Document Number: 83656 www.vishay.com
Revision 17-August-01
2–206
FEATURES
CTR Minimum
MCA230/255, 100%
MCA231, 200%
Isolation Test Voltage, 5300 V
RMS
Coupling Capacitance, 0.5 pF
Fast Rise Time, 10
µ
s
Fast Fall Time, 35
µ
s
Underwriters Lab File #E52744
VDE #0884 Available with Option 1
DESCRIPTION
The MCA230/231/255 are industry standard
optocouplers, consisting of a Gallium Arsenide
infrared LED and a silicon phototdarlington.
These optocouplers are constructed with a high
voltage insulation, double molded packaging
process which offers 7.5 kV withstand test
capability.
Maximum Ratings
Emitter
Reverse Voltage..........................................6.0 V
Continuous Forward Current ....................60 mA
Power Dissipation at 25
°
C.....................135 mW
Derate Linearly from 25
°
C .................1.8 mW/
°
C
Detector
Collector-Emitter Breakdown Voltage
MCA230/231 ............................................30 V
MCA255 ...................................................55 V
Emitter-Collector Breakdown Voltage ........7.0 V
Collector-Base Breakdown Voltage
MCA230/231 ............................................30 V
MCA255 ...................................................55 V
Power Dissipation at 25
°
C.....................210 mW
Derate Linearly from 25
°
C .................2.8 mW/
°
C
Package
Total Package Dissipation at 25
°
C
(LED plus Detector) ...........................260 mW
Derate Linearly from 25
°
C .................3.5 mW/
°
C
Storage Temperature ..............–55
°
C to +150
°
C
Operating Temperature ..........–55
°
C to +100
°
C
Lead Soldering Time at 260
°
C ............... 10 sec.
Isolation Test Voltage ........................5300 V
RMS
Isolation Resistance
V
IO
=500 V,
T
A
=25
°
C............................. 10
12
V
IO
=500 V,
T
A
=100
°
C........................... 10
11
V
DE
Characteristics
(
T
A
=25°C)
Symbol Min. Typ. Max. Unit Condition
Emitter
Forward Voltage
V
F
1.1 1.5 V
I
F
=50 mA
Reverse Current
I
R
——10
µ
A
V
R
=3.0 V
Junction
Capacitance
C
J
—50 pF
V
R
=3.0 V
Detector
BV
CEO
MCA230/231
MCA255
—30
30
—— V
V
I
C
=100
µ
A,
I
F
=0 mA
I
C
=100
µ
A,
I
F
=0 mA
BV
ECO
7.0 V
I
E
=10
µ
A,
I
F
=0 mA
BV
CBO
MCA230/231
MCA55
30
55
V
V
I
C
=10
µ
A,
I
F
=0 mA
I
C
=10
µ
A,
I
F
=0 mA
I
CEO
100 nA
V
CE
=10 V,
I
F
=0 mA
Package
V
CEsat
0.8
1.0
1.0
1.0
1.2
V
V
V
V
V
I
CE
=2.0 mA,
I
F
=16 mA
I
C
=
I
F
=50 mA
I
C
=2.0 mA,
I
F
=1.0 mA
I
C
=10 mA,
I
F
=5.0 mA
I
C
=50 mA,
I
F
=10 mA
DC Current
Transfer Ratio
MCA230/255
MCA231
CTR
CTR
100
200
%
%
V
CE
=5.0 V,
I
F
=10 mA
V
CE
=5.0 V,
I
F
=1.0 mA
Capacitance
Input to Output
C
IO
0.5 pF
Switching Times
t
on
t
off
10
35
µ
s
µ
s
R
L
=100
V
CE
=10 V
.010 (.25)
typ.
.114 (2.90)
.130 (3.0)
.130 (3.30)
.150 (3.81)
.031 (0.80) min.
.300 (7.62)
typ.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
.039
(1.00)
Min.
.018 (0.45)
.022 (0.55)
.048 (0.45)
.022 (0.55)
.248 (6.30)
.256 (6.50)
.335 (8.50)
.343 (8.70)
pin one ID
6
5
4
12
3
18°
3°9°
.300.347
(7.628.81)
4°
typ.
Dimensions in inches (mm)
1
2
3
6
5
4
Base
Collector
Emitter
Anode
Cathode
NC
Photodarlington
MCA230/231/255
Photodarlington
Optocoupler
Document Number: 83656 www.vishay.com
Revision 17-August-01
2207
Figure 1. Forward voltage versus forward current
Figure 2. Normalized non-saturated and saturated
CTRce at
T
A
=25°C versus LED current
Figure 3. Normalized non-saturated and saturated
collector-emitter current versus LED current
Figure 4. Normalized collector-base photocurrent
versus LED current
100101.1
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
IF - Forward Current - mA
VF - Forward Voltage - V
Ta = -55°C
Ta = 25°C
Ta = 85°C
.1 1 10 100 1000
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Vce =1V
Vce = 5 V
IF - LED Current - mA
NCTRce - Normalized CTR
Vce = 5 V
IF = 10 mA
Ta = 25 °C
Normalized to:
100
101.1
.001
.01
.1
1
10
Vce = 1
V
Vce = 5
V
IF - LED Current - mA
NIce - Normalized Ice
Ta = 25°C
IF = 10 m
A
Vce = 5 V
Normalized to:
.1 1 10 100
.001
.01
.1
1
10
IF - LED Current - mA
NIcb - Normalized Icb
Ta = 25°C
Vcb = 3.5 V
IF = 10 mA
Normalized to:
Figure 5. Non-saturated and saturated HFE versus base current
Figure 6. Low to high propagation delay versus
collector load resistance and LED current
Figure 7. High to low propagation delay versus
collector load resistance and LED current
Figure 8. Switching timing waveform and schematic
.01 .1 1 10 100
0
2000
4000
6000
8000
1000
0
Vce = 5
V
Vce = 1
V
Ib - Base Current - µA
HFE - Forward Transfer Gain
Ta = 25°
C
0 5 10 15 20
0
20
40
60
80 Ta = 25°C, Vcc = 5
V
Vth = 1.5 V
220
470
1K
IF - LED Current - mA
tpLH - Low/High Propagation
Delay - µs
100
0 5 10 15 20
0
5
10
15
20
100
1K
IF - LED Current - mA
tpHL - High/Low Propagation
delay - µs
Ta = 25°C
Vcc = 5 V
Vth = 1.5
V
IF
tR
VO
tD
tStF
tPHL
tPLH
VTH=1.5 V
VCC=5 V
VO
RL
IF=10 mA
F=10 KHz,
DF=50%