and 5 must be externally shorted.1)
TAB Vbb Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted.
V
bb
TAB
1
2
3
4
5
OUT
OUT
IN
IS
V
bb
TO252-5 .emf
Datasheet 7 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
General Product Characteristics
4 General Product Characteristics
4.1 Absolute Maximum Ratings
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings 1)
Tj= 25 °C (unless otherwise specified)
1) Not subject to production test, specified by design.
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Max.
Supply Voltages
4.1.1 Supply voltage Vbb -16 38 V
4.1.2 Supply voltage for short circuit protection
(single pulse)2)
2) Short circuit is defined as a combination of remaining resistances and inductances. See Figure 13.
Vbb(SC) 020V
4.1.3 Supply Voltage for Load Dump
protection3)
3) Load Dump is specified in ISO 7637, RI is the internal resistance of the Load Dump pulse generator.
Vbb(LD) –45VRI = 2 ,
RL = 1.5 ,
Logic Pins
4.1.4 Voltage at input pin VbIN -16 63 V
4.1.5 Current through input pin IIN -140 15 mA
4.1.6 Voltage at current sense pin VbIS -16 63 V
4.1.7 Current through sense pin IIS -140 15 mA
4.1.8 Input voltage slew rate 4)
4) Slew rate limitation can be achieved by means of using a series resistor for the small signal driver or in series in the input
path. A series resistor RIN in the input path is also required for reverse operation at Vbb-16V. See also Figure 14.
dVbIN/dt-20 20 V/µs
Power Stages
4.1.9 Load current 5)
5) Current limitation is a protection feature. Operation in current limitation is considered as “outside” normal operating range.
Protection features are not designed for continuous repetitive operation.
IL-ILx(SC) A–
4.1.10 Maximum energy dissipation per
channel (single pulse)
EAS -0.12JVbb = 12 V,
IL(0) = 20 A,
Tj(0) = 150 °C
Temperatures
4.1.11 Junction temperature Tj-40 150 °C
4.1.12 Storage temperature Tstg -55 150 °C
ESD Susceptibility
4.1.13 ESD susceptibility HBM
Pin 2 (IN)
Pin 4 (IS)
Pin1/5 (OUT)
VESD
-2
-2
-4
2
2
4
kV according to
EIA/JESD 22-A
114B
Smart High-Side Power Switch
BTS5016SDA
General Product Characteristics
Datasheet 8 Rev. 1.1, 2008-11-04
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
4.2 Thermal Resistance
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
4.2.1 Junction to Case1)
1) Not subject to production test, specified by design.
Rthjc ––1.3K/W
4.2.2 Junction to Ambient 1)
free air
device on PCB 2)
device on PCB3)
2) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm2 copper heatsinking area (one layer, 70 µm
thick) for Vbb connection. PCB is vertical without blown air.
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
Rthja
-
-
-
80
45
22
-
-
-
K/W
Datasheet 9 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Power Stages
5 Power Stages
The power stage is built by a N-channel vertical power MOSFET (DMOS) with charge pump.
5.1 Input Circuit
Figure 4 shows the input circuit of the BTS5016SDA. The current source to Vbb ensures that the device switches
off in case of open input pin. The zener diode protects the input circuit against ESD pulses.
Figure 4 Input Circuit
A high signal at the required external small signal transistor pulls the input pin to ground. A logic supply current IIN
is flowing and the power DMOS switches on with a dedicated slope, which is optimized in terms of EMC emission.
Figure 5 Switching a Load (resistive)
IN
Rbb
I
Vbb
Input.emf
VZ,IN
VIN
IIN
VbIN
V
OUT
t
SwitchOn.emf
t
I
IN
10%
25%
50%
90%
t
ON
t
OFF
(dV/dt)
ON
(d V/dt)
OFF
Smart High-Side Power Switch
BTS5016SDA
Power Stages
Datasheet 10 Rev. 1.1, 2008-11-04
5.2 Output On-State Resistance
The on-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature Tj. Figure 6
shows these dependencies for the typical on-state resistance. The voltage drop in reverse polarity mode is
described in Section 6.3.
Figure 6 Typical On-State Resistance
Figure 7 Typical Output Voltage Drop Limitation



  
5'621
9EE
9
W\S
Pȍ
,/ $






    
7M
Pȍ
&
W\S
5'621 ,/ $
Vbb = 12 V
Tj = 25°C






921
,/
W\S
921a,/
$
9
9219211/
Datasheet 11 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Power Stages
5.3 Output Inductive Clamp
When switching off inductive loads, the output voltage VOUT drops below ground potential due to the involved
inductance ( -diL/dt=-vL/L ; -VOUT -VL ).
Figure 8 Output Clamp
To prevent destruction of the device, there is a voltage clamp mechanism implemented that keeps the voltage drop
across the device at a certain level (VON(CL)). See Figure 8 and Figure 9 for details. The maximum allowed load
inductance is limited.
Figure 9 Switching an Inductance
5.3.1 Maximum Load Inductance
While de-energizing inductive loads, energy has to be dissipated in the BTS5016SDA. This energy can be
calculated via the following equation:
In the event of de-energizing very low ohmic inductances (RL0) the following, simplified equation can be used:
Out put Clam p . emf
OUT
V
bb
VBB
L,
R
L
V
OUT
I
L
V
ON
V
OUT
I nduct iveLoad. emf
t
I
L
t
V
OUT(CL)
V
bb
ON OFF
V
ON(CL)
EV
ON CL()
Vbb VON CL()
RL
------------------------------------ ln1
RLIL
VON(CL) Vbb
-----------------------------------+


IL
+
L
RL
------
⋅⋅=
E1
2
---LIL
2VON(CL)
VON(CL) Vbb
-----------------------------------
=
Smart High-Side Power Switch
BTS5016SDA
Power Stages
Datasheet 12 Rev. 1.1, 2008-11-04
The energy, which is converted into heat, is limited by the thermal design of the component. For given starting
currents the maximum allowed inductance is therefore limited. See Figure 10 for the maximum allowed
inductance at Vbb=12V.
Figure 10 Maximum load inductance for single pulse, Tj(0) 150°C.



 
$
/
,/
P+
Tj(o) 150°C
Vbb = 12 V
Datasheet 13 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Power Stages
5.4 Electrical Characteristics
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
General
5.4.1 Operating voltage 1) Vbb(on) 5.5 - 20 V VIN = 0 V
5.4.2 Undervoltage shutdown 2) VbIN(u) -2.53.5VTj = 25 °C
5.4.3 Undervoltage restart of charge
pump
Vbb(ucp) -45.5V
5.4.4 Operating current IIN -1.42.2mA
5.4.5 Stand-by current
Tj = -40 °C, Tj = 25 °C
Tj = 150 °C
Ibb(OFF)
-
-
3
9
6
16
µA IIN = 0 A
Input characteristics
5.4.6 Input current for
turn-on
IIN(on) -1.42.2mAVbIN Vbb(ucp) -VIN
5.4.7 Input current for
turn-off
IIN(off) --30µA
Output characteristics
5.4.8 On-state resistance
Tj=25°C
Tj=150°C
Vbb=5.5V, Tj=25°C
Vbb=5.5V, Tj=150°C
RDS(ON)
-
-
-
-
16
28
21
37
-
32
-
42
mVIN=0V, IL=7.5A,
(Tab to pin 1 and 5)
5.4.9 Output voltage drop limitation at
small load currents
VON(NL) -3065mV
5.4.10 Nominal load current
(Tab to pin1 & 5) 3) 4)
IL(nom) 5.5 6.5 - A Ta = 85 °C,
VON 0.5 V,
Tj150 °C
5.4.11 Output clamp VON(CL) 39 42 - V IL = 40mA,
Tj = 25 °C
5.4.12 Inverse current output voltage
drop 2) 5)
(Tab to pin 1 and 5)
Tj = 25 °C
Tj = 150 °C
-VON(inv)
-
-
800
600
-
-
mV IL = -7.5 A,
RIS = 1 k
Timings
5.4.13 Turn-on time to
90% VOUT
tON - 250 500 µs RL = 2.2
5.4.14 Turn-off time to
10% VOUT
tOFF - 250 500 µs RL = 2.2
5.4.15 Turn-on delay after inverse
operation 2)
td(inv) -1-msVbb >VOUT,
VIN(inv) =
VIN(fwd) =0V
Smart High-Side Power Switch
BTS5016SDA
Power Stages
Datasheet 14 Rev. 1.1, 2008-11-04
Note: Characteristics show the deviation of parameter at the given supply voltage and junction temperature.
Typical values show the typical parameters expected from manufacturing.
5.4.16 Slew rate On
25% to 50% VOUT
(dV/ dt)ON -0.30.6V/µsRL = 2.2 ,
5.4.17 Slew rate Off
50% to 25% VOUT
-(dV/ dt)OFF -0.30.6V/µsRL = 2.2 ,
1) Please mind the limitations of the embedded protection functions. See Chapter 4.1 and Chapter 6 for details.
2) Not subject to production test, specified by design
3) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm2 copper heatsinking area (one layer, 70 µm
thick) for Vbb connection. PCB is vertical without blown air.
4) Not subject to production test, parameters are calculated from RDS(ON) and Rth
5) During inverse operation (IL<0A, VbIN > 0V), a current through the intrinsic body diode causing a voltage drop of VON(inv)
results in a delayed switch on with a time delay td(inv) after the transition from inverse to forward operation. A sense current
IIS(fault) can be provided by the pin IS until standard forward operation is reached.
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
Datasheet 15 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Protection Functions
6 Protection Functions
The device provides embedded protective functions. Integrated protection functions are designed to prevent IC
destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal
operating range. Protection functions are neither designed for continuous nor repetitive operation.
6.1 Overload Protection
The load current IL is limited by the device itself in case of overload or short circuit to ground. There are multiple
steps of current limitation ILx(SC) which are selected automatically depending on the voltage drop VON across the
power DMOS. Please note that the voltage at the OUT pin is Vbb -VON. Figure 11 shows the dependency for a
typical device.
Figure 11 Typical Current Limitation
Depending on the severity of the short condition as well as on the battery voltage the resulting voltage drop across
the device varies.
Whenever the resulting voltage drop VON exceeds the short circuit detection threshold VON(SC), the device will
switch off immediately and latch until being reset via the input. The VON(SC) detection functionality is activated,
when VbIN > 10V typ. and the blanking time td(SC1) expired after switch on.
In the event that either the short circuit detection via VON(SC) is not activated or that the on chip temperature sensor
senses overtemperature before the blanking time td(SC1) expired, the device switches off resulting from
overtemperature detection. After cooling down with thermal hysteresis, the device switches on again. The device
will react as during normal switch on triggered by the input signal. Please refer to Figure 12 and Figure 19 for
details.





921
,/6&
9
$
9216&
W\S
Tj = 25°C
Smart High-Side Power Switch
BTS5016SDA
Protection Functions
Datasheet 16 Rev. 1.1, 2008-11-04
Figure 12 Overload Behavior
6.2 Short circuit impedance
The capability to handle single short circuit events depends on the battery voltage as well as on the primary and
secondary short impedance. Figure 13 outlines allowable combinations for a single short circuit event of
maximum, secondary inductance for given secondary resistance.
Figure 13 Short circuit
V_ON_detect .emf
t
V
ON
t
I
L
I
IN
t
t
m
I
Lx(SC)
t
d(SC1)
V
ONx
> V
ON(SC)
Τ
j
I
L
t
thermal hysteresis
t
I
IN
Over_Temp.emf
t
Overtemperature detectionVON(SC) detection
short_circuit.emf
V
bb
IS
IN
PROFET
OUT
V
bb
10m
H
R
SC
L
SC
LOAD
SHORT
CIRCUIT





    
P
/6&
56&
+
9EE 999
Datasheet 17 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Protection Functions
6.3 Reverse Polarity Protection - Reversave™
The device can not block a current flow in reverse polarity condition. In order to minimize power dissipation, the
device offers Reversave™ functionality. In reverse polarity condition the channel will be switched on provided a
sufficient gate to source voltage is generated VGS VRbb. Please refer to Figure 14 for details.
Figure 14 Reverse battery protection
Additional power is dissipated by the integrated Rbb resistor. Use following formula for estimation of overall power
dissipation Pdiss(rev) in reverse polarity mode.
For reverse battery voltages up to Vbb < 16V the pin IN or the pin IS should be low ohmic connected to signal
ground. This can be achieved e.g. by using a small signal diode D in parallel to the input switch or by using a small
signal MOSFET driver. For reverse battery voltages higher then Vbb = 16V an additional resistor RIN is
recommended. The overall current through Rbb should not be above 80 mA.
Note: No protection mechanism is active during reverse polarity. The IC logic is not functional.
Reverse.emf
IN -I
L
LOAD
R
bb
V
bb
R
IN
Logic
IS
R
IS
-V
bb
-I
IN
power groundsignal ground
-I
IS
I
Rbb
D
Pdiss(rev) RON(rev) IL
2
Rbb IRbb
2
+
1
RIN
---------1
RIS
--------
+0.08A
Vbb 12V
-------------------------------=
Smart High-Side Power Switch
BTS5016SDA
Protection Functions
Datasheet 18 Rev. 1.1, 2008-11-04
6.4 Overvoltage Protection
Beside the output clamp for the power stage as described in Section 5.3 there is a clamp mechanism
implemented for all logic pins. See Figure 15 for details.
Figure 15 Overvoltage Protection
6.5 Loss of Ground Protection
In case of complete loss of the device ground connections the BTS5016SDA securely changes to or remains in
off state.
6.6 Loss of Vbb Protection
In case of complete loss of Vbb the BTS5016SDA remains in off state.
In case of loss of Vbb connection with charged inductive loads a current path with load current capability has to be
provided, to demagnetize the charged inductances. It is recommended to use a diode, a Z-diode, or a varistor
(VZL +VD<30V or VZb +VD<16V if RIN = 0). For higher clamp voltages currents through IN and IS have to be
limited to -120 mA. Please refer to Figure 16 for details.
Figure 16 Loss of Vbb
OverVolt age .emf
IN
R
bb
V
bb
Logic
V
Z,IS
V
Z,IN
IS OUT
IN
R
bb
V
bb
Logic
IS
V
bb
R
IS
R
IN
V
D
V
ZL
inductive
LOAD
Vbb_disconnect _A. emf
IN
V
bb
Lo g ic
IS
V
bb
R
IS
R
IN
inductive
LOAD
V
D
V
Zb
Vbb_disconnect _B. emf
R
bb
Datasheet 19 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Protection Functions
6.7 Electrical Characteristics
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
Overload Protection
6.7.1 Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL4(SC)
-
-
45
80
75
60
110
-
-
AVON = 4V,
(Tab to pin 1 and 5)
6.7.2 Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL6(SC)
-
-
32
75
65
55
100
-
-
AVON = 6 V,
(Tab to pin 1 and 5)
6.7.3 Load current limitation 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL12(SC)
-
-
26
65
55
45
90
-
-
AVON = 12 V,
tm = 170 µs,
(Tab to pin 1 and 5)
6.7.4 Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL18(SC)
-
-
18
40
35
30
55
-
-
AVON = 18 V,
(Tab to pin 1 and 5)
6.7.5 Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL24(SC)
-
-
10
20
20
15
35
-
-
AVON = 24 V,
(Tab to pin 1 and 5)
6.7.6 Load current limitation1) 2)
Tj = -40 °C
Tj = +25 °C
Tj = +150 °C
IL30(SC)
-
-
-
12
12
12
-
-
-
AVON = 30 V,
(Tab to pin 1 and 5)
6.7.7 Short circuit shutdown detection
voltage 1)
VON(SC) 2.5 3.5 4.5 V VbIN > 10 V typ.,
Tj = 25 °C
6.7.8 Short circuit shutdown delay after
input current pos. slope 3)
td(SC1) 200 650 1200 µs VON > VON(SC)
6.7.9 Thermal shut down temperature Tj(SC) 150 165
1)
C -
6.7.10 Thermal hysteresis 1) Tj-10-K-
Reverse Polarity
6.7.11 On-State resistance in case of
reverse polarity
Vbb =-8V, Tj=2C
1)
Vbb =-8V, Tj= 150 °C 1)
Vbb =-12V, Tj=2C
Vbb =-12V, Tj=15C
RON(rev)
-
-
-
-
19
32
18
31
-
44
-
40
mVIN = 0 V,
IL = -7.5 A,
RIS = 1 kΩ,
(pin 1 and 5 to TAB)
6.7.12 Integrated resistor in Vbb line Rbb -100150Tj = 25 °C
Smart High-Side Power Switch
BTS5016SDA
Protection Functions
Datasheet 20 Rev. 1.1, 2008-11-04
Overvoltage
6.7.13 Overvoltage protection VZVIbb = 15 mA
Input pin VZ,IN 63 - - V
Sense pin VZ,IS 63 - - V
1) Not subject to production test, specified by design
2) Short circuit current limit for max. duration of td(SC1), prior to shutdown, see also Figure 12.
3) min. value valid only if input “off-signal” time exceeds 30 µs
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
Datasheet 21 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Diagnosis
7 Diagnosis
For diagnosis purpose, the BTS5016SDA provides an IntelliSense signal at the pin IS.
The pin IS provides during normal operation a sense current, which is proportional to the load current as long as
VbIS > 5V. The ratio of the output current is defined as kILIS =IL/IIS. During switch-on no current is provided, until
the forward voltage drops below VON < 1V typ. The output sense current is limited to IIS(lim).
The pin IS provides in case of any fault conditions a defined fault current IIS(fault) as long as VbIS >8V
. Fault
conditions are overcurrent (VON > 1V typ.), current limit or overtemperature switch off.
The pin IS provides no current during open load in ON and de-energisation of inductive loads.
Figure 17 Block Diagram: Diagnosis
The accuracy of the provided current sense ratio (kILIS =IL/IIS) depends on the load current. Please refer to
Figure 18 for details. A typical resistor RIS of 1 kis recommended.
Sense. emf
Rbb
VIS
Vb,IS
IIS(fault)
Vbb
RIS
IIS
IS
VZ,IS
Table 1 Truth Table
Parameter Input Current Level Output Level Current Sense IIS
Normal operation L1)
H1)
L
H
0 (IIS(LL))
nominal
Overload L
H
L
H
0 (IIS(LL))
IIS(fault)
Short circuit to GND L
H
L
L
0 (IIS(LL))
IIS(fault)
Overtemperature L
H
L
L
0 (IIS(LL))
IIS(fault)
Short circuit to Vbb L
H
H
H
0 (IIS(LL))
< nominal2)
Open load L
H
Z1)
H
0 (IIS(LL))
0 (IIS(LH))
1) H = “High” Level, L = “Low” Level, Z = high impedance, potential depends on external circuit
2) Low ohmic short to Vbb may reduce the output current IL and therefore also the sense current IIS.
Smart High-Side Power Switch
BTS5016SDA
Diagnosis
Datasheet 22 Rev. 1.1, 2008-11-04
Figure 18 Current sense ratio kILIS
1)
Details about timings between the diagnosis signal IIS, the forward voltage drop VON and the load current IL in ON-
state can be found in Figure 19.
Note: During operation at low load current and at activated forward voltage drop limitation the “two level control”
of VON(NL) can cause a sense current ripple synchronous to the “two level control” of VON(NL) . The ripple
frequency increases at reduced load currents.
Figure 19 Timing of Diagnosis Signal in ON-state
1) The curves show the behavior based on characterization data. The marked points are specified in this Datasheet in
Section 7.1 (Position 7.1.1).





    
PD[
W\S
PLQ
$
N,/,6
,/
SwitchOn.emf
V
ON
I
IN
tV
ON
<1V typ.
I
L1
I
L2
I
IS1
I
IS2
t
son(IS)
t
slc(IS)
I
L
I
IS
0.9*I
IS1
I
I S(f ault )
V
ON
>1V typ.
I
IS(lim)
I
IS(LL)
t
t
t
I
IN
V
ON
tV
ON
>V
ON(SC)
over-temperature
I
Lx(SC)
t
delay(fault)
I
L
I
IS
I
IS(fault)
t
t
t
I
L
V
ON
<1V typ.
I
I S(f ault )
shortnormal operation
Datasheet 23 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Diagnosis
7.1 Electrical Characteristics
Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
Load Current Sense
7.1.1 Current sense ratio, static on-
condition
kILIS -10-kVIN = 0 V,
IIS < IIS(lim)
IL=30A
IL=7.5A
IL=2.5A
IL=0.5A
8.7
8.0
7.2
4.8
10
10
10
12
11.5
12.2
14
21.5
IIN = 0 (e.g. during de energizing of
inductive loads) 1)
1) Not subject to production test, specified by design
disabled - -
7.1.2 Sense saturation current 1) IIS(lim) 4.067.5mAVON < 1 V, typ.
7.1.3 Sense current under fault
conditions
IIS(fault) 4.0 5.2 7.5 mA VON > 1 V, typ.
7.1.4 Current sense leakage current IIS(LL) –0.10.5µAIIN = 0
7.1.5 Current sense offset current IIS(LH) –0.11µAVIN = 0, IL 0
7.1.6 Current sense settling time to 90%
IIS_stat.
1)
tson(IS) –350700µsIL=0 20A
7.1.7 Current sense settling time to 90%
IIS_stat.
1)
tslc(IS) –50100µsIL=10 20A
7.1.8 Fault-Sense signal delay after input
current positive slope
tdelay(fault) 200 650 1200 µs VON > 1 V, typ.
Smart High-Side Power Switch
BTS5016SDA
Package Outlines
Datasheet 24 Rev. 1.1, 2008-11-04
8 Package Outlines
Figure 20 PG-TO252-5-11
Green Product
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
You can find all of our packages, sorts of packing and others in our
Infineon Internet Page “Products”: http://www.infineon.com/packages.Dimensions in mm
Datasheet 25 Rev. 1.1, 2008-11-04
Smart High-Side Power Switch
BTS5016SDA
Revision History
9 Revision History
Version Date Changes
Datasheet
Rev. 1.1
2008-11-04 Page 13: Parameter IIN(off) updated from maximum 10µA to maximum 30µA.
Datasheet
Rev. 1.0
2008-01-22 Initial version of datasheet
Edition 2008-11-04
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
Published by Infineon Technologies AG
www.infineon.com