Kinetis K22F 256 KB Flash
120 MHz ARM® Cortex®-M4-Based Microcontroller with FPU
The Kinetis K22 product family members are optimized for cost-
sensitive applications requiring low-power, USB connectivity,
high peripheral integration and processing efficiency with floating
point unit. These devices share the comprehensive enablement
and scalability of the Kinetis family.
This product offers:
Run power consumption down to 153 µA/MHz and static
power consumption down to 2.6 µA with full state retention
and 6 µs wakeup. Lowest static mode down to 120 nA
USB LS/FS OTG 2.0 with embedded 3.3 V, 120 mA LDO
voltage regulator. USB FS device crystal-less functionality.
Performance
120 MHz ARM Cortex-M4 core with DSP instructions
delivering 1.25 Dhrystone MIPS per MHz
Memories and memory interfaces
256 KB of embedded flash and 48 KB of RAM
Serial programming interface (EzPort)
Preprogrammed Kinetis flashloader for one-time, in-
system factory programming
System peripherals
Flexible low-power modes, multiple wake up sources
16-channel DMA controller
Independent external and software watchdog monitor
Clocks
Two crystal oscillators: 32 kHz (RTC) and 32-40 kHz or
3-32 MHz
Three internal oscillators: 32 kHz, 4 MHz, and 48 MHz
Multi-purpose clock generator with PLL and FLL
Security and integrity modules
Hardware CRC module
128-bit unique identification (ID) number per chip
Hardware random-number generator
Flash access control to protect proprietary software
Human-machine interface
Up to 70 general-purpose I/O (GPIO)
Analog modules
Two 16-bit SAR ADCs (1.2 MS/s in 12bit mode)
One 12-bit DAC
Two analog comparators (CMP) with 6- bit DAC
Accurate internal voltage reference
Communication interfaces
USB LS/FS OTG 2.0 with on-chip transceiver and
USB LDO voltage regulator
USB full-speed device crystal-less operation
Two SPI modules
Three UART modules and one low-power UART
Two I2C modules: Support for up to 1 Mbps
operation
I2S module
Timers
One 8-channel general purpose/ PWM timer
Two 2-channel general purpose timers with
quadrature decoder functionality
Periodic interrupt timers
16-bit low-power timer
Real-time clock with independent power domain
Programmable delay block
Operating Characteristics
Voltage range (including flash writes): 1.71 to 3.6 V
Temperature range (ambient): -40 to 105°C
MK22FN256VDC12
MK22FN256VLL12
MK22FN256VMP12
MK22FN256VLH12
121 XFBGA (DC)
8 x 8 x 0.5 Pitch 0.65
mm
100 LQFP (LL)
14 x 14 x 1.4 Pitch 0.5
mm
64 MAPBGA (MP)
5 x 5 x 1.2 Pitch 0.5
mm
64 LQFP (LH)
10 x 10 x 1.4 Pitch 0.5
mm
NXP Semiconductors K22P121M120SF8
Data Sheet: Technical Data Rev. 7, 08/2016
NXP reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
Ordering Information
Part Number Memory Number of GPIOs
Flash (KB) SRAM (KB)
MK22FN256VDC12 256 48 70
MK22FN256VLL12 256 48 66
MK22FN256VMP12 256 48 40
MK22FN256VLH12 256 48 40
Device Revision Number
Device Mask Set Number SIM_SDID[REVID] JTAG ID Register[PRN]
0N51M 0001 0001
Related Resources
Type Description Resource
Selector
Guide
The NXP Solution Advisor is a web-based tool that features interactive
application wizards and a dynamic product selector
KINETISKMCUSELGD
Product Brief The Product Brief contains concise overview/summary information to
enable quick evaluation of a device for design suitability.
K22FPB
Reference
Manual
The Reference Manual contains a comprehensive description of the
structure and function (operation) of a device.
K22P121M120SF8RM
Data Sheet The Data Sheet is this document. It includes electrical characteristics
and signal connections.
K22P121M120SF8
Chip Errata The chip mask set Errata provides additional or corrective information for
a particular device mask set.
KINETIS_K_xN51M 1
Package
drawing
Package dimensions are provided by part number:
MK22FN256VDC12
MK22FN256VLL12
MK22FN256VMP12
MK22FN256VLH12
Package drawing:
98ASA00595D
98ASS23308W
98ASA00420D
98ASS23234W
1. To find the associated resource, go to nxp.com and perform a search using this term with the x replaced by the revision
of the device you are using.
Figure 1 shows the functional modules in the chip.
2Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Memories and Memory Interfaces
Program
(256 KB)
RAM
CRC
Programmable
Analog Timers Communication InterfacesSecurity
and Integrity
x1
Clocks
Frequency-
Core
Debug
interfaces DSP
Interrupt
controller
Comparator
x2
16-bit
timer
Human-Machine
Interface (HMI)
Up to
System
DMA (16ch)
Low-leakage
wakeup locked loop
Serial
programming
interface
(EzPort)
reference
Internal
clocks
delay block
timers
interrupt
Periodic
real-time
Independent
clock
oscillators
Low/high
frequency
UART
x3
®
Cortex™-M4ARM
FPU
voltage ref
Phase-
locked loop
USB voltage
regulator
USB OTG
LS/FS
USB LS/FS
transceiver
IS
2
x2
IC
2
Timers
x1 (8ch)
ADC x2
SPI
x2
LPUART
High
performance low-power
70 GPIOs
(48 KB)
flash
Internal
watchdogs
and external
with 6-bit DAC
12-bit DAC
x2 (2ch)
16-bit
Random-
number
generator
Flash access
control
Figure 1. Functional block diagram
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 3
NXP Semiconductors
Table of Contents
1 Ratings....................................................................................5
1.1 Thermal handling ratings................................................. 5
1.2 Moisture handling ratings................................................ 5
1.3 ESD handling ratings.......................................................5
1.4 Voltage and current operating ratings............................. 5
2 General................................................................................... 6
2.1 AC electrical characteristics.............................................6
2.2 Nonswitching electrical specifications..............................6
2.2.1 Voltage and current operating requirements....... 6
2.2.2 LVD and POR operating requirements................7
2.2.3 Voltage and current operating behaviors.............8
2.2.4 Power mode transition operating behaviors........ 9
2.2.5 Power consumption operating behaviors............ 10
2.2.6 EMC radiated emissions operating behaviors.....17
2.2.7 Designing with radiated emissions in mind..........18
2.2.8 Capacitance attributes.........................................18
2.3 Switching specifications...................................................18
2.3.1 Device clock specifications..................................18
2.3.2 General switching specifications......................... 19
2.4 Thermal specifications.....................................................20
2.4.1 Thermal operating requirements......................... 20
2.4.2 Thermal attributes................................................20
3 Peripheral operating requirements and behaviors.................. 21
3.1 Core modules.................................................................. 21
3.1.1 SWD electricals .................................................. 21
3.1.2 JTAG electricals.................................................. 22
3.2 System modules.............................................................. 25
3.3 Clock modules................................................................. 25
3.3.1 MCG specifications..............................................25
3.3.2 IRC48M specifications.........................................28
3.3.3 Oscillator electrical specifications........................28
3.3.4 32 kHz oscillator electrical characteristics...........31
3.4 Memories and memory interfaces................................... 31
3.4.1 Flash electrical specifications..............................31
3.4.2 EzPort switching specifications........................... 33
3.5 Security and integrity modules........................................ 34
3.6 Analog............................................................................. 34
3.6.1 ADC electrical specifications............................... 34
3.6.2 CMP and 6-bit DAC electrical specifications....... 38
3.6.3 12-bit DAC electrical characteristics....................41
3.6.4 Voltage reference electrical specifications.......... 44
3.7 Timers..............................................................................45
3.8 Communication interfaces............................................... 45
3.8.1 USB electrical specifications............................... 46
3.8.2 USB VREG electrical specifications.................... 46
3.8.3 DSPI switching specifications (limited voltage
range).................................................................. 47
3.8.4 DSPI switching specifications (full voltage
range).................................................................. 49
3.8.5 Inter-Integrated Circuit Interface (I2C) timing...... 50
3.8.6 UART switching specifications............................ 52
3.8.7 I2S/SAI switching specifications..........................52
4 Dimensions............................................................................. 58
4.1 Obtaining package dimensions....................................... 58
5 Pinout......................................................................................59
5.1 K22F Signal Multiplexing and Pin Assignments.............. 59
5.2 Recommended connection for unused analog and
digital pins........................................................................64
5.3 K22F Pinouts................................................................... 65
6 Part identification.....................................................................69
6.1 Description.......................................................................69
6.2 Format............................................................................. 69
6.3 Fields............................................................................... 70
6.4 Example...........................................................................70
6.5 121-pin XFBGA part marking.......................................... 71
6.6 64-pin MAPBGA part marking......................................... 71
7 Terminology and guidelines.................................................... 71
7.1 Definitions........................................................................71
7.2 Examples.........................................................................72
7.3 Typical-value conditions.................................................. 72
7.4 Relationship between ratings and operating
requirements....................................................................73
7.5 Guidelines for ratings and operating requirements..........73
8 Revision History...................................................................... 73
4Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
1 Ratings
1.1 Thermal handling ratings
Symbol Description Min. Max. Unit Notes
TSTG Storage temperature –55 150 °C 1
TSDR Solder temperature, lead-free 260 °C 2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.2 Moisture handling ratings
Symbol Description Min. Max. Unit Notes
MSL Moisture sensitivity level 3 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.3 ESD handling ratings
Symbol Description Min. Max. Unit Notes
VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1
VCDM Electrostatic discharge voltage, charged-device
model
-500 +500 V 2
ILAT Latch-up current at ambient temperature of 105°C -100 +100 mA 3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
1.4 Voltage and current operating ratings
Ratings
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 5
NXP Semiconductors
Symbol Description Min. Max. Unit
VDD Digital supply voltage –0.3 3.8 V
IDD Digital supply current 158 mA
VDIO Digital input voltage –0.3 VDD + 0.3 V
VAIO Analog1–0.3 VDD + 0.3 V
IDMaximum current single pin limit (applies to all digital pins) –25 25 mA
VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V
VUSB0_DP USB0_DP input voltage –0.3 3.63 V
VUSB0_DM USB0_DM input voltage –0.3 3.63 V
VREGIN USB regulator input –0.3 6.0 V
VBAT RTC battery supply voltage –0.3 3.8 V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
2 General
2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
80%
20%
50%
VIL
Input Signal
VIH
Fall Time
High
Low
Rise Time
Midpoint1
The midpoint is VIL + (VIH - VIL) / 2
Figure 2. Input signal measurement reference
2.2 Nonswitching electrical specifications
General
6Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
2.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol Description Min. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
VDDA Analog supply voltage 1.71 3.6 V
VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V
VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V
VBAT RTC battery supply voltage 1.71 3.6 V
VIH Input high voltage
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.7 × VDD
0.75 × VDD
V
V
VIL Input low voltage
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.35 × VDD
0.3 × VDD
V
V
VHYS Input hysteresis 0.06 × VDD V
IICIO Analog and I/O pin DC injection current — single pin
VIN < VSS-0.3V (Negative current injection) -3 mA
1
IICcont Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
Negative current injection -25 mA
VODPU Open drain pullup voltage level VDD VDD V2
VRAM VDD voltage required to retain RAM 1.2 V
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT V
1. All analog and I/O pins are internally clamped to VSS through ESD protection diodes. If VIN is less than VIO_MIN or
greater than VIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is
calculated as R=(VIO_MIN-VIN)/|IICIO|.
2. Open drain outputs must be pulled to VDD.
2.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V
VLVDH Falling low-voltage detect threshold — high
range (LVDV=01)
2.48 2.56 2.64 V
VLVW1H
Low-voltage warning thresholds — high range
Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
1
Table continues on the next page...
General
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 7
NXP Semiconductors
Table 2. VDD supply LVD and POR operating requirements (continued)
Symbol Description Min. Typ. Max. Unit Notes
VLVW2H
VLVW3H
VLVW4H
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
2.72
2.82
2.92
2.80
2.90
3.00
2.88
2.98
3.08
V
V
V
VHYSH Low-voltage inhibit reset/recover hysteresis —
high range
80 mV
VLVDL Falling low-voltage detect threshold — low
range (LVDV=00)
1.54 1.60 1.66 V
VLVW1L
VLVW2L
VLVW3L
VLVW4L
Low-voltage warning thresholds — low range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
1.74
1.84
1.94
2.04
1.80
1.90
2.00
2.10
1.86
1.96
2.06
2.16
V
V
V
V
1
VHYSL Low-voltage inhibit reset/recover hysteresis —
low range
60 mV
VBG Bandgap voltage reference 0.97 1.00 1.03 V
tLPO Internal low power oscillator period — factory
trimmed
900 1000 1100 μs
1. Rising threshold is the sum of falling threshold and hysteresis voltage
Table 3. VBAT power operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR_VBAT Falling VBAT supply POR detect voltage 0.8 1.1 1.5 V
2.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
VOH Output high voltage — Normal drive pad except
RESET_B
2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA VDD – 0.5 V 1
1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA VDD – 0.5 V
VOH Output high voltage — High drive pad except
RESET_B
2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA VDD – 0.5 V 1
1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA VDD – 0.5 V
IOHT Output high current total for all ports 100 mA
Table continues on the next page...
General
8Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Table 4. Voltage and current operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
VOL Output low voltage — Normal drive pad except
RESET_B
2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA 0.5 V 1
1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA 0.5 V
VOL Output low voltage — High drive pad except
RESET_B
2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA 0.5 V 1
1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA 0.5 V
VOL Output low voltage — RESET_B
2.7 V ≤ VDD ≤ 3.6 V, IOL = 3 mA 0.5 V
1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA 0.5 V
IOLT Output low current total for all ports 100 mA
IIN Input leakage current (per pin) for full
temperature range
All pins other than high drive port pins 0.002 0.5 μA 1, 2
High drive port pins 0.004 0.5 μA
IIN Input leakage current (total all pins) for full
temperature range
1.0 μA 2
RPU Internal pullup resistors 20 50 3
RPD Internal pulldown resistors 20 50 4
1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7 I/O have both high drive and normal drive capability
selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
2. Measured at VDD=3.6V
3. Measured at VDD supply voltage = VDD min and Vinput = VSS
4. Measured at VDD supply voltage = VDD min and Vinput = VDD
2.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSxRUN recovery times in the following
table assume this clock configuration:
CPU and system clocks = 80 MHz
Bus clock = 40 MHz
Flash clock = 20 MHz
MCG mode: FEI
Table 5. Power mode transition operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
tPOR After a POR event, amount of time from the
point VDD reaches 1.71 V to execution of the
300 μs 1
Table continues on the next page...
General
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 9
NXP Semiconductors
Table 5. Power mode transition operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
first instruction across the operating
temperature range of the chip.
VLLS0 RUN
140
μs
VLLS1 RUN
140
μs
VLLS2 RUN
80
μs
VLLS3 RUN
80
μs
LLS2 RUN
6
μs
LLS3 RUN
6
μs
VLPS RUN
5.7
μs
STOP RUN
5.7
μs
1. Normal boot (FTFA_OPT[LPBOOT]=1)
2.2.5 Power consumption operating behaviors
The current parameters in the table below are derived from code executing a while(1)
loop from flash, unless otherwise noted.
The IDD typical values represent the statistical mean at 25°C, and the IDD maximum
values for RUN, WAIT, VLPR, and VLPW represent data collected at 125°C junction
temperature unless otherwise noted. The maximum values represent characterized
results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).
Table 6. Power consumption operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA Analog supply current See note mA 1
IDD_HSRUN High Speed Run mode current - all peripheral
clocks disabled, CoreMark benchmark code
executing from flash
@ 1.8V 25.66 26.35 mA 2, 3, 4
Table continues on the next page...
General
10 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
@ 3.0V 25.75 26.44 mA
IDD_HSRUN High Speed Run mode current - all peripheral
clocks disabled, code executing from flash
@ 1.8V 23.6 24.29 mA 2
@ 3.0V 23.7 24.39 mA
IDD_HSRUN High Speed Run mode current — all peripheral
clocks enabled, code executing from flash
@ 1.8V 31.9 32.59 mA 5
@ 3.0V 32.0 32.69 mA
IDD_RUN Run mode current in Compute operation —
CoreMark benchmark code executing from flash
@ 1.8V 15.8 16.49 mA 3, 4, 6
@ 3.0V 15.8 16.49 mA
IDD_RUN Run mode current in Compute operation —
code executing from flash
@ 1.8V 14.00 15.50 mA 6
@ 3.0V 14.00 15.69 mA
IDD_RUN Run mode current — all peripheral clocks
disabled, code executing from flash
@ 1.8V 15.3 15.99 mA 7
@ 3.0V 15.4 16.09 mA
IDD_RUN Run mode current — all peripheral clocks
enabled, code executing from flash
@ 1.8V 20.4 21.09 mA 8
@ 3.0V
@ 25°C 20.5 21.19 mA
@ 70°C 20.5 21.19 mA
@ 85°C 20.5 21.19 mA
@ 105°C 21.4 22.09 mA
IDD_RUN Run mode current — Compute operation, code
executing from flash
@ 1.8V 14.0 14.69 mA 9
@ 3.0V
@ 25°C 14.0 14.69 mA
@ 70°C 14.0 14.69 mA
@ 85°C 14.0 14.69 mA
@ 105°C 15.0 15.69 mA
IDD_WAIT Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
8.1 8.79 mA 7
Table continues on the next page...
General
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 11
NXP Semiconductors
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
IDD_WAIT Wait mode reduced frequency current at 3.0 V
— all peripheral clocks disabled
4.4 5.09 mA 10
IDD_VLPR Very-low-power run mode current in Compute
operation — CoreMark benchmark code
executing from flash
@ 1.8V 0.70 0.88 mA 3, 4, 11
@ 3.0V 0.70 0.88 mA
IDD_VLPR Very-low-power run mode current in Compute
operation, code executing from flash
0.61 0.79
@ 1.8V mA 11
@ 3.0V 0.61 0.79 mA
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
0.68 0.87 mA 12
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
1.10 1.28 mA 13
IDD_VLPW Very-low-power wait mode current at 3.0 V — all
peripheral clocks disabled
0.38 0.57 mA 14
IDD_STOP Stop mode current at 3.0 V
@ -40°C to 25°C 0.27 0.35 mA
@ 70°C 0.32 0.47 mA
@ 85°C 0.32 0.51 mA
@ 105°C 0.45 0.77 mA
IDD_VLPS Very-low-power stop mode current at 3.0 V
@ -40°C to 25°C 4.5 12.00 µA
@ 70°C 16.8 42.40 µA
@ 85°C 28.9 73.45 µA
@ 105°C 60.8 141.90 µA
IDD_LLS3 Low leakage stop mode 3 current at 3.0 V
@ -40°C to 25°C 2.6 3.75 µA
@ 70°C 6.6 12.00 µA
@ 85°C 10.5 17.25 µA
@ 105°C 21.0 40.70 µA
IDD_LLS2 Low leakage stop mode 2 current at 3.0 V
@ -40°C to 25°C 2.4 3.40 µA
@ 70°C 5.3 8.90 µA
@ 85°C 5.1 10.05 µA
@ 105°C 15.9 28.85 µA
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
@ -40°C to 25°C 1.9 2.30 µA
@ 70°C 4.8 8.10 µA
@ 85°C 7.6 11.30 µA
Table continues on the next page...
General
12 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
@ 105°C 15.3 27.65 µA
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
@ -40°C to 25°C 1.7 2.10 µA
@ 70°C 3.4 4.85 µA
@ 85°C 5.1 8.80 µA
@ 105°C 9.8 15.70 µA
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
@ -40°C to 25°C 0.71 0.96 µA
@ 70°C 1.79 2.10 µA
@ 85°C 2.9 4.70 µA
@ 105°C 5.7 8.10 µA
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
@ -40°C to 25°C 0.40 0.56 µA
@ 70°C 1.39 1.70 µA
@ 85°C 2.5 4.25 µA
@ 105°C 5.3 7.50 µA
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
@ -40°C to 25°C 0.12 0.38 µA
@ 70°C 1.05 1.38 µA
@ 85°C 2.20 3.95 µA
@ 105°C 4.9 7.10 µA
IDD_VBAT Average current with RTC and 32kHz disabled
at 3.0 V
@ -40°C to 25°C 0.18 0.21 µA
@ 70°C 0.66 0.86 µA
@ 85°C 1.52 2.24 µA
@ 105°C 2.92 4.30 µA
IDD_VBAT Average current when CPU is not accessing
RTC registers
@ 1.8V
@ -40°C to 25°C 0.59 0.70 µA 15
@ 70°C 1.00 1.3 µA
@ 85°C 1.76 2.59 µA
@ 105°C 3.00 4.42 µA
@ 3.0V
@ -40°C to 25°C 0.71 0.84 µA
Table continues on the next page...
General
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 13
NXP Semiconductors
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
@ 70°C 1.22 1.59 µA
@ 85°C 2.08 3.06 µA
@ 105°C 3.50 5.15 µA
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 120MHz core and system clock, 60MHz bus clock, and 24MHz flash clock. MCG configured for PEE mode. All
peripheral clocks disabled.
3. Cache on and prefetch on, low compiler optimization.
4. Coremark benchmark compiled using IAR 7.2 with optimization level low.
5. 120MHz core and system clock, 60MHz bus clock, and 24MHz flash clock. MCG configured for PEE mode. All
peripheral clocks enabled.
6. 80 MHz core and system clock, 40 MHz bus clock, and 26.67 MHz flash clock. MCG configured for PEE mode. Compute
operation.
7. 80MHz core and system clock, 40MHz bus clock, and 26.67MHz flash clock. MCG configured for FEI mode. All
peripheral clocks disabled.
8. 80MHz core and system clock, 40MHz bus clock, and 26.67MHz flash clock. MCG configured for FEI mode. All
peripheral clocks enabled.
9. 80MHz core and system clock, 40MHz bus clock, and 26.67MHz flash clock. MCG configured for FEI mode. Compute
operation.
10. 25MHz core and system clock, 25MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode.
11. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. Compute operation. Code
executing from flash.
12. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
disabled. Code executing from flash.
13. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
enabled but peripherals are not in active operation. Code executing from flash.
14. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
disabled.
15. Includes 32kHz oscillator current and RTC operation.
Table 7. Low power mode peripheral adders—typical value
Symbol Description Temperature (°C) Unit
-40 25 50 70 85 105
IIREFSTEN4MHz 4 MHz internal reference clock (IRC)
adder. Measured by entering STOP or
VLPS mode with 4 MHz IRC enabled.
56 56 56 56 56 56 µA
IIREFSTEN32KHz 32 kHz internal reference clock (IRC)
adder. Measured by entering STOP
mode with the 32 kHz IRC enabled.
52 52 52 52 52 52 µA
IEREFSTEN4MHz External 4 MHz crystal clock adder.
Measured by entering STOP or VLPS
mode with the crystal enabled.
206 228 237 245 251 258 uA
IEREFSTEN32KHz External 32 kHz crystal clock adder by
means of the OSC0_CR[EREFSTEN
and EREFSTEN] bits. Measured by
Table continues on the next page...
General
14 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Table 7. Low power mode peripheral adders—typical value (continued)
Symbol Description Temperature (°C) Unit
-40 25 50 70 85 105
entering all modes with the crystal
enabled.
VLLS1
VLLS3
LLS
VLPS
STOP
440
440
490
510
510
490
490
490
560
560
540
540
540
560
560
560
560
560
560
560
570
570
570
610
610
580
580
680
680
680
nA
I48MIRC 48 Mhz internal reference clock 350 350 350 350 350 350 µA
ICMP CMP peripheral adder measured by
placing the device in VLLS1 mode with
CMP enabled using the 6-bit DAC and a
single external input for compare.
Includes 6-bit DAC power consumption.
22 22 22 22 22 22 µA
IRTC RTC peripheral adder measured by
placing the device in VLLS1 mode with
external 32 kHz crystal enabled by
means of the RTC_CR[OSCE] bit and
the RTC ALARM set for 1 minute.
Includes ERCLK32K (32 kHz external
crystal) power consumption.
432 357 388 475 532 810 nA
IUART UART peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source waiting
for RX data at 115200 baud rate.
Includes selected clock source power
consumption.
MCGIRCLK (4 MHz internal reference
clock)
>OSCERCLK (4 MHz external crystal)
66
214
66
237
66
246
66
254
66
260
66
268
µA
IBG Bandgap adder when BGEN bit is set
and device is placed in VLPx, LLS, or
VLLSx mode.
45 45 45 45 45 45 µA
IADC ADC peripheral adder combining the
measured values at VDD and VDDA by
placing the device in STOP or VLPS
mode. ADC is configured for low power
mode using the internal clock and
continuous conversions.
42 42 42 42 42 42 µA
2.2.5.1 Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
General
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 15
NXP Semiconductors
MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at
frequencies between 50 MHz and 100MHz. MCG in PEE mode at frequencies
greater than 100 MHz.
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFA
Figure 3. Run mode supply current vs. core frequency
General
16 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Figure 4. VLPR mode supply current vs. core frequency
2.2.6 EMC radiated emissions operating behaviors
Table 8. EMC radiated emissions operating behaviors for 64 LQFP package
Parame
ter
Conditions Clocks Frequency range Level
(Typ.)
Unit Notes
VEME Device configuration,
test conditions and EM
testing per standard IEC
61967-2.
Supply voltages:
VREGIN (USB) =
5.0 V
VDD = 3.3 V
Temp = 25°C
FSYS = 120 MHz
FBUS = 60 MHz
External crystal = 8 MHz
150 kHz–50 MHz 14 dBuV 1, 2, 3
50 MHz–150 MHz 23
150 MHz–500 MHz 23
500 MHz–1000 MHz 9
IEC level L 4
1. Measurements were made per IEC 61967-2 while the device was running typical application code.
2. Measurements were performed on the 64LQFP device, MK22FN512VLH12 .
General
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 17
NXP Semiconductors
3. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number,
from among the measured orientations in each frequency range.
4. IEC Level Maximums: M ≤ 18dBmV, L ≤ 24dBmV, K ≤ 30dBmV, I ≤ 36dBmV, H ≤ 42dBmV .
2.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
Go to nxp.com
Perform a keyword search for “EMC design.”
2.2.8 Capacitance attributes
Table 9. Capacitance attributes
Symbol Description Min. Max. Unit
CIN_A Input capacitance: analog pins 7 pF
CIN_D Input capacitance: digital pins 7 pF
2.3 Switching specifications
2.3.1 Device clock specifications
Table 10. Device clock specifications
Symbol Description Min. Max. Unit Notes
High Speed run mode
fSYS System and core clock 120 MHz
fBUS Bus clock 60 MHz
Normal run mode (and High Speed run mode unless otherwise specified above)
fSYS System and core clock 80 MHz
fSYS_USB System and core clock when Full Speed USB in
operation
20 MHz
fBUS Bus clock 50 MHz
fFLASH Flash clock 26.67 MHz
fLPTMR LPTMR clock 25 MHz
VLPR mode1
fSYS System and core clock 4 MHz
Table continues on the next page...
General
18 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Table 10. Device clock specifications (continued)
Symbol Description Min. Max. Unit Notes
fBUS Bus clock 4 MHz
fFLASH Flash clock 1 MHz
fERCLK External reference clock 16 MHz
fLPTMR_pin LPTMR clock 25 MHz
fLPTMR_ERCLK LPTMR external reference clock 16 MHz
fI2S_MCLK I2S master clock 12.5 MHz
fI2S_BCLK I2S bit clock 4 MHz
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for
any other module.
2.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
and timers.
Table 11. General switching specifications
Symbol Description Min. Max. Unit Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5 Bus clock
cycles
1, 2
External RESET and NMI pin interrupt pulse width —
Asynchronous path
100 ns 3
GPIO pin interrupt pulse width (digital glitch filter
disabled, passive filter disabled) — Asynchronous
path
50 ns 4
Mode select (EZP_CS) hold time after reset
deassertion
2 Bus clock
cycles
Port rise and fall time
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
10
5
30
16
ns
ns
ns
ns
5
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses
may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter
pulses can be recognized in that case.
2. The greater of synchronous and asynchronous timing must be met.
3. These pins have a passive filter enabled on the inputs. This is the shortest pulse width that is guaranteed to be
recognized.
General
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 19
NXP Semiconductors
4. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be
recognized.
5. 25 pF load
2.4 Thermal specifications
2.4.1 Thermal operating requirements
Table 12. Thermal operating requirements
Symbol Description Min. Max. Unit Notes
TJDie junction temperature –40 125 °C
TAAmbient temperature –40 105 °C 1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to
determine TJ is: TJ = TA + RΘJA × chip power dissipation.
2.4.2 Thermal attributes
Board
type Symbol Descripti
on 121
XFBGA 100 LQFP 64 LQFP 64
MAPBGA Unit Notes
Single-layer
(1s)
RθJA Thermal
resistance,
junction to
ambient
(natural
convection)
44.4 61 67 47.3 °C/W 1
Four-layer
(2s2p)
RθJA Thermal
resistance,
junction to
ambient
(natural
convection)
27.0 48 48 38.9 °C/W 2
Single-layer
(1s)
RθJMA Thermal
resistance,
junction to
ambient
(200 ft./min.
air speed)
37.2 51 55 40.1 °C/W 3
Four-layer
(2s2p)
RθJMA Thermal
resistance,
junction to
ambient
(200 ft./min.
air speed)
23.7 42 42 35.3 °C/W 3
Table continues on the next page...
General
20 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Board
type Symbol Descripti
on 121
XFBGA 100 LQFP 64 LQFP 64
MAPBGA Unit Notes
RθJB Thermal
resistance,
junction to
board
23.5 34 31 35.4 °C/W 4
RθJC Thermal
resistance,
junction to
case
17.4 16 16 29.2 °C/W 5
ΨJT Thermal
characteriz
ation
parameter,
junction to
package
top outside
center
(natural
convection)
0.2 3 3 0.4 °C/W 6
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air)with the single layer board horizontal. Board meets JESD51-9 specification.
2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental
Conditions—Forced Convection (Moving Air) with the board horizontal.
4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
3 Peripheral operating requirements and behaviors
3.1 Core modules
3.1.1 SWD electricals
Table 13. SWD full voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
S1 SWD_CLK frequency of operation
Serial wire debug
0
33
MHz
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 21
NXP Semiconductors
Table 13. SWD full voltage range electricals (continued)
Symbol Description Min. Max. Unit
S2 SWD_CLK cycle period 1/S1 ns
S3 SWD_CLK clock pulse width
Serial wire debug
15
ns
S4 SWD_CLK rise and fall times 3 ns
S9 SWD_DIO input data setup time to SWD_CLK rise 8 ns
S10 SWD_DIO input data hold time after SWD_CLK rise 1.4 ns
S11 SWD_CLK high to SWD_DIO data valid 25 ns
S12 SWD_CLK high to SWD_DIO high-Z 5 ns
S2
S3 S3
S4 S4
SWD_CLK (input)
Figure 5. Serial wire clock input timing
S11
S12
S11
S9 S10
Input data valid
Output data valid
Output data valid
SWD_CLK
SWD_DIO
SWD_DIO
SWD_DIO
SWD_DIO
Figure 6. Serial wire data timing
Peripheral operating requirements and behaviors
22 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
3.1.2 JTAG electricals
Table 14. JTAG limited voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
0
0
10
20
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
50
25
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 1 ns
J7 TCLK low to boundary scan output data valid 25 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1 ns
J11 TCLK low to TDO data valid 19 ns
J12 TCLK low to TDO high-Z 19 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
Table 15. JTAG full voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
0
0
10
15
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
50
33
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 1.4 ns
J7 TCLK low to boundary scan output data valid 27 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 23
NXP Semiconductors
Table 15. JTAG full voltage range electricals (continued)
Symbol Description Min. Max. Unit
J8 TCLK low to boundary scan output high-Z 27 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1.4 ns
J11 TCLK low to TDO data valid 26.2 ns
J12 TCLK low to TDO high-Z 26.2 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
J2
J3 J3
J4 J4
TCLK (input)
Figure 7. Test clock input timing
J7
J8
J7
J5 J6
Input data valid
Output data valid
Output data valid
TCLK
Data inputs
Data outputs
Data outputs
Data outputs
Figure 8. Boundary scan (JTAG) timing
Peripheral operating requirements and behaviors
24 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
J11
J12
J11
J9 J10
Input data valid
Output data valid
Output data valid
TCLK
TDI/TMS
TDO
TDO
TDO
Figure 9. Test Access Port timing
J14
J13
TCLK
TRST
Figure 10. TRST timing
3.2 System modules
There are no specifications necessary for the device's system modules.
3.3 Clock modules
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 25
NXP Semiconductors
3.3.1 MCG specifications
Table 16. MCG specifications
Symbol Description Min. Typ. Max. Unit Notes
fints_ft Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
32.768 kHz
Δfints_t Total deviation of internal reference frequency
(slow clock) over voltage and temperature
+0.5/-0.7 ± 2 %
fints_t Internal reference frequency (slow clock) —
user trimmed
31.25 39.0625 kHz
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
± 0.3 ± 0.6 %fdco 1
Δfdco_t Total deviation of trimmed average DCO output
frequency over voltage and temperature
+0.5/-0.7 ± 2 %fdco 1, 2
Δfdco_t Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
± 0.3 ± 1.5 %fdco 1
fintf_ft Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
4 MHz
Δfintf_ft Frequency deviation of internal reference clock
(fast clock) over temperature and voltage —
factory trimmed at nominal VDD and 25 °C
+1/-2 ± 5 %fintf_ft
fintf_t Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3 5 MHz
floc_low Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
kHz
floc_high Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
kHz
FLL
ffll_ref FLL reference frequency range 31.25 39.0625 kHz
fdco DCO output
frequency range
Low range (DRS=00)
640 × ffll_ref
20 20.97 25 MHz 3, 4
Mid range (DRS=01)
1280 × ffll_ref
40 41.94 50 MHz
Mid-high range (DRS=10)
1920 × ffll_ref
60 62.91 75 MHz
High range (DRS=11)
2560 × ffll_ref
80 83.89 100 MHz
fdco_t_DMX3
2
DCO output
frequency
Low range (DRS=00)
732 × ffll_ref
23.99 MHz 5, 6
Mid range (DRS=01)
1464 × ffll_ref
47.97 MHz
Mid-high range (DRS=10) 71.99 MHz
Table continues on the next page...
Peripheral operating requirements and behaviors
26 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Table 16. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
95.98 MHz
Jcyc_fll FLL period jitter
fVCO = 48 MHz
fVCO = 98 MHz
180
150
ps
tfll_acquire FLL target frequency acquisition time 1 ms 7
PLL
fvco VCO operating frequency 48.0 120 MHz
Ipll PLL operating current
PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 48)
1060 µA 8
Ipll PLL operating current
PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 24)
600 µA 8
fpll_ref PLL reference frequency range 2.0 4.0 MHz
Jcyc_pll PLL period jitter (RMS)
fvco = 48 MHz
fvco = 100 MHz
120
75
ps
ps
9
Jacc_pll PLL accumulated jitter over 1µs (RMS)
fvco = 48 MHz
fvco = 100 MHz
1350
600
ps
ps
9
Dlock Lock entry frequency tolerance ± 1.49 ± 2.98 %
Dunl Lock exit frequency tolerance ± 4.47 ± 5.97 %
tpll_lock Lock detector detection time 150 × 10-6
+ 1075(1/
fpll_ref)
s10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. 2.0 V <= VDD <= 3.6 V.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency
deviation (Δfdco_t) over voltage and temperature should be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this
specification assumes it is already running.
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 27
NXP Semiconductors
3.3.2 IRC48M specifications
Table 17. IRC48M specifications
Symbol Description Min. Typ. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
IDD48M Supply current 400 500 μA
firc48m Internal reference frequency 48 MHz
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at
high voltage (VDD=1.89V-3.6V) over 0°C to 70°C
Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)
± 0.2 ± 0.5 %firc48m 1
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at
high voltage (VDD=1.89V-3.6V) over full temperature
Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)
± 0.4 ± 1.0 %firc48m 1
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low
voltage (VDD=1.71V-1.89V) over full temperature
1
Regulator disable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=0)
± 0.4 ± 1.0 %firc48m
Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)
± 0.5 ± 1.5
Δfirc48m_cl Closed loop total deviation of IRC48M frequency over
voltage and temperature
± 0.1 %fhost 2
Jcyc_irc48m Period Jitter (RMS) 35 150 ps
tirc48mst Startup time 2 3 μs 3
1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard
deviation (mean ± 3 sigma).
2. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It
is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover
function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).
3. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the
clock by one of the following settings:
USB_CLK_RECOVER_IRC_EN[IRC_EN]=1 or
MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10 or MCG_C5[PLLCLKEN0]=1, or
SIM_SOPT2[PLLFLLSEL]=11
3.3.3 Oscillator electrical specifications
Peripheral operating requirements and behaviors
28 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
3.3.3.1 Oscillator DC electrical specifications
Table 18. Oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
IDDOSC Supply current — low-power mode (HGO=0)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
500
200
300
950
1.2
1.5
nA
μA
μA
μA
mA
mA
1
IDDOSC Supply current — high-gain mode (HGO=1)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
25
400
500
2.5
3
4
μA
μA
μA
mA
mA
mA
1
CxEXTAL load capacitance 2, 3
CyXTAL load capacitance 2, 3
RFFeedback resistor — low-frequency, low-power
mode (HGO=0)
2, 4
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
10
Feedback resistor — high-frequency, low-
power mode (HGO=0)
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
1
RSSeries resistor — low-frequency, low-power
mode (HGO=0)
Series resistor — low-frequency, high-gain
mode (HGO=1)
200
Series resistor — high-frequency, low-power
mode (HGO=0)
Series resistor — high-frequency, high-gain
mode (HGO=1)
0
Vpp5Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
0.6 V
Table continues on the next page...
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 29
NXP Semiconductors
Table 18. Oscillator DC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
VDD V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
VDD V
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx and Cy can be provided by using either integrated capacitors or external components.
4. When low-power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other device.
3.3.3.2 Oscillator frequency specifications
Table 19. Oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal or resonator frequency — low-
frequency mode (MCG_C2[RANGE]=00)
32 40 kHz
fosc_hi_1 Oscillator crystal or resonator frequency — high-
frequency mode (low range)
(MCG_C2[RANGE]=01)
3 8 MHz
fosc_hi_2 Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8 32 MHz
fec_extal Input clock frequency (external clock mode) 50 MHz 1, 2
tdc_extal Input clock duty cycle (external clock mode) 40 50 60 %
tcst Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
750 ms 3, 4
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
250 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
0.6 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
1 ms
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
Peripheral operating requirements and behaviors
30 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
3.3.4 32 kHz oscillator electrical characteristics
3.3.4.1 32 kHz oscillator DC electrical specifications
Table 20. 32kHz oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit
VBAT Supply voltage 1.71 3.6 V
RFInternal feedback resistor 100
Cpara Parasitical capacitance of EXTAL32 and
XTAL32
5 7 pF
Vpp1Peak-to-peak amplitude of oscillation 0.6 V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to
required oscillator components and must not be connected to any other devices.
3.3.4.2 32 kHz oscillator frequency specifications
Table 21. 32 kHz oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal 32.768 kHz
tstart Crystal start-up time 1000 ms 1
fec_extal32 Externally provided input clock frequency 32.768 kHz 2
vec_extal32 Externally provided input clock amplitude 700 VBAT mV 2, 3
1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.
The oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the
applied clock must be within the range of VSS to VBAT.
3.4 Memories and memory interfaces
3.4.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 31
NXP Semiconductors
3.4.1.1 Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 22. NVM program/erase timing specifications
Symbol Description Min. Typ. Max. Unit Notes
thvpgm4 Longword Program high-voltage time 7.5 18 μs
thversscr Sector Erase high-voltage time 13 113 ms 1
thversall Erase All high-voltage time 104 904 ms 1
1. Maximum time based on expectations at cycling end-of-life.
3.4.1.2 Flash timing specifications — commands
Table 23. Flash command timing specifications
Symbol Description Min. Typ. Max. Unit Notes
trd1sec2k Read 1s Section execution time (flash sector) 60 μs 1
tpgmchk Program Check execution time 45 μs 1
trdrsrc Read Resource execution time 30 μs 1
tpgm4 Program Longword execution time 65 145 μs
tersscr Erase Flash Sector execution time 14 114 ms 2
trd1all Read 1s All Blocks execution time 1.8 ms 1
trdonce Read Once execution time 30 μs 1
tpgmonce Program Once execution time 100 μs
tersall Erase All Blocks execution time 175 1300 ms 2
tvfykey Verify Backdoor Access Key execution time 30 μs 1
1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3.4.1.3 Flash high voltage current behaviors
Table 24. Flash high voltage current behaviors
Symbol Description Min. Typ. Max. Unit
IDD_PGM Average current adder during high voltage
flash programming operation
2.5 6.0 mA
IDD_ERS Average current adder during high voltage
flash erase operation
1.5 4.0 mA
Peripheral operating requirements and behaviors
32 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
3.4.1.4 Reliability specifications
Table 25. NVM reliability specifications
Symbol Description Min. Typ.1Max. Unit Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles 5 50 years
tnvmretp1k Data retention after up to 1 K cycles 20 100 years
nnvmcycp Cycling endurance 10 K 50 K cycles 2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.
3.4.2 EzPort switching specifications
Table 26. EzPort switching specifications
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
EP1 EZP_CK frequency of operation (all commands except
READ)
fSYS/2 MHz
EP1a EZP_CK frequency of operation (READ command) fSYS/8 MHz
EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK ns
EP3 EZP_CS input valid to EZP_CK high (setup) 5 ns
EP4 EZP_CK high to EZP_CS input invalid (hold) 5 ns
EP5 EZP_D input valid to EZP_CK high (setup) 2 ns
EP6 EZP_CK high to EZP_D input invalid (hold) 5 ns
EP7 EZP_CK low to EZP_Q output valid 25 ns
EP8 EZP_CK low to EZP_Q output invalid (hold) 0 ns
EP9 EZP_CS negation to EZP_Q tri-state 12 ns
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 33
NXP Semiconductors
EP2
EP3 EP4
EP5 EP6
EP7 EP8
EP9
EZP_CK
EZP_CS
EZP_Q (output)
EZP_D (input)
Figure 11. EzPort Timing Diagram
3.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
3.6 Analog
3.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the
differential pins ADCx_DPx, ADCx_DMx.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
3.6.1.1 16-bit ADC operating conditions
Table 27. 16-bit ADC operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
VDDA Supply voltage Absolute 1.71 3.6 V
ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2
Table continues on the next page...
Peripheral operating requirements and behaviors
34 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Table 27. 16-bit ADC operating conditions (continued)
Symbol Description Conditions Min. Typ.1Max. Unit Notes
ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2
VREFH ADC reference
voltage high
1.13 VDDA VDDA V
VREFL ADC reference
voltage low
VSSA VSSA VSSA V
VADIN Input voltage 16-bit differential mode
All other modes
VREFL
VREFL
31/32 *
VREFH
VREFH
V
CADIN Input
capacitance
16-bit mode
8-bit / 10-bit / 12-bit
modes
8
4
10
5
pF
RADIN Input series
resistance
2 5
RAS Analog source
resistance
(external)
13-bit / 12-bit modes
fADCK < 4 MHz
5
3
fADCK ADC conversion
clock frequency
≤ 13-bit mode 1.0 24.0 MHz 4
fADCK ADC conversion
clock frequency
16-bit mode 2.0 12.0 MHz 4
Crate ADC conversion
rate
≤ 13-bit modes
No ADC hardware averaging
Continuous conversions
enabled, subsequent
conversion time
20
1200
Ksps
5
Crate ADC conversion
rate
16-bit mode
No ADC hardware averaging
Continuous conversions
enabled, subsequent
conversion time
37
461
Ksps
5
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The
RAS/CAS time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 35
NXP Semiconductors
RAS
VAS CAS
ZAS
VADIN
ZADIN
RADIN
RADIN
RADIN
RADIN
CADIN
Pad
leakage
due to
input
protection
INPUT PIN
INPUT PIN
INPUT PIN
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
ADC SAR
ENGINE
Figure 12. ADC input impedance equivalency diagram
3.6.1.2 16-bit ADC electrical characteristics
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
IDDA_ADC Supply current 0.215 1.7 mA 3
fADACK
ADC asynchronous
clock source
ADLPC = 1, ADHSC = 0
ADLPC = 1, ADHSC = 1
ADLPC = 0, ADHSC = 0
ADLPC = 0, ADHSC = 1
1.2
2.4
3.0
4.4
2.4
4.0
5.2
6.2
3.9
6.1
7.3
9.5
MHz
MHz
MHz
MHz
tADACK = 1/
fADACK
Sample Time See Reference Manual chapter for sample times
TUE Total unadjusted
error
12-bit modes
<12-bit modes
±4
±1.4
±6.8
±2.1
LSB45
DNL Differential non-
linearity
12-bit modes
<12-bit modes
±0.7
±0.2
–1.1 to
+1.9
–0.3 to
0.5
LSB45
INL Integral non-linearity 12-bit modes ±1.0 –2.7 to
+1.9
LSB45
Table continues on the next page...
Peripheral operating requirements and behaviors
36 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
<12-bit modes ±0.5 –0.7 to
+0.5
EFS Full-scale error 12-bit modes
<12-bit modes
–4
–1.4
–5.4
–1.8
LSB4VADIN = VDDA5
EQQuantization error 16-bit modes
≤13-bit modes
–1 to 0
±0.5
LSB4
ENOB Effective number of
bits
16-bit differential mode
Avg = 32
Avg = 4
16-bit single-ended mode
Avg = 32
Avg = 4
12.8
11.9
12.2
11.4
14.5
13.8
13.9
13.1
bits
bits
bits
bits
6
SINAD Signal-to-noise plus
distortion
See ENOB 6.02 × ENOB + 1.76 dB
THD Total harmonic
distortion
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
-94
-85
dB
dB
7
SFDR Spurious free
dynamic range
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
82
78
95
90
dB
dB
7
EIL Input leakage error IIn × RAS mV IIn = leakage
current
(refer to the
MCU's voltage
and current
operating
ratings)
Temp sensor slope Across the full temperature
range of the device
1.55 1.62 1.69 mV/°C 8
VTEMP25 Temp sensor voltage 25 °C 706 716 726 mV 8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with
1 MHz ADC conversion clock speed.
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 37
NXP Semiconductors
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Typical ADC 16-bit Differential ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
15.00
14.70
14.40
14.10
13.80
13.50
13.20
12.90
12.60
12.30
12.00
1 2 3 4 5 6 7 8 9 10 1211
Hardware Averaging Disabled
Averaging of 4 samples
Averaging of 8 samples
Averaging of 32 samples
Figure 13. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
14.00
13.75
13.25
13.00
12.75
12.50
12.00
11.75
11.50
11.25
11.00
1 2 3 4 5 6 7 8 9 10 1211
Averaging of 4 samples
Averaging of 32 samples
13.50
12.25
Figure 14. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
Peripheral operating requirements and behaviors
38 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
3.6.2 CMP and 6-bit DAC electrical specifications
Table 29. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
VDD Supply voltage 1.71 3.6 V
IDDHS Supply current, High-speed mode (EN=1, PMODE=1) 200 μA
IDDLS Supply current, low-speed mode (EN=1, PMODE=0) 20 μA
VAIN Analog input voltage VSS – 0.3 VDD V
VAIO Analog input offset voltage 20 mV
VHAnalog comparator hysteresis1
CR0[HYSTCTR] = 00
CR0[HYSTCTR] = 01
CR0[HYSTCTR] = 10
CR0[HYSTCTR] = 11
5
10
20
30
mV
mV
mV
mV
VCMPOh Output high VDD – 0.5 V
VCMPOl Output low 0.5 V
tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns
tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns
Analog comparator initialization delay2 40 μs
IDAC6b 6-bit DAC current adder (enabled) 7 μA
INL 6-bit DAC integral non-linearity –0.5 0.5 LSB3
DNL 6-bit DAC differential non-linearity –0.3 0.3 LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 39
NXP Semiconductors
Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Peripheral operating requirements and behaviors
40 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
00
01
10
HYSTCTR
Setting
10
11
0.1 3.12.82.5
2.2
1.91.61.3
1
0.70.4
0.1
0
0.02
0.04
0.06
0.18
0.14
0.12
0.08
0.16
Vin level (V)
CMP Hysteresis (V)
Figure 16. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
3.6.3 12-bit DAC electrical characteristics
3.6.3.1 12-bit DAC operating requirements
Table 30. 12-bit DAC operating requirements
Symbol Desciption Min. Max. Unit Notes
VDDA Supply voltage 1.71 3.6 V
VDACR Reference voltage 1.13 3.6 V 1
CLOutput load capacitance 100 pF 2
ILOutput load current 1 mA
1. The DAC reference can be selected to be VDDA or VREFH.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 41
NXP Semiconductors
3.6.3.2 12-bit DAC operating behaviors
Table 31. 12-bit DAC operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA_DACL
P
Supply current — low-power mode 330 μA
IDDA_DACH
P
Supply current — high-speed mode 1200 μA
tDACLP Full-scale settling time (0x080 to 0xF7F) —
low-power mode
100 200 μs 1
tDACHP Full-scale settling time (0x080 to 0xF7F) —
high-power mode
15 30 μs 1
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08) — low-power mode and high-speed
mode
0.7 1 μs 1
Vdacoutl DAC output voltage range low — high-
speed mode, no load, DAC set to 0x000
100 mV
Vdacouth DAC output voltage range high — high-
speed mode, no load, DAC set to 0xFFF
VDACR
−100
VDACR mV
INL Integral non-linearity error — high speed
mode
±8 LSB 2
DNL Differential non-linearity error — VDACR > 2
V
±1 LSB 3
DNL Differential non-linearity error — VDACR =
VREF_OUT
±1 LSB 4
VOFFSET Offset error ±0.4 ±0.8 %FSR 5
EGGain error ±0.1 ±0.6 %FSR 5
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V 60 90 dB
TCO Temperature coefficient offset voltage 3.7 μV/C 6
TGE Temperature coefficient gain error 0.000421 %FSR/C
Rop Output resistance (load = 3 kΩ) 250 Ω
SR Slew rate -80hF7Fh80h
High power (SPHP)
Low power (SPLP)
1.2
0.05
1.7
0.12
V/μs
BW 3dB bandwidth
High power (SPHP)
Low power (SPLP)
550
40
kHz
1. Settling within ±1 LSB
2. The INL is measured for 0 + 100 mV to VDACR −100 mV
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set
to 0x800, temperature range is across the full range of the device
Peripheral operating requirements and behaviors
42 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors
Digital Code
DAC12 INL (LSB)
0
500 1000 1500 2000 2500 3000 3500 4000
2
4
6
8
-2
-4
-6
-8
0
Figure 17. Typical INL error vs. digital code
Peripheral operating requirements and behaviors
Kinetis K22F 256 KB Flash, Rev. 7, 08/2016 43
NXP Semiconductors
Temperature °C
DAC12 Mid Level Code Voltage
25 55 85 105 125
1.499
-40
1.4985
1.498
1.4975
1.497
1.4965
1.496
Figure 18. Offset at half scale vs. temperature
3.6.4 Voltage reference electrical specifications
Table 32. VREF full-range operating requirements
Symbol Description Min. Max. Unit Notes
VDDA Supply voltage 1.71 3.6 V
TATemperature Operating temperature
range of the device
°C
CLOutput load capacitance 100 nF 1, 2
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range
of the device.
Peripheral operating requirements and behaviors
44 Kinetis K22F 256 KB Flash, Rev. 7, 08/2016
NXP Semiconductors