8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
1
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
GENERAL DESCRIPTION
The ICS8432-101 is a general purpose, dual out-
put Differential-to-3.3V LVPECL high frequency
synthesizer and a member of the HiPerClockS
family of High Performance Clock Solutions from
ICS. The ICS8432-101 has a selectable
TEST_CLK or CLK, nCLK inputs. The TEST_CLK input
accepts LVCMOS or LVTTL input levels and translates them
to 3.3V LVPECL levels. The CLK, nCLK pair can accept most
standard differential input levels. The VCO operates at a
frequency range of 250MHz to 700MHz. The VCO frequency
is programmed in steps equal to the value of the input differ-
ential or single ended reference frequency. The VCO and
output frequency can be programmed using the serial or
parallel interfaces to the configuration logic. The low phase
noise characteristics of the ICS8432-101 makes it an ideal
clock source for Gigabit Ethernet and SONET applications.
BLOCK DIAGRAM PIN ASSIGNMENT
FEATURES
Dual differential 3.3V LVPECL outputs
Selectable CLK, nCLK or LVCMOS/LVTTL TEST_CLK
TEST_CLK can accept the following input levels:
LVCMOS or LVTTL
CLK, nCLK pair can accept the following differential
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
CLK, nCLK or TEST_CLK maximum input frequency: 40MHz
Output frequency range: 25MHz to 700MHz
VCO range: 250MHz to 700MHz
Accepts any single-ended input signal on CLK input
with resistor bias on nCLK input
Parallel interface for programming counter
and output dividers
RMS period jitter: 5ps (maximum)
Cycle-to-cycle jitter: 25ps (maximum)
3.3V supply voltage
0°C to 70°C ambient operating temperature
Lead-Free package fully RoHS compliant
32 31 30 29 28 27 26 25
9 10 11 12 13 14 15 16
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
CLK
TEST_CLK
CLK_SEL
VCCA
S_LOAD
S_DATA
S_CLOCK
MR
M5
M6
M7
M8
N0
N1
nc
VEE
VEE
nFOUT0
FOUT0
VCCO
nFOUT1
FOUT1
VCC
TEST
nCLK
nP_LOAD
VCO_SEL
M0
M1
M2
M3
M4
32-Lead LQFP
7mm x 7mm x 1.4mm package body
Y Package
Top View
ICS8432-101
VCO_SEL
CLK_SEL
TEST_CLK
CLK
S_LOAD
S_DATA
S_CLOCK
nP_LOAD
M0:M8
N0:N1
VCO
PLL
FOUT0
nFOUT0
FOUT1
nFOUT1
TEST
CONFIGURATION
INTERFACE
LOGIC
÷ M
0
1
0
1
PHASE DETECTOR
÷1
÷2
÷4
÷8
MR
nCLK
HiPerClockS
ICS
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
2
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
rial event occurs. As a result, the M and N bits can be hardwired
to set the M divider and N output divider to a specific default
state that will automatically occur during power-up. The TEST
output is LOW when operating in the parallel input mode. The
relationship between the VCO frequency, the input frequency
and the M divider is defined as follows:
The M value and the required values of M0 through M8 are
shown in Table 3B, Programmable VCO Frequency Function
Table. Valid M values for which the PLL will achieve lock for a
25MHz reference are defined as 8 M 28. The frequency
out is defined as follows:
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is
LOW. The shift register is loaded by sampling the S_DATA
bits with the rising edge of S_CLOCK. The contents of the shift
register are loaded into the M divider and N output divider when
S_LOAD transitions from LOW-to-HIGH. The M divide and N out-
put divide values are latched on the HIGH-to-LOW transition of
S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is
passed directly to the M divider and N output divider on each rising
edge of S_CLOCK. The serial mode can be used to
program the M and N bits and test bits T1 and T0. The internal reg-
isters T0 and T1 determine the state of the TEST output as follows:
Time
SERIAL LOADING
PARALLEL LOADING
t
S
t
H
t
S
t
H
t
S
M, N
FUNCTIONAL DESCRIPTION
NOTE: The functional description that follows describes op-
eration using a 25MHz clock input. Valid PLL loop divider val-
ues for different input frequencies are defined in the Input Fre-
quency Characteristics, Table 5, NOTE 1.
The ICS8432-101 features a fully integrated PLL and there-
fore requires no external components for setting the loop band-
width. A differential clock input is used as the input to the
ICS8432-101. This input is fed into the phase detector. A
25MHz clock input provides a 25MHz phase detector refer-
ence frequency. The VCO of the PLL operates over a range
of 250MHz to 700MHz. The output of the M divider is also
applied to the phase detector.
The phase detector and the M divider force the VCO output
frequency to be M times the reference frequency by adjust-
ing the VCO control voltage. Note, that for some values of M
(either too high or too low), the PLL will not achieve lock. The
output of the VCO is scaled by a divider prior to being sent to
each of the LVPECL output buffers. The divider provides a
50% output duty cycle.
The programmable features of the ICS8432-101 support two
input modes to program the PLL M divider and N output divider.
The two input operational modes are parallel and serial.
Figure1
shows the timing diagram for each mode. In parallel mode, the
nP_LOAD input is initially LOW. The data on inputs M0 through
M8 and N0 and N1 is passed directly to the M divider and
N output divider. On the LOW-to-HIGH transition of the
nP_LOAD input, the data is latched and the M divider remains
loaded until the next LOW transition on nP_LOAD or until a se-
fVCO = fIN x M
T1 T0 TEST Output
0 0 LOW
0 1 S_Data, Shift Register Input
1 0 Output of M divider
1 1 CMOS Fout
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS
*NOTE: The NULL timing slot must be observed.
T1 T0 *NULL N1 N0 M8 M7 M6 M5 M4 M3 M2 M1 M0
S_CLOCK
S_DATA
S_LOAD
nP_LOAD
M0:M8, N0:N1
nP_LOAD
S_LOAD
fOUT = fVCO = fIN x M
NN
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
3
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
TABLE 1. PIN DESCRIPTIONS
rebmuNemaNepyTnoitpircseD
15MtupnIpulluP
noitsisnartHGIH-ot-WOLnodehctalataD.stupniredividM
.slevelecafretniLT
TVL/SOMCVL.tupniDAOL_Pnfo
4,3,2
92,82
23,13,03
,8M,7M,6M
,1M,0M
4M,3M,2M
tupnInwodlluP
6,51N,0NtupnInwodlluP ,C3el
baTnidenifedsaeulavredividtuptuosenimreteD
.slevelecafretniLTTVL/SOMCVL.elbaTnoitcnuF
7cndesunU.tcennocoN
6
1,8V
EE
rewoP.snipylppusevitageN
9TSETtuptuO tuptuO.noitarepofoedomlairesehtniEVITCAsihcihwtuptuotseT
.slevelecafre
tniLTTVL/SOMCVL.edomlellarapniWOLnevird
01V
CC
rewoP.nipylppuseroC
21,111TUOFn,1TUOFtuptuO .slevelecafretniLCEPVLV3.3.rezisehtnysehtroftuptuolaitnereffiD
31V
OCC
rewoP.nipylppustuptuO
51,410TUOFn,0TUOFtuptuO .slevelecafretniLCEPVLV3.3.rezisehtnysehtroftuptuolaitnereff
iD
71RMtupnInwodlluP
sredividlanretnieht,HGIHcigolnehW.teseRretsaMhgiHevitcA
detrevniehtdnawologotxTUOFstup
tuoeurtehtgnisuacteserera
sredividlanretnieht,WOLcigolnehW.hgihogotxTUOFnstuptuo
dedaoltceffatonseodRMf
onoitressA.delbaneerastuptuoehtdna
.slevelecafretniLTTVL/SOMCVL.seulavTdna,N,M
81KCOLC_StupnInwodlluP retsigertfihsehtotnitupniATAD_StatneserpatadlairesniskcolC
.slevelecafretniLTTVL/SOMCVL.KCOLC_Sfoegdegnisir
ehtno
91ATAD_StupnInwodlluP egdegnisirehtnodelpmasataD.tupnilairesretsigertfihS
.slevelecafretniLTTVL/SOMCVL.KCOLC_Sfo
02DAOL_StupnInwodlluP .sredividehtotniretsigertfihsmorfatadfonoitisnartslortnoC
.slevelecafretn
iLTTVL/SOMCVL
12V
ACC
rewoP.nipylppusgolanA
22LES_KLCtupnIpulluP
rotupnikcolclaitnereffidneewtebstceleS.tupnitceleskcolC
,HGIHnehW
.ecruosecnereferLLPehtsatupniKLC_TSET
.tupniKLC_TSETstceles,WOLnehW.stupniKLCn,KLCstceles
.slevelecafre
tniLTTVL/SOMCVL
32KLC_TSETtupnInwodlluP.slevelecafretniLTTVL/SOMCVL.tupnikcolctseT
42KLCtupnInwodlluP.tupnikcol
claitnereffidgnitrevni-noN
52KLCntupnIpulluP.tupnikcolclaitnereffidgnitrevnI
62DAOL_PntupnInwodlluP
si0M:8Mtatn
eserpatadnehwsenimreteD.tupnidaollellaraP
ehtstes0N:1Ntatneserpatadnehwdna,redividMotnidedaol
.slevelec
afretniLTTVL/SOMCVL.eulavredividtuptuoN
72LES_OCVtupnIpulluP .edomssapybroLLPnisirezisehtnysrehtehwsenimre
teD
.slevelecafretniLTTVL/SOMCVL
:ETON
pulluP
dna
nwodlluP
.seulavlacipytrof,scitisiretcarahCniP,2elbaTeeS.srotsisertupnilanretniotrefer
TABLE 2. PIN CHARACTERISTICS
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
C
NI
ecnaticapaCtupnI 4Fp
R
PULLUP
rotsiseRpulluPtupnI 15kΩ
R
NWODLLUP
rotsiseRnwodlluPtupnI 15kΩ
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
4
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE
stupnI snoitidnoC
RMDAOL_PnMNDAOL_SKCOLC_SATAD_S
HX XXX X X .WOLstuptuosecroF.teseR
LL ataDataDX X X
ehtotyltceriddessapstupniNdnaMn
oataD
tuptuoTSET.redividtuptuoNdnaredividM
.WOLdecrof
LataDataDL X X dedaolsniamerdnasretsigertupniotnidehctal
siataD
.sruccotnevelairesalitnuronoitisnartWOLtxenlitnu
LH XXL ataD noatadhtiwdedaolsiretsigertfihS.edomtupni
laireS
.KCOLC_SfoegdegnisirhcaenoATAD_S
LH XXLataD ehtotdessaperaretsigertfihsehtfostnetnoC
.redividtuptuoNdn
aredividM
LH XXLataD.dehctaleraseulavredividtuptuoNdnaredividM
LH XXL X X .sretsigertfihstceffatonodstupnilairesrolella
raP
LH XXH ataD.dekcolcsitisaredividMotyltceriddessapATAD_S
WOL=L:ETON
HGIH=H
eract'noD=X
noitisnartegdegnisiR=
noitisnartegdegnillaF=
stupnI eulaVrediviDN )zHM(ycneuqerFtuptuO
1N0NmuminiMmumixaM
00 1 052007
01 2 521053
10 4 5.26571
11 8 52.135.78
ycneuqerFOCV
)zHM( ediviDM 6528214623618421
8M7M6M5M4M3M2M1M0M
002 8 00000 1000
522 9 00000 100 1
05201 0 0 0 0 0 10 10
57211 00000 1011
•••••••••
•••••••••
05662 0 0 0 0 1 10 10
57672 000011011
00782 0000 11100
ycneuqerftupniKLC_TSETrotupnilai
tnereffidotdnopserrocseicneuqerfgnitluserehtdnaseulavedividMesehT:1ETON
.zHM52fo
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
5
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
CC
egatloVylppuSeroC 531.33.3564.3V
V
ACC
egatloVylppuSgolanA 531.33.3564.3V
V
OCC
egatloVylppuStuptuO 531.33.3564.3V
I
EE
tnerruCylppuSrewoP 021Am
I
ACC
tnerruCylppuSgolanA 51Am
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
HI
tupnI
egatloVhgiH
,RM,LES_KLC,LES_OCV
,ATAD_S,DAOL_S
,DAOL_Pn,KCOLC_S
1N:0N,8M:0M
2V
CC
3.0+V
KLC_TSET2V
CC
3.0+V
V
LI
tupnI
egatloVwoL
,RM,LES_KLC,LES_OCV
,ATAD_S,DAOL_S
,DAOL_Pn,KCOLC_S
1N:0N,8M:0M
3.0-8.0V
KLC_TSET3.0-3.1V
I
HI
tupnI
tnerruChgiH
,RM,1N,0N,8M-6M,4M-0M
,KLC_TSET,KCOLC_S
DAOL_Pn,DAOL_S,ATAD_S
V
CC
V=
NI
V564.3=051Aµ
LES_OCV,LES_KLC,5MV
CC
V=
NI
V564.3=5Aµ
I
LI
tupnI
tnerruCwoL
,RM,1N,0N,8M-6M,4M-0M
,KLC_TSET,KCOLC_S
DAOL_Pn,DAOL_S,ATAD_S
V
CC
,V564.3=
V
NI
V0= 5-Aµ
LES_OCV,LES_KLC,5M V
CC
,V564.3=
V
NI
V0= 051-Aµ
V
HO
tuptuO
egatloVhgiH TSET V
CC
,V531.3=
I
HO
Am63-= 6.2V
V
LO
tuptuO
egatloVwoL TSET V
CC
,V531.3=
I
LO
Am63= 5.0V
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, V
CC 4.6V
Inputs, VI-0.5V to VCC + 0.5 V
Outputs, IO
Continuous Current 50mA
Surge Current 100mA
Package Thermal Impedance, θJA 47.9°C/W (0 lfpm)
Storage Temperature, T
STG -65°C to 150°C
NOTE: Stresses beyond those listed under Absolute
Maximum Ratings may cause permanent damage to the
device. These ratings are stress specifications only. Functional
operation of product at these conditions or any conditions be-
yond those listed in the
DC Characteristics
or
AC Character-
istics
is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect product reliability.
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
6
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
f
NI
ycneuqerFtupnI
1ETON;KLC_TSET0104zHM
1ETON;KLCn,KLC0104zHM
KCOLC_S 04zHM
nihtiwetarepootOCVehtroftesebtsumeulavMe
ht,egnarycneuqerfKLC_TSETdnatupnilaitnereffidehtroF:1ETON
52eraMfoseulavdilav,zHM01foycneuqerftupnimuminimehtgnisU.egnarzHM007otzHM052eht M.07
7eraMfoseulavdilav,zHM04foycneuqerfmumixamehtgnisU M.71
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
HO
1ETON;egatloVhgiHtuptuOV
OCC
4.1-V
OCC
0.1-V
V
LO
1ETON;egatloVwoLtuptuOV
OCC
0.2-V
OCC
7.1-V
V
GNIWS
gniwSegatloVtuptuOkaeP-ot-kaeP 6.00.1V
05htiwdetanimretstuptuO:1ETON ΩVot
OCC
.V2-
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
I
HI
tnerruChgiHtupnI KLCV
CC
V=
NI
V564.3=051Aµ
KLCnV
CC
V=
NI
V564.3=5Aµ
I
LI
tnerruCwoLtupnI KLCV
CC
V,V564.3=
NI
V0=5-Aµ
KLCnV
CC
V,V564.3=
NI
V0=051-Aµ
V
PP
egatloVtupnIkaeP-ot-kaeP51.03.1V
V
RMC
egatloVtupnIedoMnommoCV
EE
5.0+V
CC
58.0-V
VsiKLCn,KLCrofegatlovtupnimumixameht,snoitacilppadedneelgnisroF:1ETON
CC
.V3.0+
VsadenifedsiegatlovedomnommoC:2ETON
HI
.
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
F
TUO
ycneuqerFtuptuO52.13007zHM
t
)cc(tij1ETON;rettiJelcyC-ot-elcyCzHM053>OCVf52sp
t
)rep(tijSMR,rettiJdoirePzHM001>TUOf5sp
t
)o(ks2,1ETON;wekStuptuO 51sp
t
R
t/
F
emiTllaF/esiRtuptuO%08ot%02002007sp
t
S
emiTputeS
DAOL_PnotN,M5sn
KCOLC_SotATAD_S5sn
DAOL_SotKCOLC_S5sn
t
H
emiTdloH
DAOL_PnotN,M5sn
KCOLC_SotATAD_S5sn
DAOL_SotKCOLC_S5sn
cdoelcyCytuDtuptuO1>N7435%
t
WP
htdiWesluPtuptuO1=Nt
PDOIRE
051-2/t
PDOIRE
051+2/sp
t
KCOL
emiTkcoLLLP 1sm
.noitcesnoitamrofnItnemerusaeMretemaraPeeS
.56dradnatSCEDEJhtiwecnadroccanidenifedsiretem
arapsihT:1ETON
.snoitidnocdaollauqehtiwdnaegatlovylppusemasehttastuptuoneewtebwekssadenifeD:2ETON
.stni
opssorclaitnereffidtuptuoehttaderusaeM
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
7
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
PARAMETER MEASUREMENT INFORMATION
3.3V OUTPUT LOAD AC TEST CIRCUIT DIFFERENTIAL INPUT LEVEL
CYCLE-TO-CYCLE JITTER
PERIOD JITTER
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD
OUTPUT SKEW OUTPUT RISE/FALL TIME
V
CMR
Cross Points
V
PP
VEE
nCLK
VCC
CLK
SCOPE
Qx
nQx
LVPECL
2V
-1.3V ± 0.165V
V
OH
V
REF
V
OL
Mean Period
(First edge after trigger)
Reference Point
(Trigger Edge)
1σ contains 68.26% of all measurements
2σ contains 95.4% of all measurements
3σ contains 99.73% of all measurements
4σ contains 99.99366% of all measurements
6σ contains (100-1.973x10
-7
)% of all measurements
Histogram
tsk(o)
nFOUTx
FOUTx
nFOUTy
FOUTy
Clock
Outputs 20%
80% 80%
20%
t
R
t
F
V
SWING
t
PW
t
PERIOD
t
PW
t
PERIOD
odc = x 100%
FOUTx
nFOUTx
nFOUTx
FOUTx
t
jit(cc) =
t
cycle n –
t
cycle n+1
1000 Cycles
t
cycle n
t
cycle n+1
VCC,
VCCO
V EE
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
8
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
STORAGE AREA NETWORKS
A variety of technologies are used for interconnection of the
elements within a SAN. The tables below list the common appli-
Table 7. Common SANs Application Frequencies
Table 8. Configuration Details for SANs Applications
APPLICATION INFORMATION
As in any high speed analog circuitry, the power supply pins
are vulnerable to random noise. The ICS8432-101 provides
separate power supplies to isolate any high switching
noise from the outputs to the internal PLL. VCC, VCCA, and VCCO
should be individually connected to the power supply
plane through vias, and bypass capacitors should be
used for each pin. To achieve optimum jitter performance,
power supply isolation is required.
Figure 2
illustrates how
a 10Ω resistor along with a 10μF and a .01μF bypass
capacitor should be connected to each VCCA pin.
POWER SUPPLY FILTERING T ECHNIQUES
FIGURE 2. POWER SUPPLY FILTERING
10Ω
VCCA
10 μF
.01μF
3.3V
.01μF
VCC
ygolonhceTtcennocretnIetaRkcolC SEDRESotycneuqerFecnerefeR
)zHM(
ycneuqerFlatsyrC
)zHM(
tenrehtEtibagiGzHG52
.152.651,052,52152135.91,52
lennahCerbiF zHG5260.11CF
zHG0521.22CF 5218.231,521.35,52.60152,5265106.61
dnabin
ifnIzHG5.2052,52152
tcennocretnI
ygolonhceT
tupnIKLCn,KLC
)zHM(
101-2348SCI
ycneuqerFtuptuO
SEDRESot
)zHM(
101-2348SCI
sgnitteSN&M
8M7M6M5M4M3M2M1M0M1N0N
tenrehtEtibagiG
52521 0000 10 10010
52052 0000 10 10001
5252.651 00001100 110
52135.9152.651 000 10000010
1lennahCrebiF
52521.35 00001000 111
5252.601 00001000 110
2lennahCrebiF5265106
.615218.231 000 10000010
dnabinifnI
52521 0000 10 10010
52052 0000 10 10001
cation frequencies as well as the ICS8432-101 configurations
used to generate the appropriate frequency.
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
9
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
V
CC
- 2V
50Ω50Ω
RTT
Z
o
= 50Ω
Z
o
= 50Ω
FOUT FIN
RTT = Z
o
1
((V
OH
+ V
OL
) / (V
CC
– 2)) – 2
3.3V
125Ω125Ω
84Ω84Ω
Z
o
= 50Ω
Z
o
= 50Ω
FOUT FIN
The clock layout topology shown below is a typical termina-
tion for LVPECL outputs. The two different layouts mentioned
are recommended only as guidelines.
FOUT and nFOUT are low impedance follower outputs that
generate ECL/LVPECL compatible outputs. Therefore, termi-
nating resistors (DC current path to ground) or current
sources must be used for functionality. These outputs are
FIGURE 4B. LVPECL OUTPUT TERMINATIONFIGURE 4A. LVPECL OUTPUT TERMINATION
designed to drive 50Ω transmission lines. Matched impedance
techniques should be used to maximize operating frequency
and minimize signal distortion.
Figures 4A and 4B
show two
different layouts which are recommended only as guidelines.
Other suitable clock layouts may exist and it would be rec-
ommended that the board designers simulate to guarantee
compatibility across all printed circuit and clock component
process variations.
TERMINATION FOR LVPECL OUTPUTS
Figure 3
shows how the differential input can be wired to accept
single ended levels. The reference voltage V_REF = VCC/2 is
generated by the bias resistors R1, R2 and C1. This bias circuit
should be located as close as possible to the input pin. The ratio
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS
of R1 and R2 might need to be adjusted to position the V_REF in
the center of the input voltage swing. For example, if the input
clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V
and R2/R1 = 0.609.
V_REF
R1
1K
C1
0.1u R2
1K
Single Ended Clock Input CLK
nCLK
VCC
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
10
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
FIGURE 5C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY
3.3V LVPECL DRIVER
FIGURE 5B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY
3.3V LVPECL DRIVER
FIGURE 5D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY
3.3V LVDS DRIVER
3.3V
R1
50
R3
50
Zo = 50 Ohm
LVPECL
Zo = 50 Ohm
HiPerClockS
CLK
nCLK
3.3V
Input
R2
50
Zo = 50 Ohm
Input
HiPerClockS
CLK
nCLK
3.3V
R3
125
R2
84
Zo = 50 Ohm
3.3V
R4
125
LVPECL
R1
84
3.3V
DIFFERENTIAL CLOCK INPUT INTERFACE
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL
and other differential signals. Both VSWING and VOH must meet the
VPP and VCMR input requirements. Figures 5A to 5E show inter-
face examples for the HiPerClockS CLK/nCLK input driven by
the most common driver types. The input interfaces suggested
FIGURE 5A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY
ICS HIPERCLOCKS LVHSTL DRIVER
here are examples only. Please consult with the vendor of the
driver component to confirm the driver termination requirements.
For example in
Figure 5A,
the input termination applies for ICS
HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver
from another vendor, use their termination recommendation.
1.8V
R2
50
Input
LVHSTL Driver
ICS
HiPerClockS R1
50
LVHSTL
3.3V
Zo = 50 Ohm
Zo = 50 Ohm
HiPerClockS
CLK
nCLK
FIGURE 5E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY
3.3V LVPECL DRIVER WITH AC COUPLE
Zo = 50 Ohm
R3
125
HiPerClockS
CLK
nCLK
3.3V
R5
100 - 200
3.3V
R2
84
3.3V
R6
100 - 200
Input
R5,R6 locate near the driver pin.
Zo = 50 Ohm
R1
84
R4
125
C2
LVPECL C1
Zo = 50 Ohm
R1
100
3.3V
LVDS_Driver
Zo = 50 Ohm
Receiver
CLK
nCLK
3.3V
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
11
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
LAYOUT GUIDELINE
The schematic of the ICS8432-101 layout example used in
this layout guideline is shown in
Figure 6A.
The ICS8432-101
recommended PCB board layout for this example is shown in
Figure 6B
. This layout example is used as a general guideline.
FIGURE 6A. SCHEMATIC OF RECOMMENDED LAYOUT
C16
10u
Termination A
U1
8432-101
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
32
31
30
29
28
27
26
25
M5
M6
M7
M8
N0
N1
nc
VEE
TEST
VDD
FOUT1/2
nFOUT1/2
VCCO
FOUT
nFOUT
VEE
MR
S_CLOCK
S_DATA
S_LOAD
VDDA
nCLK_SEL
REF_IN
CLK
M4
M3
M2
M1
M0
VCO_SEL
nP_LOAD
nCLK
R1
125
VCCA
TL2
Zo = 50 Ohm
TEST
IN-
IN-
VCC
S_CLOCK
VCC
R3
125
C11
0.01u
XTAL_SEL
R3
50
S_LOAD
R7
10
TL1
Zo = 50 Ohm
MR
IN+
R4
84
FOUT
R2
84
S_DATA
R1
50
C15
0.1u
nCLK
CLK
VCC
IN+
Termination B
(not shown in
the layout)
FOUTN
R2
50
C14
0.1u
VCC
The layout in the actual system will depend on the selected
component types, the density of the components, the density
of the traces, and the stack up of the P.C. board.
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
12
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
GND
Close to the input
pins of the
receiver
U1
R3
VCCA
TL1
C14
PIN 1
TL1N
TL1
VCC
R4
C11 C16
C15
TL1, TL2 are 50 Ohm traces and
equal length
R1
TL1N
R7
VIA
R2
The following component footprints are used in this layout
example: All the resistors and capacitors are size 0603.
POWER AND GROUNDING
Place the decoupling capacitors C14 and C15 as close as pos-
sible to the power pins. If space allows, placing the decoupling
capacitor at the component side is preferred. This can reduce
unwanted inductance between the decoupling capacitor and the
power pin generated by the via.
Maximize the pad size of the power (ground) at the decoupling
capacitor. Maximize the number of vias between power (ground)
and the pads. This can reduce the inductance between the power
(ground) plane and the component power (ground) pins.
If VCCA shares the same power supply with VCC, insert the RC
filter R7, C11, and C16 in between. Place this RC filter as close
to the VCCA as possible.
CLOCK TRACES AND TERMINATION
The component placements, locations and orientations should be
arranged to achieve the best clock signal quality. Poor clock signal
quality can degrade the system performance or cause system fail-
ure. In the synchronous high-speed digital system, the clock signal
is less tolerable to poor signal quality than other signals. Any ring-
ing on the rising or falling edge or excessive ring back can cause
system failure. The trace shape and the trace delay might be re-
stricted by the available space on the board and the component
location. While routing the traces, the clock signal traces should be
routed first and should be locked prior to routing other signal traces.
The traces with 50Ω transmission lines TL1 and TL2 at
FOUT and nFOUT should have equal delay and run ad-
jacent to each other. Avoid sharp angles on the clock trace.
Sharp angle turns cause the characteristic impedance to
change on the transmission lines.
Keep the clock trace on same layer. Whenever possible,
avoid any vias on the clock traces. Any via on the trace
can affect the trace characteristic impedance and hence
degrade signal quality.
To prevent cross talk, avoid routing other signal traces in
parallel with the clock traces. If running parallel traces is
unavoidable, allow more space between the clock trace
and the other signal trace.
Make sure no other signal trace is routed between the
clock trace pair.
The matching termination resistors R1, R2, R3 and R4 should
be located as close to the receiver input pins as possible. Other
termination schemes can also be used but are not shown in this
example.
FIGURE 6B. PCB BOARD LAYOUT FOR ICS8432-101
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
13
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
POWER CONSIDERATIONS
This section provides information on power dissipation and junction temperature for the ICS8432-101.
Equations and example calculations are also provided.
1. Power Dissipation.
The total power dissipation for the ICS8432-101 is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 120mA = 416mW
Power (outputs)MAX = 30.2mW/Loaded Output pair
If all outputs are loaded, the total power is 2 * 30.2mW = 60.4mW
Total Power_MAX (3.465V, with all outputs switching) = 416mW + 60.4mW = 476.4mW
2. Junction Temperature.
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.
The equation for Tj is as follows: Tj = θJA * Pd_total + TA
Tj = Junction Temperature
θJA = Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
TA = Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA
must be used. Assuming a
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 9 below.
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:
70°C + 0.476W * 42.1°C/W = 90°C. This is well below the limit of 125°C.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,
and the type of board (single layer or multi-layer).
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
0 200 500
Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TABLE 9. THERMAL RESISTANCE θθ
θθ
θJA FOR 32-PIN LQFP, FORCED CONVECTION
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
14
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
3. Calculations and Equations.
The purpose of this section is to derive the power dissipated into the load.
LVPECL output driver circuit and termination are shown in
Figure 7.
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination
voltage of V
CCO
- 2V.
For logic high, VOUT = VOH_MAX = VCCO_MAX – 1.0V
(V
CCO_MAX - VOH_MAX
) = 1.0V
For logic low, VOUT = VOL_MAX = VCCO_MAX
– 1.7V
(V
CCO_MAX - VOL_MAX
) = 1.7V
Pd_H is power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.
Pd_H = [(VOH_MAX
– (VCCO_MAX
- 2V))/R
L
] * (VCCO_MAX
- VOH_MAX) = [(2V - (VCCO_MAX - VOH_MAX
))/R
L
] * (VCCO_MAX
- VOH_MAX) =
[(2V - 1V)/50ΩΩ
ΩΩ
Ω] * 1V = 20.0mW
Pd_L = [(VOL_MAX
– (VCCO_MAX
- 2V))/R
L
] * (VCCO_MAX
- VOL_MAX) = [(2V - (VCCO_MAX - VOL_MAX
))/R
L
] * (VCCO_MAX
- VOL_MAX) =
[(2V - 1.7V)/50ΩΩ
ΩΩ
Ω] * 1.7V = 10.2mW
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION
Q1
VOUT
VCCO
RL
50
VCCO - 2V
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
15
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
RELIABILITY INFORMATION
TRANSISTOR COUNT
The transistor count for ICS8432-101 is: 3712
TABLE 10. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
0 200 500
Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
16
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP
NOITAIRAVCEDEJ
SRETEMILLIMNISNOISNEMIDLLA
LOBMYS
ABB
MUMINIMLANIMONMUMIXAM
N23
A06.1
1A 50.051.0
2A 53.104.154.1
b03.
073.054.0
c90.002.0
DCISAB00.9
1D CISAB00.7
2D 06.5
ECISAB00.9
1E CISAB00.7
2E 06.5
eCISAB08.0
L54.006.057.0
θθ
θ
θθ 0
°
7
°
ccc 01.0
TABLE 11. PACKAGE DIMENSIONS
Reference Document: JEDEC Publication 95, MS-026
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
17
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
TABLE 12. ORDERING INFORMATION
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS
product for use in life support devices or critical medical instruments.
rebmuNredrO/traPgnikraMegakcaPgnigakcaPgnippihSerutarepmeT
101-YD2348SCI101-YD2348SCIPFQLdaeL23yartC°07otC°0
T1
01-YD2348SCI101-YD2348SCIPFQLdaeL23leer&epat0001C°07otC°0
FL101-YD2348SCIDBTPFQL"eerF-daeL"daeL23yartC°07otC°0
TFL101-YD2348SCIDBTPFQL"eerF-daeL"daeL23leer&epat0001C°07otC°0
.tnailpmocSHoReradnanoitarugifnoceerF-bPeht
erarebmuntrapehtotxiffus"FL"nahtiwderedroeratahtstraP:ETON
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.
8432DY-101 www.icst.com/products/hiperclocks.html REV. B JUNE 1, 2005
18
Integrated
Circuit
Systems, Inc.
ICS8432-101
700MHZ,
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
TEEHSYROTSIHNOISIVER
veRelbaTegaPegnahCfonoitpircseDetaD
A2T
1
3
5
01
.sleveltupniotLSCHdedda-noitceSserutaeF
Cde
gnahc-elbaTscitsiretcarahCniP
NI
.lacipytFp4ot.xamFp4morf
.gnitartuptuOdegnahc-sgnitaRmumixaMetulosbA
deddA
ecafretnItupnIkcolClaitnereffiD
.noitces
30/8/7
A2 tuoFSOMCot2/tuoFSOMCmorfeniltsaldegnahc-elbaTtuptuOtseT 30/32/7
BC3T
6T
1
2
4
6
9
.teehsatadhguo
rhtzHM052otzHM002morf.nimycneuqerFOCVdegnahC
.margaiDsnoitarepOdaoLlaireS&lellaraPdetadpU
.seulavmumini
mdegnahc-elbaTnoitcnuFrediviDtuptuOelbammargorP
Fdegnahc-elbaTCA
TUO
.zHM52.13otzHM52morf.nim
.smargaiDnoitanimreTtuptuOLCEPVLdetadpU
30/5/9
B6T
21T
1
2
6
71
.tellubeerF-daeLdedda
-noitceSserutaeF
.snoitarepOdaoLlaireS&lellaraP1.giFdetadpU
."stupniLATXgnisuecnamrofreprettiJ"etoNdete
led-elbaTscitsiretcarahCCA
.rebmuntrapeerF-daeLdedda-elbaTnoitamrofnIgniredrO
50/1/6