Key features
Digitally programmed
transmission and signalling
characteristics meets
world-wide specification
requirements
Integrated ringing, sine or
trapezoid
Metering injection
Battery reversal
Tone generators for signalling
and test
Minimal external components
CODEC and SLIC functions for
2 lines
Low-cost POTS interface for
short range
Standard GCI interface
Applications
Advanced ISDN NT (NTplus)
Analog / Digital PABX
Cable Telephone systems
(set-top box)
Remote telephone access
systems
Fibre to the curb
Radio in the loop
Internet telephones
MTC-20232 CODSP
MTC-30132 SH LIC
MTK-40131
SH POTS chipset
Rev. 1.31 - December 1998
Data Sheet and
User Manual
Fig. 1: Application Sketch / Block Diagram
General Description
The MTK-40131 chipset provides all
the functions necessary to connect ana-
log telephone sets or other analog ter-
minals (telefax, answering machines,
modems etc...) into digital communica-
tion systems. It provides an economical
solution for the traditional ‘BORSHT’
functions found in central-office
exchanges, but optimised for short-
range communication (e.g. up to 500m
with 4 RENs attached). Virtually all sys-
tem-dependent parameters can be set
under software control, giving a hither-
to unprecedented flexibility to the sys-
tem integrator, as well as optimising the
system cost. The digital interface to the
SH POTS chipset uses the industry-stan-
dard “GCI”* interface. The system
architecture has been designed to offer
the most cost-effective solution for short-
haul systems, yet offers the full flexibility
required to meet world-wide analog
telephony standards. Suitable for
Q.552 applications.
The MTK-40131 chipset comprises three
devices (see fig 1.): A pair of high-volt-
age device, the Short-Haul Line Interface
Circuit (SH LIC) which provides the sig-
nal and power interface to the analog
lines (one per line) and a low-voltage
CMOS, DSP-based dual CODEC/con-
trol device (CODSP) which provides all
signal processing and control functions
for up to two lines.
(* The General Circuit Interface (GCI) is an interface specification,
developed jointly by Alcatel, Italtel, GPT and Siemens;
date March 1989; issue 1.0)
Ordering Information
Part number Package Code Temp
MTK-40131-C Includ.MTC-20232PQ-C 44 pinPQFP PQ44 0 to -70°C
2x MTC-30132SO-C 28 pinSO SO28 0 to -70°C
MTK-40131-I Includ.MTC-20232PQ-I 44 pinPQFP PQ44 -40/+85°C
2x MTC-30132SO-I 28 pinSO SO28 -40/+85°C
2
MTK-40131
MTC-30132
SH LIC
28 PSOP
GNDB
AW
BW
SA
BAT
SB
SSB
BATR
DCO
PU
DCI
NC
NC
NC
NC
RNG
DCC
BR
TX
TST
RX
VAG
DCLF1
VDDA
DCLF2
GNDA
V3V
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Package / Pinout
Fig. 2: Device Pinouts
MTC-20232
CODSP
44 PQFP
PU[0]
SPDI
SPICS
SPICK
SPIDO
PWRS
RNG[0]
TST[0]
BR[0]
TEST
ZOUT
JTDO
JTCK
JTDI
JTRS
V3VD
DU
DD
DCL
FSC
GNDD
AD2
AD1
AD0
GCIM
TST[1]
BR[1]
RNG[1]
PU[1]
SCLK
PLLCK
CPLL
RX[0]
TX[0]
DCC[0]
DCO[0]
DCC[1]
DCO[1]
GNDA
VAG
V3VA
TX[1]
RX[1]
2
3
4
5
6
7
8
9
10
11
17
13
14
15
16
18
19
20
21
22
40
44
43
42
41
39
38
37
36
35
33
32
31
30
29
28
27
26
25
24
3
MTK-40131
Table of Content
Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Note on Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Functional Characteristics of the SH POTS System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
On-hook Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Ringing Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DC Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Battery Voltage and Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
AC Transmission Characteristics (MTK-40131 System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Transmit and Receive Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Source Impedance (Zco) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Balance Impedance (Echo Canceller) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Off-hook Characteristics (MTK-40131 System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Metering Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Tone Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
CODSP Clock Recovery PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
User-Defined I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Thermal Shutdown SHLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Transient Energy Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DC Characteristics (MTC-30132 SHLIC, unless otherwise noted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Power Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
V3V Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
AW, BW DC- Levels, Impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
RX, TX DC- Levels, Impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DCO DC- Levels, Impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
VAG Analog Ground Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SA,SB Sense Bridge Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DC loop filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DCC Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Characteristics for the Digital I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Test Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Battery Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
AC Characteristics (SHLIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Overpower and Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4
MTK-40131
Quality / Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Detailed Programming Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
GCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
C/I Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
C/I Bit Allocation:C/I Bit Allocation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ID Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Memory Map of the CODSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Global Memory Map and MemID Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Data RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Meaning and Default Values of the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
CoProcessor Coefficient RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Meaning and Default Values of the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
SHARED Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Meaning and Default Values of the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
General dimensions of the MTC-20232PQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
General dimensions of the MTC-30132SO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
5
MTK-40131
List of Figures
Fig. 1: Application Sketch / Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Fig. 2: Device Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Fig. 3: Application schematic for 2 analog lines (see Table 3 for component values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Fig. 4: MTC-20132 CODSP Recommended Power-Supply Decoupling Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Fig. 5: Recommended overvoltage protection options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Fig. 6: SH POTS Line voltages - example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Fig. 7: Nominal hook-switch detection thresholds (default values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Fig. 8: DC Feed characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Fig. 9: Transmit and receive frequency response (default) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Fig. 10: Relative Group delay, transmit and receive paths (Digital to Digital) refered to 1kHz . . . . . . . . . . . . . . . . . . . . . . 18
Fig. 11: 3-element Zco model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Fig. 12: Metering pulse timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Fig. 13: Application suggestion for Semi-unbalanced ringing injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Fig. 14: Block diagram showing the gains in the various signal paths in the SHLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Fig. 15: Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Fig. 16: GCI data exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Fig. 17: GCI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6
MTK-40131
List of Tables
Table 1: Pin description for MTC-20232PQ CODSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2: Pin description for MTC-30132SO SH LIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3: Recommended external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 4: MTC-20232 CODSP unused pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5: MTC-30132 SH LIC unused pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6: Table 6: On-hook Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7: Ringing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 8: DC Feed Characteristics (Rfeed = 60total (50+10protection) x2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9: Examples of ZCO Coëfficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10: Off-hook Characteristics (MTK-40131 System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11: Metering Characteristics (Determinized by MTC-20232 CODSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 12: Tone signal levels (common values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 13: Tone Generator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 14: Tone generator division values for common frequencies from ETS-300-001, and DTMF tones . . . . . . . . . . . . . . . 24
Table 15: Required frequency setting values (N) for a melody generator (western equal-tempered scale) . . . . . . . . . . . . . . 25
Table 16: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 17: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18: SHLIC Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 19: Power Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 20: Power-on Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 21: V3V Regulator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 22: Voltage Characteristics A Wire, B Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 23: Impedance Characteristics A Wire, B Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 24: RX, TX Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 25: DCO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 26: VAG Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 27: Sense Bridge Inputs Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 28: DC Loop Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 29: DCC Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 30: Digital I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 31: Test Switch Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 32: Ringing Battery Switch Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 33: Typical Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 34: Short Circuit Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 35: GCI Mode and Timeslot address programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 36: GCI Interface: Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 37: Memory Map for CODSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 38: Data RAM: Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 39: LBO Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 40: Data RAM: Description and Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 41: Coprocessor Coefficient RAM: Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 42: Coprocessor Coefficient RAM: Description and Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 43: Shared Memory: Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 44: Shared Memory: Description and Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7
MTK-40131
Pin Description
Pin Name Description
1 JTDO JTAG Test port data out
2 JTCK JTAG Test port clock
3 JTMS JTAG Test port mode select
4 JTDI JTAG Test port Data In
5 JTRS JTAG Test port reset
6 V3VD Digital section supply voltage
7 DU GCI port upstream data
8 DD GCI port downstream data
9 DCL GCI port data clock
10 FSC GCI port frame clock
11 GNDD Digital ground (0V)
12 AD2 GCI port timeslot select, MSB
13 AD1 GCI port timeslot select
14 AD0 GCI port timeslot select, LSB
15 GCIM GCI port operating mode (0 = 1 timeslot, 1 = 8 timeslots)
16 TST[1] SH LIC 1 test select
17 BR[1] SH LIC 1 Bat Reverse control
18 RNG[1] SH LIC 1 Ring control
19 PU[1] SH LIC 1 Power-up control
20 SCLK system clock (test only)
21 PLLCK PLL clock (test only)
22 CPLL PLL loop filter capacitor
23 RX[1] SH LIC 1 RX analog signal
24 TX[1] SH LIC 1 TX analog signal
25 V3VA Analog supply voltage
26 VAG Analog ground reference voltage output
27 GNDA Analog ground (0V)
28 DCO[1] SH LIC 1 DC loop output
29 DCC[1] SH LIC 1 DC loop control
30 DCO[0] SH LIC 0 DC loop output
31 DCC[0] SH LIC 0 DC loop control
32 TX[0] SH LIC 0 TX analog signal
33 RX[0] SH LIC 0 RX analog signal
34 ZOUT Digital I/O drive control (test only)
35 TEST Test mode select (test only)
36 TST[0] SH LIC 0 test select
37 BR[0] SH LIC 0 Bat Reverse control
38 RNG[0] SH LIC 0 Ring control
39 PU[0] SH LIC 0 Power-up control
40 SPIDI SPI port data in (User I/O)
41 SPICS SPI port chip-select (User I/O)
42 SPICK SPI port clock (User I/O)
43 SPIDO SPI port data out (User I/O)
44 PWRS Reset input
Table 1: Pin description for MTC-20232PQ CODSP
8
MTK-40131
Table 2: Pin description for MTC-30132SO SH LIC
Pin Name Description
1 GNDB Battery ground (0V)
2 BW B wire output
3 BAT Battery voltage (output, do not connect)
4 BATS Battery voltage input, SPEECH mode
5 BATR Battery voltage input, RING mode
6 PU Power-up control
7 NC Do not connect. Thermal conduction pin
8 NC Do not connect. Thermal conduction pin
9 RNG Ring mode control
10 BR Battery Reverse control
11 TST Test mode control
12 VAG Analog Ground reference input
13 VDDA Analog supply voltage
14 GNDA Analog Ground, 0V
15 V3V 3V regulator output
16 DCLF1 DC bias filter capacitor 1
17 DCLF2 DC bias filter capacitor 2
18 RX Analog receive signal
19 TX Analog transmit signal
20 DCC DC loop control input
21 NC Do not connect. Thermal conduction pin
22 NC Do not connect. Thermal conduction pin
23 DCI DC loop control separation filter input
24 DCO DC loop control output
25 SSB Loop test resistor switch
26 SB B-wire sense input
27 SA A-wire sense input
28 AW A-wire output
9
MTK-40131
Application Schematic
CODSP
SH LIC
SA
AW
SSB
BW
SB
BATS
BATR
VDDA
GNDB
DCLF1
DCLF2
GNDA
V3V
TST[0]
BR[0]
RNG[0]
PU[0]
RX
TX
DCC
DCO
DCI
VAG
Vbats
Vbatr
VddA
Cvag
Cdci
CV3VD
Cb1
Cb2
RB2
RB1
Ztest
Cf1
Cf2
Cs
Cd
protection
LINE
a
b
RX[0]
TX[0]
DCC[0]
DCO[0]
VAG
TST
BR
RNG
PU
SH LIC
SA
AW
SSB
BW
SB
BATS
BATR
VDDA
GNDB
DCLF1
DCLF2
GNDA
V3V
TST[1]
BR[1]
RNG[1]
PU[1]
RX
TX
DCC
DCO
DCI
VAG
Vbats
Vbatr
VddA
Cdci
CV3VA
Cb1
Cb2
RB2
RB1
Ztest
protection
LINE
a
b
RX[1]
TX[1]
DCC[1]
DCO[1]
TST
BR
RNG
PU
CPLL
Cpll
GNDD
GNDA
V3VD
SPIDI
SPIDO
SPICS
SPICK
PLLCK
GCIM
DU
DD
FSC
DCL
AD0
AD1
AD2
GCI mode
and timeslot
address
GCI port
User
Outputs
(optional)
JTDI
JTDO
JTCK
JTMS
JTRS
TEST
ZOUT
JTAG test
access
Device
test
Cpwrs
PWRS
V3VD
Rpwrs
0
0
0
1
0
0
-
0
0,1
0,1
0,1
0,1
V3VD
BAT
BAT
Dp
SCLK
0
Rf1
Rf2
Cf1
Cf2
Rf1
Rf2
Rprot
Rprot
CV3VA
Dp
Dp
D1
Fig. 3: Application schematic for 2 analog lines (see Table 3 for component values).
10
MTK-40131
Table 3: Recommended external components
Component Function Value Comment
RB1, RB2 Feed resistor 501/4 W ±1% *
Rprot Protection resistance 2x10
Ztest Test resistor 5101/4 W, optional
Rf1, Rf2 DC bias filter 10k
Cb1, Cb2 No-load stabilisation 1nF 100V **
Cdci DC feed separation 330nF 5%
Cf1,Cf2 DC bias filter 470nF 100V, 10%
Cvag Analog ground decoupling 100nF
CV3VA Analog 3,3V regulator decoupling 10µF+100nF
CV3VD Digital 3,3V decoupling 10µF+100nF
Cs, Cd Battery supply decoupling 100nF 100V
Cpll PLL loop filter 4.7nF
Cpwrs Power-on reset delay 100nF
Rpws Power-on reset delay 100k
D1 Power loss reset Any small signal diode
Dp Battery input protection BAT46 Required depending on
the power supplies
* ±1% results in a maximum longitudinal balance of 40dB. For higher values, more
precise matching is required (e.g. ±0.1% for 46dB).
** Capacitors are generally not required. They are foreseen to stabilise the line dri-
ver outputs when active but driving no load (test condition only).
11
MTK-40131
Table 4: MTC-20232 CODSP unused pin connectionsUnused Pins
CODSP:
Pins which are not used in the applica-
tion should be connected as described
here. Failure to do so could result in
excessive sensitivity to RFI, or other
erratic behaviour. ‘0’ or ‘1’ indicates
that the pin should be connected to
ground or to the device’s digital supply.
‘-’ indicates that the pins is an output
and must be left unconnected.
Pin # Connect to
SPDO 43 -
GCIM 15 0,1 (GCI mode select)
AD0 14 0,1 (GCI timeslot select)
AD1 13 0,1 (GCI timeslot select)
AD2 12 0,1 (GCI timeslot select)
JTDI 4 0
JTDO 1 -
JTCK 2 0
JTMS 3 0
JTRS 5 1
SCLK 20 0
PLLCK 21 0
ZOUT 34 0
TEST 35 0
Table 5: MTC-30132 SH LIC unused pin connections
Pin # Connect to
BAT 3 No Connect or see text below
NC 7 No Connect or see text below
NC 8 No Connect or see text below
NC 21 No Connect or see text below
SHLIC:
The pins NC (7, 8, 21 and 22) are
connected to the device substrate,
which is at a voltage equal to the
VBATR supply pin, and may optionally
be electrically connected to this pin.
The pin BAT is the internal supply to the
line-drivers, and adopts the voltage of
VBATR or VBATS, plus the voltage drop
across the internal switch, depending
on the operating mode. In low-voltage
only systems (very short connections,
the pins BAT, VBATR and VBATS may
all be connected together, and a single
supply (e.g. -27V) used for both ringing
and speech modes. (In this mode, the
voltage drop of the internal switches is
avoided).
12
MTK-40131
Note on Decoupling
As in any system, the PCB layout and
supply decoupling can influence the
system performance, particularly with
respect to noise.
CODSP:
It is recommended to connect V3VD
and V3VA (digital and analog sup-
ply pins) in a star configuration from
the supply (either from the SH LIC or
an external supply), and each pin be
independently decoupled using 10µF
in parallel with 100nF.
In 2-line systems using the SHLIC’s
regulator to supply the CODSP only
(i.e. no other use is made of the regu-
lator), one SHLIC may be used to
provide V3VD power and the other
V3VA, thus giving improved decou-
pling between analog and digital
supplies. See figure 4.
The VAG line (analog signal refer-
ence) must always be properly
decoupled using 100nF, placed as
close as possible to the CODSP
device.
SHLIC:
The SHLIC should use separate
100nF decoupling capacitors
between VDD and GNDB and VDD
and GNDA. When the on-board reg-
ulator of the SHLIC is not used, no
capacitor is required at the V3V pin
of this device.
MTC-30132
SH LIC
MTC-30132
SH LIC
MTC-20132
CODSP
GNDD
V3VD
GNDA
V3VA
VAG
+3.3V Star point
Ground
star-point
GNDA
GNDB
GNDA
GNDB
MTC-30132
SH LIC
MTC-30132
SH LIC
MTC-20132
CODSP
GNDD
V3VD
GNDA
V3VA
VAG
Ground
star-point
GNDA
GNDB
GNDA
GNDB
V3V
V3V
10 µF Ta
100 nF Cer
Fig. 4: MTC-20132 CODSP Recommended Power-Supply
Decoupling Arrangements
RB1
Rpr1
RB2
Rpr2
BATR
GNDB
AW
SA
SB
BW
MTC-30132
SH LIC
RB1
Rpr1
RB2
Rpr2
GNDB
AW
SA
SB
BW
MTC-30132
SH LIC
RB1
Rpr1
RB2
Rpr2
GNDB
AW
SA
SB
BW
MTC-30132
SH LIC
RB1
Rpr1
RB2
Rpr2
GNDB
AW
SA
SB
BW
MTC-30132
SH LIC
Transient
Suppressor
13
MTK-40131
Overvoltage Protection
There are several recommended over-
voltage protection options. The applica-
tion will determine the most appropriate
one to chose (e.g. in-house only systems
with minimal protection requirements,
or systems with loops outside a protect-
ed environment requiring more extend-
ed protection).
The first external protection network to
protect the line circuit against foreign
voltages consists of the resistors Rpr1
and Rpr2 and an overvoltage protec-
tion component, see fig 5. The series
resistors Rpr1 and Rpr2 can be PTC,
poly-switch or fusible components.
For further protection, the simplest and
cheapest solution is a diode bridge
between SA,SB and GNDB, BATR
respectively. The diodes must be able to
allow current peaks more then 20A.
In case the battery BATR cannot accept
these high current peaks, one has to
add a voltage clamping component to
GND or a transient suppresser between
each line and GND. The clamp voltage
or protection voltage minimum must
always be larger then the maximum
used ringing battery BATR.
The protection components must be
dimensioned in such a way that the
transient energy on the chip pins AW,
BW does not exceed 1mJoule.(energy
on chip because of 1 lightning pulse)
Fig. 5: Recommended overvoltage protection options
0V
VbatS
VbatR
(avg. DC = VbatR/2)
ON HOOK
ON HOOK ADSI
RING BURST
OFF HOOK
(saturation, <0.5V)
(bias, 3V)
(bias, 3V)
(e.g. -24V)
(e.g. -64V)
(bias, 3V + drop
of BAT switch)
(bias, 3V + drop of BAT switch)
14
MTK-40131
Fig 6: SH POTS Line voltages - example.
Functional Characteristics of the SH POTS System
For reference, fig 6 shows the typical
voltages on both wires during various
stages of operation. For detailed electri-
cal parameters, please refer to the Elec-
trical Characteristics section.
On-hook Conditions
When a line is not in use (on-hook), the
designer may select either the speech
battery or the ringing battery as the sup-
ply to the line drivers. In this mode, most
of the internal circuits are put into a low
power operating mode, to minimise
supply currents. The A and B wire out-
puts are effectively connected to the
supply voltage, thus applying this volt-
age (minus a small saturation voltage)
to the line. The output is current limited
in this mode, thus protecting against
short circuits, and limiting any inrush
current when a set goes off hook. If the
SH LIC detects a current in excess of a
(programmable) limit, the off-hook con-
dition will be detected (an on-chip
debouncer with selectable delay avoids
accidental hookswitch detection), and
the circuit will be put into active speech
mode. The nominal off-hook detection
currents, and the hysteresis, are shown
in fig 7. When in the on-hook condi-
tion, the system designer may select,
under program control via the GCI bus,
an ‘on hook active mode’, whereby on-
hook signalling (ADSI, CLI etc..) can be
performed in either direction (note, how-
ever, that battery reversal is not avail-
able in this mode.).
15
MTK-40131
off-hook
on-hook
6.0
8.8
10.2
13.6
line current
mA
Fig. 7: Nominal hook-switch detection thresholds (default values)
Parameter Conditions Min Max Units Note
Vfeedo Open-line feed voltage Vbats-1 Vbatr V 4
Ion Line current guaranteeing on-hook state 5.1 11.1 mA 1
Ioff Line current guaranteeing off-hook state 8.2 14.2 mA 1
Iohyst Hookswitch detect hysteresis 2 mA 1
Thks Hookswitch detect time 20 ms 2
Ioc Peak over-current limit, on-hook mode 145 mA 3
VbiasH Bias voltage during ADSI mode 2 4 V
VbiasL on a (H) and b (L) wires ref. BAT pin
Notes:
1. These are the default values, after
reset. The on-hook and off-hook thresh-
olds can be individually programmed in
the range 0 to 63mA nominal.
2. Time between off-hook condition and
the line current reaching 90% of its final
value.
3. This is the intrinsic current limit of the
output driver. This current can only be
seen during on-hook to off-hook tran-
sients, or during ringing into a short-cir-
cuit load during the ring-trip delay peri-
od. The actual value measured will
depend on the load resitance used.
4. Iline=0mA, independent of battery
reversal mode. This voltage is selected
by the user. The output impedance
when in the on-hook condition is set by
the sense resistors Rfeed.
The hook-switch detector has a pro-
grammable debounce timer. Times of 8,
16, 24 or 64 ms can be selected (com-
mon for both channels).
Table 6: On-hook Characteristics
6.3 10.0
16
MTK-40131
Parameter Conditions Min Max Units Note
Fr Ringing frequency
16.66, 20, 25 Hz -1 +1 Hz
50 Hz -2 +2 Hz
SFNr Single-frequency noise, 10 Hz to 4 kHz -63 dBm
Vr Ringing voltage (max), Vbatr=-72V 50 Vrms 4
Dr Ringing distortion, sine mode
30Hz to 132 kHz 5 %
Trtd Ring-trip delay, load = 500+4µF 150 ms
Trtdeb Ring-trip de-bounce time 0 30 ms 3
Trtzc Ring-trip detect zero-cross mask time 1.75 ms 2
Tc Ring-cadence times (active and silent) 1 255 n/n 1
IrtH Ring-trip current, high threshold 6.0 12.0 mA 2
IrtL Ring-trip current, low threshold 3.5 9.5 mA 2
Hrt Ring-trip hysteresis 2 mA 2
Notes:
1. Units are periods of the selected ring-
ing frequency. The default values are 1s
on, 3s off with a ringing frequency of
50Hz.
2. These are the default values, after
reset. The max and min ring-trip thresh-
olds can be individually programmed
in the range 0 to 63mA(!) nominal. The
ring-trip detect mask time is used to
bridge the zero-crossings of the ringing
signal, and is programmable between
0 and 32 ms in 125µs steps.
3. User-selectable 0 or 30ms. Default is
30 ms.
4. Ringing voltage is user programma-
ble from 0 to 70Vp(diff) between the a
and b wires (NB, the ringing battery
voltage must be large enough to encom-
pass this voltage), in 256 steps. The
default is the maximum value. Condi-
tion: Load = Ø mA
Ringing Injection
The SH POTS chipset is capable of
directly injecting a ringing signal of up
to 50Vrms (sine wave) without the need
for additional external components. The
technique of “balanced ringing” is
used, which allows this large voltage
swing to remain within the technology
limits of the SH LIC device. (Balanced
ringing requires a specific algorithm for
ring-trip detection, which is also imple-
mented by the chipset). The SH POTS
chipset allows the user to program a
DC offset during ringing as well as a
reduced amplitude ringing signal,
should the application require
this. Ringing waveform, frequency,
amplitude and cadence, as well as ring-
trip thresholds, are controlled by the
CODSP device, and are all program-
mable. Ringing cadence can be auto-
matic, with independently programma-
ble ring and pause times, or ringing
can be controlled directly via the GCI
bus. In automatic cadence mode, ring-
ing bursts on both channels can option-
ally be interleaved if simultaneously
active, to avoid peaks in current from
the ringing battery supply.
Table 7: Ringing Characteristics
DC Feed Characteristics
As shown in figure 8, the SH POTS
chip-set implements a constant-current
feed. The limit current and the residual
resistance (slope of the characteristic)
are both programmable by the user.
The DC characteristic falls into three
regions. When the combination of line
and subset result in a current less than
the programmed limit current, the sys-
tem behaves like a battery with a fixed
feed resistance of 120, and a voltage
equivalent to the speech supply voltage
(VbatS) minus the bias voltage on both
lines (6V nominal in total). Should line
conditions permit a current which
exceeds the programmed limit current,
the system enters the constant-current
feed mode described above. In order to
protect the output stage in the transition
region at higher line currents (in excess
of 50mA), a third region is defined,
where the system synthesises a fixed
feed resistance of 200. The slope of
the voltage/current characteristic in the
constant-current mode can be user pro-
grammed to select the effective feed-
resistance.
Note: The SH LIC device includes an
over-temperature protection, which acti-
vates in case of overheating of the
device.
Battery Voltage and Rever-
sal
The open-line voltage (i.e. the voltage
seen on the line when on-hook) is user-
selectable for each channel via an inter-
nal register. It can be either the ringing
battery supply (most common use) or
the speech battery supply. The speech
battery supply is automatically selected
when an off-hook condition is detected,
independently of these control bits. The
selected supply voltage is maintained
when the on-hook signalling function
(ADSI) is enabled.
The polarity of the line feed can be
dynamically controlled by the user. In
the ‘normal’ condition, the A-Wire is the
most positive. Reversal thus makes the B-
Wire the most positive. Battery reversal
is fast (not soft), is controlled by pro-
gramming an internal register and is
independent for both channels. The
selected polarity is used in all states (on-
hook, off-hook, ringing etc...) except on-
hook signalling which is normal battery
mode.
17
MTK-40131
Iline (mA)
20
40
60
80
Vline (V)
Vbats
VfN
(Programmable)
Rfeed
Rfeed=200
Rfeed=120
Fig 8: DC Feed characteristics.
Parameter Conditions Min Max Units Note
VbiasH Bias voltage, a wire (Iline=0) 2.5 3.5 V
VbiasL Bias voltage, b wire (Iline=0) 2.5 3.5 V
TOLIcl Current limit tolerance ±15 %
TRfeedcl Tolerance on programmed Rfeed ±15 %
when in current-limit
Icl Current-limit, useful programmed range 20 70 mA
Table 8: DC Feed Characteristics (Rfeed = 60total (50+10protection) x2)
18
MTK-40131
1500
1200
900
600
300
0
1800
500
600
1000
2000
2600
2800
frequency
Hz
µs
Delay
Fig 10: Relative Group delay, transmit and receive paths
(Digital to Digital) refered to 1kHz
16000
4600
3600
3400
3000
2400
600
400
300
200
receive
transmit
receive / transmit
-0.3
0.0
0.35
0.55
0.75
1.0
1.5
12.5
25.0
4000
Fig 9: Transmit and receive frequency response (default).
Transmit and Receive
Filter Characteristics
The Short-haul POTS chipset implements
transmit and receive filters according to
ITU-T (G.712). These filters can be
reprogrammed by the user for specific
requirements. Please contact Alcatel
Microelectronics for further details on
this. The default filter characteristics
implemented are shown in figures 9
and 10 below.
AC Transmission Characteristics (MTK-40131 System)
Transmit and Receive Gain
Transmit (from analog subset towards
the switching system) and receive gains
are user programmable, independently
for both lines. The default values are
0dBr in the transmit direction, and -
7dBr in the receive direction.
12.5 1 - SIN dB
π(4000-ƒ)
1200
19
MTK-40131
Source Impedance (Zco)
The central-office impedance, Zco, is
synthesised using digital signal proces-
sing techniques. This renders it very sta-
ble, and moreover programmable by
the user by means of coefficients which
are loaded via the GCI. Real or com-
plex Zco’s can be synthesised, using the
common 3-element model (Rs, Rp, Cp;
see fig 11). The Zco setting is common
for both lines. Both real and complex
Zco’s can be programmed to address
the local requirements of specifications
world-wide, and cover the range:
Using the default coefficient values, the
return loss when measured against
600(using 0dBm input signal level) is
better than 20dB in the 300 to 3400
Hz band, and better than 10 dB at 10
kHz.
Real impedances: 600to 900
Complex impedances:
Rs from 160to 500
Rp from 300to 1000
Rp//Cp pole from 725 Hz to 5kHz
Rs
Rp
Cp
Fig. 11: 3-element Zco model.
Balance Impedance
(Echo Canceller)
The balance impedance (model of the
line+set impedance used to separate
the receive and transmit signals in the
‘hybrid’) is independently programma-
ble (though is the same for both
channels). Default values offer echo
return loss of better than 20dB, though
optimization to specific line and set
characteristics may yield further
improvement.
Rs Rp Cp ZcoSh Alfa3 ZcoA2 Rzco ZcoGamma ZcoAlfa3 Ftx Ap Nan ACG
Belgium 600 0 0 0 0 3 0 0 237 0 0 103
Germany 220 820 115nF 0 40 9 9 5 52 346 512 125
Europe 270 750 150nF 0 19 7 15 4 122 388 -179 125
ZCO850 850 0 0 0 0 0 0 0 282 0 0 123
ZCO900 900 0 0 0 0 0 0 0 290 0 0 126
Table 9: Examples of ZCO Coefficients
h0 h1 h2 h3 a0 c5 b0 Dzd0 Dzd1
Belgium 4 -22 105 95 0 0 0 1 1
Germany -31 48 1 156 0 0 0 0 0
Europe 3 -23 118 88 0 0 0 0 0
ZCO850 4 -22 105 95 0 0 0 1 1
ZCO900 4 -22 105 95 0 0 0 1 1
20
MTK-40131
Off-hook Characteristics (MTK-40131 System)
Parameter Conditions Min Max Units Note
Gtx Relative gain, transmit direction -6 +1 dB 1
Gain programming step 0.25 dB
Step accuracy 0.1 dB
Gain tolerance (ref. programmed value) -0.5 +0.5 dB
Grx Relative gain, receive direction -12 +1 dB 1
Gain programming step 0.25 dB
Step accuracy 0.05 dB
Gain tolerance (ref. programmed value) -0.5 +0.5 dB
dGlt Long-term gain stability -0.5 +0.5 dB 2
Gttx Gain tracking, TX path
+3 to -40 dBm0 ±0.3 dB 3
-40 to -50 dBm0 ±0.6 dB 3
-50 to -55 dBm0 ±1.6 dB 3
Gtrx Gain tracking, RX path
+3 to -40 dBm0 ±0.3 dB 3
-40 to -50 dBm0 ±0.6 dB 3
-50 to -55 dBm0 ±1.6 dB 3
IMDtx Intermodulation distortion, TX path -45 dBm0 4
IMDrx Intermodulation distortion, RX path -50 dBm0 4
Sdtx Signal to total distortion ratio, TX (gain= 0 dB)
-0 to -10 dBm0 35 dB 5
-20 dBm0 34.7 dB
-30 dBm0 32.9 dB
-40 dBm0 24.9 dB
-45 dBm0 19.9 dB
Sdrx Signal to total distortion ratio, RX (gain= - 7 dB)
-0 to -10 dBm0 35 dB 5
-20 dBm0 33.8 dB
-30 dBm0 28.8 dB
-40 dBm0 19.5 dB
-45 dBm0 14.5 dB
SFNrx Single frequency noise
300 to 3400 Hz, all out of band freqs. -40 dB
700 to 1100 Hz in band 300 to 3400Hz -49 dB
Longitudinal balance
Resistor matching 1% 40 dB
0.1% 46 dB
Notes:
1. User programmable.
2. Covers variations within the permit-
ted ranges of supply voltage and tem-
perature during any one year.
3. Referred to the gain at 1020 Hz
applied to the input at a level -10dBm0.
4. Intermodulation distortion measured
for all intermodulation products of any
non-harmonically related frequencies in
the range 300 to 3400 Hz for levels
between -4 and -21 dBm0.
5. Intermodulation distortion measured
for all intermodulation products of a fre-
quency in the range 300 to 3400 Hz at
-9dBm0 and 50Hz at -23dBm0.
Table 10: Off-hook Characteristics (MTK-40131 System)
Conditions: see paragraph "operating conditions"
21
MTK-40131
Metering Injection
Metering pulses of selectable frequency
(12 or 16 kHz) and programmable
amplitude can be injected into either
analog channel independently. The
width of the injected pulse is determi-
ned by the user (“on/off mode”), or by
an internal timer (“burst mode”) which
can be set by the user from 2ms to 510
ms in steps of 2ms. The metering signal
is always a multiple of half metering
periods. See fig. 12.
metering
/MPI
metering
/MPI
on/off mode
burst mode
tmburst
Fig. 12: Metering pulse timing diagrams.
The metering level on the line is set by: Vlm = (Vgen . Zm)/(Zm + Zcom)
where:
Vlm = metering pulse level on the line
Vgen = set level of the metering generator
Zm = impedance of the metering load
Zcom = CO impedance at the metering frequency.
The metering level Vgen is selectable
from 0 to a maximum level of
230mVrms (500m line with
Zco=900) in 15 linear steps. The
internal tolerance on the metering sig-
nal level is ±10%.
Metering is initiated on a channel by
an active low state on the correspond-
ing /MPI bit in the GCI C/I byte.
22
MTK-40131
Metering Characteristics (Determinized by MTC-20232 CODSP)
Parameter Conditions Min Max Units Note
Fml Metering frequency, 12kHz -60 +60 Hz (±0.5%)
Fmh Metering frequency, 16kHz -80 +80 Hz (±0.5%)
SFN1 Single-frequency noise, subharmonics
for 12kHz, 30Hz to 12 kHz -69 dBm0
for 16kHz, 30Hz to 12 kHz -69 dBm0
SFN2 Single-frequency noise, mixed products
12kHz, 12kHz to 20kHz -51 dBm0
12kHz, 20kHz to 132kHz -69 dBm0
16kHz -69 dBm0
Nmc In-band noise due to metering signal -60 dBmp 1
Nmt Transient noise due to metering pulse -35 dBm0 1
THDm Metering total harmonic distortion,
30 Hz to 132 kHz, out of CODSP 0.5 %
Dm Metering signal distortion at load 5 % on 200
Vlm Metering pulse amplitude, maximum 207 253 mVrms (±10%)
level with Zco=900, Rline=130
SYMm Metering symmetry, a and b wires 24 dB (max 6%)
SFNtx Single frequency noise, mixed products,
10Hz to 4 kHz, TX path -63 dBm
Note:
Measured in accordance to ITU-T speci-
fication 071 (Blue Book)
Table 11: Metering Characteristics (Determinized by MTC-20232 CODSP)
Conditions: see paragraph "operating conditions"
23
MTK-40131
Tone Generation
The SH POTS system allows the injection
of user programmable tones, inde-
pendently per channel, for signalling or
user test purposes. Per channel, a tone
comprising two programmable (sine-
wave) frequencies and programmable
amplitudes can be generated (in this
way, the most common call-progress and
information tones, melody notes or DTMF
tones, can be synthesised). The tone sig-
nal is added to the speech signal (the
user must be aware of possible clipping
which may occur if high signal levels are
programmed), or the speech
signal can also be muted during a tone
burst. The tone burst duration is under
user control only (the control bits for mute
and tone insertion occupy the same reg-
ister, which simplifies the generation of
tone bursts).
dBm n Actual err (dB)
3 89 3.00 0.00
1.5 75 1.51 0.01
0 63 0.00 0.00
-1.5 53 -1.50 0.00
-3 45 -2.92 0.08
-6 32 -5.88 0.12
-8 25 -8.03 -0.03
-10 20 -9.97 0.03
-15 11 -15.16 -0.16
-20 6 -20.42 -0.42
-30 2 -29.97 0.03
-36 1 -35.99 0.01
Note that it is possible to generate tones
of very high amplitude. The user must
ensure that the amplitude parameter is
programmed before the tone is
enabled.
Table 12: Tone signal levels (common values)
The tone frequency is given by:
Fout = 250 * N / 256 Hz, where N is a 16 bit value
(thus, N=1024 yields a tone of 1 kHz)
or
N = int(Fout*256/250 + 0.5)
The tone generated has continuous
phase if the programmed frequency is
changed during the course of a tone
(this is not so if the generator is stopped
and restarted). Tables 2 and 3 list the
values of N required to generate com-
monly occurring frequencies, and the
resulting error.
The amplitude of each frequency within
the tone can be independently set from
0 to the maximum level in 256 linear
amplitude steps (8 bit value), with
n=63 corresponding to 0dBm on the
line. From this, the line signal level Vtl
for a given gain factor n is given by:
Vtl = 20 log(n/63) in dBm.
or
n = int(63*10^(Vtl/20) + 0.5)
Table 11 lists values for n for a range
of tone signal levels.
Common signalling frequencies
Freq. (Hz) N Actual Freq. error (%)
300.00 307 299.805 -0.07
320.00 328 320.313 0.10
325.00 333 325.195 0.06
340.00 348 339.844 -0.05
350.00 358 349.609 -0.11
375.00 384 375.000 0.00
380.00 389 379.883 -0.03
382.50 392 382.813 0.08
400.00 410 400.391 0.10
410.00 420 410.156 0.04
420.00 430 419.922 -0.02
440.00 451 440.430 0.10
450.00 461 450.195 0.04
455.00 466 455.078 0.02
475.00 486 474.609 -0.08
490.00 502 490.234 0.05
500.00 512 500.000 0.00
525.00 538 525.391 0.07
550.00 563 549.805 -0.04
DTMF tones
Freq. (Hz) N Actual Freq. error (%)
697.00 714 697.266 0.04
770.00 788 769.531 -0.06
852.00 872 851.563 -0.05
941.00 964 941.406 0.04
1209.00 1238 1208.984 0.00
1336.00 1368 1335.938 0.00
1477.00 1512 1476.563 -0.03
1633.00 1672 1632.813 -0.01
24
MTK-40131
Table 14: Tone generator division values for common frequencies
from ETS-300-001, and DTMF tones
Parameter Conditions Min Max Units Note
SFNtx Single frequency noise, mixed products,
10Hz to 4 kHz, TX path -63 dBm
Table 13: Tone Generator Characteristics
25
MTK-40131
Octave Note Freq. (Hz) N Actual error (%)
2 C 261.626 268 261.719 0.04 (middle-C)
2 C# 277.183 284 277.344 0.06
2 D 293.665 301 293.945 0.10
2 Eb 311.127 319 311.523 0.13
2 E 329.628 338 330.078 0.14
2 F 349.228 358 349.609 0.11
2 F# 369.994 379 370.117 0.03
2 G 391.995 401 391.602 -0.10
2 Ab 415.305 425 415.039 -0.06
2 A 440.000 451 440.430 0.10
2 Bb 466.164 477 465.820 -0.07
2 B 493.883 506 494.141 0.05
3 C 523.251 536 523.438 0.04
3 C# 554.365 568 554.688 0.06
3 D 587.330 601 586.914 -0.07
3 Eb 622.254 637 622.070 -0.03
3 E 659.255 675 659.180 -0.01
3 F 698.456 715 698.242 -0.03
3 F# 739.989 758 740.234 0.03
3 G 783.991 803 784.180 0.02
3 Ab 830.609 851 831.055 0.05
3 A 880.000 901 879.883 -0.01
3 Bb 932.328 955 932.617 0.03
3 B 987.767 1011 987.305 -0.05
4 C 1046.502 1072 1046.875 0.04
4 C# 1108.731 1135 1108.398 -0.03
4 D 1174.659 1203 1174.805 0.01
4 Eb 1244.508 1274 1244.141 -0.03
4 E 1318.510 1350 1318.359 -0.01
4 F 1396.913 1430 1396.484 -0.03
4 F# 1479.978 1515 1479.492 -0.03
4 G 1567.982 1606 1568.359 0.02
4 Ab 1661.219 1701 1661.133 -0.01
4 A 1760.000 1802 1759.766 -0.01
4 Bb 1864.655 1909 1864.258 -0.02
4 B 1975.533 2023 1975.586 0.00
5 C 2093.005 2143 2092.773 -0.01
5 C# 2217.461 2271 2217.773 0.01
5 D 2349.318 2406 2349.609 0.01
5 Eb 2489.016 2549 2489.258 0.01
5 E 2637.020 2700 2636.719 -0.01
5 F 2793.826 2861 2793.945 0.00
5 F# 2959.955 3031 2959.961 0.00
5 G 3135.963 3211 3135.742 -0.01
5 Ab 3322.438 3402 3322.266 -0.01
5 A 3520.000 3604 3519.531 -0.01
5 Bb 3729.310 3819 3729.492 0.00
5 B 3951.066 4046 3951.172 0.00
Table 15: Required frequency setting values (N) for a melody generator (western equal-tempered scale)
26
MTK-40131
AW
BW
Rfeed
Rfeed
line
protection
-VbatR
47µF
nc
nc
rly
rly
rly
+5V
SPICK
(Line 0)
or
SPICS
(Line 1)
Fig 13: Application suggestion for Semi-unbalanced ringing injection.
CODSP Clock Recovery
PLL
The CODSP device derives its internal
clocks from the GCI’s DCL input by
means of a PLL. The PLL automatically
detects the clock mode in use, and sets
the multiplication factor accordingly.
The PLL loop filter requires an external
capacitor as shown in the application
schematic.
User-Defined I/O Pins
The pins SPIDI, SPICS and SPICK are
part of an SPI port which is used by Alca-
tel Microelectronics during product evalu-
ation and testing. They are available to
the user, via the GCI, as output bits (e.g.
for driving small indicator LEDs). The pin
SPIDO is used as part of the power-up
and testing routines, and the behaviour
during power-up cannot be guaranteed.
It is therefore advised not to make use of
this pin for any other purposes. The out-
puts can source or sink a maximum of
4mA each.
Note: In order to support “semi-unba-
lanced ringing” (DC bias equal to VbatR
superimposed on the differential ringing
signal), two of these outputs will be
active high during the active ringing
period on each channel (SPICK for chan-
nel 0 and SPICS for channel 1). This can
be used to drive a relay via an external
NPN transistor as shown in fig 13.
Test functions
Please contact Alcatel Microelectronics.
27
MTK-40131
Electrical Characteristics
Absolute Maximum Ratings
Operation of the device at or near
these conditions is not guaranteed. Sustained exposure to these limits will
adversely affect device reliability.
Parameter Symbol Min. Max. Unit
Battery voltage BATR (ref. To GNDB) of SHLIC BATR -75 +0.5 V
Battery voltage BATS (ref. To GNDB) of SHLIC BATS -35 +0.5 V
Difference between the batteries BATR and BATS, BATR-BATS of SHLIC DBAT -40 +0.5 V
VDDA (ref. to GNDA) of SHLIC VDDA -0.5 +7 V
GNDB (ref. to GNDA) of SHLIC GNDB -0.5 +0.5 V
Ambient temperaure under bias of SHLIC -40 +85
Maximum absolute power dissipation, Tamb. = 85°C 1.3 W
V3VA,V3VD to CODSP V3V VSS-0.3 4 V
Voltage on any device pin * of CODSP Vin VSS-0.3 V3V+0.3 V
Function temperature under bias of CODSP -55 +150 °C
Storage temperature -65 +150 W
Lead temperature (soldering 10 sec.) +300 °C
* except special 5V tolerant I/O’s of CODSP
All voltages referenced to GNDA = GNDB or VSS = GNDA, as appropriate.
(*)
see paragraph Thermal shutdown: Max power dissipation is depending on
Max Ambiant temperature
Operating Conditions
Operating ranges define the limits for
functional operation and parametric
characteristics of the device as descri-
bed in this documents, and for
the reliability specifications. Correct
functioning outside of these limits is not
implied. Total cumulative exposure out-
side the normal power supply
voltage range or the ambient tempera-
ture under bias, must be less than 0.1 %
of the normal useful life as defined in
the Reliability section.
Symbol Parameter Limits Unit
Min. Typ. Max.
BATR Ringing battery voltage -72 -65 -18 V
BATS Speech battery voltage -35 -32 -18 V
DBAT Difference between the batteries
BATR and BATS, BATR-BATS -40 -35 0 V
VDDA Supply voltage SHLIC 4.75 5 5.5 V
Trange Operating temperature range - I -40 85 °C(*)
SHLIC - C 0 70 °C
V3VD
V3VA VDD of CODSP (3.3V± 8%) 3.036 3.3 3.564 V
Trange Operating temperature range - I -40 85 °C
CODSP - C 0 70 °C
Table 17: Operating Conditions
Table 16: Absolute Maximum Ratings
28
MTK-40131
Thermal Shutdown
SHLIC
Thermal limiting circuitry on chip of the
SHLIC will shut down the circuit at a
junction temperature of about 165 °C.
The device should never see this tem-
perature and operation above 145 °C
junction temperature might degrade
device reliability.
Parameter Symbol Value Unit
Maximum operating power dissipation, Tamb. = 70 °C Pmax_op 1.2 W
Thermal resistance = 55°C/w typ.
The specifications for power dissipation
imply that in ring mode the active ring
phase must at least be 4 times shorter
than the non active ring phase. The
maximum duration of the active ring
phase must be below 2 s.
Transient Energy Capability
During testing, each device termination
withstands being shorted to the supply
voltages or ground as specified below.
The shorting must be limited to one sec-
ond.
Shorted to GNDA, VDDA or GNDB:
VAG, PU, RNG, BR, TST, TA, DCC, DCO, DCI, TX to RX
Shorted to GNDA, GNDB or BATS:
AW, BW, SA to SB
Table 18: SHLIC Dissipation
29
MTK-40131
DC Characteristics
(MTC-30132 SHLIC,
unless otherwise noted)
Unless otherwise stated, these charac-
teristics apply for the operating condi-
tions specified above. All parameters
are explicitly or implicitly tested during
production at the operating conditions
unless they are marked with a *, where
they are guaranteed by design. Para-
meters marked with ** are meant as
user information only. Tests are per-
formed using an equivalent of the appli-
cation schematic.
Power Supply Currents
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Power RNG=0 0.35 0.5 mA
Ibatr BATR current (IL = 0) Up RNG=1 3.5 5.0 mA
Power RNG=0 0.35 0.5 mA
Down RNG=1 2.5 3.5 mA
Power RNG=0 3.5 5 mA
Ibats BATS current (IL = 0) Up RNG=1 3.5 5 mA
Power RNG=0 1.5 2.5 mA
Down RNG=1 0.5 mA
Ivdd VDD current (IV3V=0) PowerUp 3 5.5 mA
PowerDown 2.5 4 mA
Pcc Power dissipation of CODSP PowerDown 30 mW
(@ 3,45V V3VA and V3VD) PowerUp 1 line active 140 mW
PowerUp 2 lines active 180 mW
Notes:
IL is the line current, i.e. these parameters are measured without line current.
IV3V is the load current in pin V3V
The maximum values in the table are valid for the full battery voltage ranges :
-18V to -72V for ringing battery BATR
-18V to -35V for battery BATS. (BATR must be always the most negative one)
In case of sleep mode activation. See tables "Data Ram: Memory Map, description and default val-
ues" for programing values.
Table 19: Power Supply Currents
30
MTK-40131
Power-on Reset
The table shows the power reset thresh-
old for VDD of the SHLIC. As long as
VDD is below the reset threshold, the
SHLIC is held in power down, and the
output pins AW and BW are high
impedance.
The CODSP uses a separate input pin
PWRS for system reset at power-up.
V3V Regulator
This series regulator of the SHLIC can
be used to provide the supply voltage
for the CODSP or other 3.3V devices.
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
VDDPWR Threshold voltage for power 3.0 3.5 4.0 V
reset on VDD of SHLIC
TPWRS Active low pulse width on 10 ms
PWRS of CODSP
VPWRS Threshold voltage for reset 1.6 1.7 V
on PWRS of CODSP
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Vv3v V3V output voltage load current Iv3v 3.05 3.3 3.55 V
between 0 and 50mA
Iload load current range 0 50 mA
PSRR signal rejection VDD to frequency range 0 to 20 dB
V3V 10KHz
Lreg load regulation load current range from -1 1 ohm
5 to 50mA
Cload (**) maximum load load current range from 100 nF
capacitance 0 to 50mA
Icc(*) current limitation shorted V3V shorted to AGND 70 200 mA
output
Table 20: Power-on Reset Characteristics
Table 21: V3V Regulator Characteristics
31
MTK-40131
A-wire, B-wire DC- Levels, Impedances
Symbol Parameter Test Conditions Limits Unit
PU BR RNG Min. Typ. Max.
Vawn Normal DC-bias on AW(ref. GNDB) 1 0 0 -3.5 -3.1 -2.7 V
Vbwn Normal DC-bias on BW(ref. BAT) 1 0 0 2.5 3 3.5 V
Vawr Reverse polarity DC-bias on AW (ref BAT) 1 1 0 2.5 3 3.5 V
Vbwr Reverse polarity DC-bias on BW (ref. GNDB) 1 1 0 -3.5 -3.1 -2.7 V
Vaw_h DC bias on AW in Act_H mode (TST=1, ref. GNDB) 1 x 1 -4 -3 -2 V
Vbw_h DC bias on BW in Act_H mode (TST=1, ref. BAT) 1 x 1 2 3 4 V
Vhwpd Voltage level high wire (IL<5mA) 0 x 0 -0.8 -0.5 V
Vlwpd Voltage level low wire (IL<5mA), ref BAT 0 x 0 0.5 0.8 V
Vawring DC-level both wires in ringing mode (TST=0) 1 0 1 BAT/2 BAT/2 BAT/2 V
Vbwring -2% +2%
Note:
These BIAS values are only valid if both DCC and RX are biased at VAG voltage level.
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Za(b)wo Output impedance at AW (BW) 0mA<IL<70mA 1.5 ohm
(*) (power up) 0<f<16 kHz
Za-bwo Tracking of the output impedance 0mA<IL<70mA 0.3 ohm
(*) onAW and BW 0<f<16 kHz
Zhwod Output impedance on high wire PU=0 5 130 ohm
(power down)
Zlwod Output impedance on low wire PU=0 5 130 ohm
(power down)
Zomd Matching output impedance low vs PU=0 -70 70 ohm
high wire (power down)
Ia(b)OC Output current in and out AW (BW) A(B)W_GNDB -700 +700 µA
Ia(b)HIMP with OT (over-temperature) detected and
A(B)W_BATS
Table 22: Voltage Characteristics A Wire (Aw), B Wire (Bw)
Table 23: Impedance Characteristics A Wire (Aw), B Wire (Bw)
32
MTK-40131
RX, TX DC- Levels, Impedances
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Ztx (*) Output impedance at TX f = 1 kHz 10 ohm
Votx Offset voltage on TX (PU=1) SA shorted to -20 0 20 mV
(ref VAG) AW and SB to
BW, DCI to V3V,
DCO to VAG
Iouttx TX output current capability -1 0.05 mA
Vrx(*) Rx input voltage range(ref. VAG) -1 1 V
Zrx Rx input impedance f = 1kHz 20 kohm
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Zdco (*) Output impedance at DCO 10 ohm
Vodco Offset voltage on DCO(ref. VAG) SA shorted to -20 0 20 mV
AW and SB to
BW
Ioutdco (*) DCO output current capability -1 0.05 mA
Zdci Input impedance at DCI f=1kHz 210 Kohm
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Vvag (**) Voltage level at VAG pin CODSP 1.53 1.65 1.77 V
Ivag VAG input current SH LIC VAG=1.65V 0.5 mA
DCO DC- Levels, Impedances
These limits are generally transparent
to the user, but are given here for infor-
mation.
VAG Analog Ground Input
The analog ground is typical half the
voltage of the V3V output voltage. It is the reference for all the analog
interfacing between SHLIC and the
CODSP. VAG is provided by the
CODSP.
Table 24: RX, TX Characteristics
Table 25: DCO Characteristics
Table 26: VAG Characteristics
33
MTK-40131
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
VDCLF1 DCLF1 output voltage(ref. GNDB) RNG=0, PU=1 -3.5 -3.1 -2.7 V
VDCLF2 DCLF2 output voltage(ref. BAT) RNG=0, PU=1 2.5 3.0 3.5 V
ZDCLF1s Output impedance at DCLF, VDCLF- RNG=0, PU=1 0.6 1 1.4 Mohm
VDCLF1< 0.5V
ZDCLF2s Output impedance at DCLF, VDCLF2- RNG=0, PU=1 0.6 1 1.4 Mohm
VDCLF< 0.5V
DC loop filter
These limits are generally transparent
to the user, but are given here for
information.
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
VDCC DCC input voltage range (ref. VAG) RNG=0, PU=1 -1 1 V
IinDCC DCC input current, VDCC=VAG+1V RNG=0, PU=1 4 10 uA
DCC Input Pin
These limits are generally transparent
to the user, but are given here for
information.
Note:
Forcing DCC positive (ref. VAG) will result in a smaller voltage between A- and B-
wire. It a too large signal is applied at DCC, both wires are clamped at the same
voltage (only a small residual voltage remains on the line).
SA,SB Sense Bridge Inputs
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Raw-sb bridge resistance from AW to SB VDD, VAG=0V, 25°C 205 257 309 Kohm
Rsa-bw bridge resistance from BW to SA VDD, VAG=0V, 25°C 205 257 309 Kohm
Table 27: Sense Bridge Inputs Characteristics
Table 28: DC Loop Filter Characteristics
Table 29: DCC Input Characteristics
34
MTK-40131
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Vil Low level input voltage 0.3*V3VD V
Vih High level input voltage 0.7*V3VD V
Iil Low level input current VDD = 5.25 V -1 +1 µA
(except PU, see below RPD)
Iih High level input current VDD = 5.25 V -1 +1 µA
(except PU, see below RPD)
Cinp (*) Input capacitance 7 pF
RPD Pull down resistance at pin PU 18 30 40 kohm
VOL output level PU pin, driven low Overtemperature OT 0.5 V
activated, Ipu=0.2mA,
Tested at high temp.
only.
VIL Low-level input voltage, CODSP 0.2*V3VD 3V3D
VIH High-level input voltage, CODSP 0.8*V3VD 3V3D
VOL Low-level output voltage, CODSP 0.4 V
VOH High-level output voltage, CODSP 0.8*V3VD 3V3D
CIN Input pin capacitance, CODSP 1 pF
COUT Load capacitance, CODSP 100 pF
Characteristics for the Digi-
tal I/O pins
CODSP, plus TST, PU, BR, RNG of
SHLIC
Test Switch
The internal test switch is between the
pins SB and SSB. Connecting an exter-
nal load between SSB and SA allows
test of the transmission characteristics in
(simulated) off- and on hook conditions.
The typical on-resistance of the test
switch is around 75 ohms, and has to
be taken into account when defining the
external load. The test switch is on
when RNG=0, PU=1, TST=1, BR=0
Table 30: Digital I/O Characteristics
35
MTK-40131
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Ibswoff(*) leakage current battery switch BATR=-72V, BATS=-32V 5 uA
(RNG=0)
Irevbats(*) reverse current BATS diode BATR=-72V, BATS=-32V 5 uA
(RNG=1)
Vdrbats forward drop BATS diode load current < 80mA 0.85 1.2 V
Ibson current capability battery switch 0 80 mA
Vbswon voltage drop over load current < 80mA 1 2 V
battery switch (RNG=1)
Battery Switch
This switch is activated during ringing
or when the higher on-hook voltage is
selected (RNG=1). When active, BATR
is connected to the internal battery
supply line VBAT. In other cases
(RNG=0), the switch is open; VBAT is
now connected to BATS via an internal
diode.
Symbol Parameter Test Conditions Limits Unit
Min. Typ. Max.
Iswoff switch leakage current |Vssb-Vsb| < 72V 5 uA
Vswon voltage drop over testswitch Isw=80mA 4 9 V
Isw=20mA 1 3 V
(VSSB-VSB > 0V)
Note:
The test switch is normally off when VDD is below the reset level.
If the battery voltages are sufficient, the switch remains on when it was
on before VDD went below the reset level.
Table 31: Test Switch Characteristics
Table 32: Ringing Battery Switch Characteristics
36
MTK-40131
AC Characteristics
(SHLIC)
(0 dBm : 1 mW in 600 ohm)
Unless otherwise stated, the characteris-
tic limits apply over the operating condi-
tions specified above, and each combi-
nation of the drive bits unless otherwise
stated.
All parameters are specified in the pres-
ence of a longitudinal current of max. 5
mAp and a DC current of between 0
mA and the current limit. The behaviour
of the chip in presence of longitudinal
voltages is not tested in production.
The different gains in the signal paths
are shown in fig 14. The values of the
gains are in the following table.
BW
GR
G4
G3
G1
G5
BWBIAS
AW
VabVLZL
Sense
Bridge
AWBIAS
G2
RB I/O to ADSP
(Ref. VAG)
DCC
DCO
TX
RX
RB
Fig. 14: Block diagram showing the gains in the various signal
paths in the SHLIC.
Gain Factor
G1 + 1.66
G1’ 0.079
G2 2
G3 -2
G4 15
G5 - 1/8
GR 1
GR’ 35/2
The gains in the table above are not
tested. They are mentioned for informa-
tion only. The pin-to-pin gains as listed
in the tables below (Grx, Gtx, …) are
tested and guaranteed
In case of Ringing, the receive gain is
changed from GR to GR’, the transmit
gain factor G1 is changed to G1’.
The default test condition of the input
bits is: PU=1, RNG=0, BR=0/1. DCC
is shorted to VAG.
Rprot
Rprot
Receive Path
Equation :
Grx Vab
Vrx GR G G== ()32
This equation is valid for an open loop
configuration. This does not incorporate
the Zco synthesis, which is defined by
the feedback from TX to RX. This func-
tion is performed in the CODSP.
Transmit Path
Equation :
Gtx Vx
VL RB
ZL G==
2
This equation is valid under open loop
conditions.
Table 33: Typical Gains
37
MTK-40131
Overpower and Short Circuit
Protection
In power down, the DC-loop current lim-
itation is not active. The line current is
limited directly through the line
drivers.
The AW and BW outputs are fully pro-
tected against short circuits to a voltage
between GNDA/GNDB and BATR (see
fig. 15).
GNDB
GNDB
BATR
BATR
GNDB
BW
AW
Vbw
Vaw
RS1
RS2
Vsb
Vsa
-
+
-
+
RS1=RS2 0.3
Fig. 15: Short circuit protection
38
MTK-40131
The current flowing from (or into) AW
and/or BW is limited to a value
ILW/IHW as long as the junction tem-
perature Tj < 165°C (electronic current
limitation). The values for ILW/IHW for
different conditions are given in the
table below. If Tj rises above 165°C (±
15 %) the output drivers outputs are
made high impedant. Current can only
flow in or out the internal protection
diodes, in case Vsa and/or Vsb
exceeds the range between GND and
BATR. The currents should however be
limited externally (internal clamping
diodes protection): see section over-
voltage protection.
Parameter Test Conditions Limits Unit
Min. Typ. Max.
ILW Short circuit peak current, PU=1 -145 -120 -95 mA
power up, sink current
Short circuit peak current, PU=0 -65 -45 -20 mA
power down, sink current
IHW Short circuit peak current, PU=1 95 120 145 mA
power up, source current
Short circuit peak current, PU=0 20 45 65 mA
power down, source current
Table 34: Short Circuit Protection Characteristics
39
MTK-40131
Detailed Programming Description
GCI Interface
The SH POTS system uses the GCI stan-
dard interface to exchange B channel
data (PCM coded voice) and control
information with the controlling system.
GCI data is exchanged in both direc-
tions (downstream, towards the analog
line, and upstream, from the analog
line) in 4-byte frames at a rate of 8000
frames per second (the standard PCM
sampling rate).
SH POTS GCI Interface: Modes
DCL
FSC
DU/DD
ONE TIMESLOT
B1
B2
Monitor
C/I
A
E
8 kHZ GCI Frame CLock
7
6
5
4
3
2
1
0
SINGLE TIMESLOT MODE : FSC = 8 kHz
DCL = 512 kHz ; data rate = 256 k
bit/sec
7
6
4
3
2
5
DCL
FSC
DU/DD
8 kHZ GCI Frame CLock
TIMESLOT 1
TIMESLOT 2
TIMESLOT 8
MULTIPLEXED TIMESLOT MODE : FSC = 8
kHz DCL = 4096 kHz ; data rate = 2048 k
bit/sec
SH POTS GCI Interface: Timing
Fig 16: GCI data exchange.
Voice information or data is transmitted
via the “Bearer” channels B1 and B2.
Real-time signalling information for the
two channels are communicated via the
6 C/I bits (the 2 least significant bits of
the C/I byte are used to manage com-
munication via the Monitor channel).
Programming and status information is
communicated by means of commands
over the Monitor channel.
40
MTK-40131
Table 35: GCI mode and Timeslot address programming
GCIM AD2 AD1 AD0 Time DCL Timeslot
slot frequency address
mode (kHz)
0 0 0 0 1 512 0
1 0 0 0 8 4096 0
1 0 0 1 8 4096 1
1 0 1 0 8 4096 2
1 0 1 1 8 4096 3
1 1 0 0 8 4096 4
1 1 0 1 8 4096 5
1 1 1 0 8 4096 6
1 1 1 1 8 4096 7
Timeslot Address
Frames can be formatted singly
(4 bytes per frame), or in a multi-
plexed mode whereby up to
8 GCI compatible devices can be
connected to the same bus. In the mul-
tiplexed mode, the frames of
4 bytes are transmitted in one of
8 timeslots - the mode and the timeslot
address of a particular GCI terminal
is set by means of strapping a code
on 3 device pins GCIM, AD0 to AD2
on the CODSP (see table 35). The
CODSP uses the GCI standard format
for analog terminals (see fig. 16).
41
MTK-40131
Signal Parameter Description Min Max Unit
inputs ViL input level Low 0.8 V
inputs ViH input level High 2.0 V
DU VoL output level Low 0.4 V
DU VoH output level High 2.4 V
DCL(2) tDCL Clock Period 1952 1955 ns
DCL(2) tr,tf Clock Rize/Fall 60 ns
DCL(2) twH,twH Pulse Width 800 ns
DCL(3) tDCL Clock Period 243.9 244.3 ns
DCL(3) twL,twH Pulse Width 90 ns
FSC tsF Frame Setup 70 DCL-60 ns
FSC tr,tf Frame rize/Fall 60 ns
FSC twFH Frame Width H 130 ns
FSC twFL Frame Width L tDCL ns
FSC thF Frame Hold 60 ns
DU(1) tdDC Data delay/Clock 100 ns
DU(1) tdDF Data delay/Frame 150 ns
DD tsD Data setup twH+20 ns
DD thD Data hold 60 ns
(1) Condition CL = 150pF
(2) 256 k bit/sec Transmission
(3) 2048 kbit/sec Transmission
tr
twH
tf
tDCL
twL
DCL
FSC
DD
DU
tsF
thF
twFH
tdDF
tdDC
tsD
thD
twFL
SH POTS GCI Interface: Timing
Fig 17: GCI Timing Diagram
Table 36: GCI Interface: Timing Characteristics
42
MTK-40131
C/I Bits
The C/I bits are used to transfer sig-
nalling information for both channels
simultaneously. The C/I bits must be sta-
ble for at least 2 consecutive GCI
frames before they will be recognised.
The bit allocations for both downstream
and upstream directions are shown in
the table. Note that the signals are
active low, meaning that the idle condi-
tion is a logic ‘1’.
Monitor Channel
The CODSP acts as a slave device on
the GCI - commands received in the
downstream direction are responded to
in the upstream direction.
The E and A bits in the C/I byte are
used to synchronise and acknowledge
the correct transfer of a monitor
channel byte.
/RNG Activate ringing
/MPI Activate metering pulse
/ADSI Activate on-hook signalling
/LS Off-hook condition detected (Loop Stable)
/AL Alarm (indicates any of the possible alarm conditions: initrequest, overpower detected)
/RPH Ring phase. Indicates that ADSI data can NOT be sent.
C/I Bit Allocation:
Direction C/I 7 C/I 6 C/I 5 C/I 4 C/I 3 C/I 2
Downstream /RNG0 /MPI0 /ADSI0 /RNG1 /MPI1 /ADSI1
Upstream /LS0 /AL0 /RPH0 /LS1 /AL1 /RPH1
ID Request
The IDrequest command returns 2 bytes:
(BBB is the memory block identifier or “MemID” - see below)
Other commands should not be used.
ID Request 1 0 0 0 0 0 0 0
Write request 1 0 0 0 1 B B B
Read request 1 0 0 1 1 B B B
Valid commands are:
byte 1 1 0 0 0 0 0 0 0 Command confirmation
byte 2 1 0 R R R R R R Revision code
This command returns a unique code for each device revision.
43
MTK-40131
Read Command
A read request command comprises 3 bytes:
Write Command
The write command comprises 5 bytes:
Command conf. Address high Address low Data high Data low
1 0 0 1 1 B B B n n n n n n n n n n n n n n n n d d d d d d d d d d d d d d d d
Command conf. Address high Address low Data high Data low
1 0 0 0 1 B B B n n n n n n n n n n n n n n n n d d d d d d d d d d d d d d d
The response is a 5 byte stream:
Read request Address high Address low
1 0 0 1 1 B B B n n n n n n n n n n n n n n n n
Global Memory Map and
MemID Definitions
All addresses can be read and writ-
ten, though writing to locations or
individual bit which are not described
here may result in unpredictable,
though possibly interesting, behav-
iour.
The memory block to be accessed is
given as part of the READ or WRITE
command (see above) as the ‘B’ bits
in the command byte.
The default parameter and coefficient
values that are used at start-up and
after reset, are listed in the following
tables.
The control registers of the SH POTS
system, accessed via the GCI, are
organised in a number of memory
blocks. Within each block, a number
of addresses are used directly to con-
trol the operation of specific functions
of the SH POTS system.
Memory Map of the CODSP
No bytes are returned
44
MTK-40131
Data RAM
MemID = 2
Address 15 14 13 12 11 10 987654321 0
00 (0x0000) Bbs0 Bsa0 Bs0 Br0 Tst0 Sh0
01 (0x0001) Bbs1 Bsa1 Bs1 Br1 Tst1 Sh1
02 (0x0002)
03 (0x0003) TX Gain 0
04 (0x0004) TX Gain 1
05 (0x0005) RX Gain 0
06 (0x0006) RX Gain 1
07 (0x0007) Dzd1 Dzd0
08 (0x0008) Td1 Td0
09 (0x0009) CurLim_Rlarge CurLim_Threshold
10 (0x000A) RW RIL RM RF
11 (0x000B) Ringing_DC_Offset Ringing_Amplitude
12 (0x000C) Ringing_Off_Period Ringing_On_Period
13 (0x000D) LBO
14 (0x000E) RTDAC_ThresholdLow RTDAC_ThresholdHigh
15 (0x000F) RTDAC_Debouncetime RTDAC_GapTime
16 (0x0010) AlarmReg
17 (0x0011) IDC0 IDC1
18 (0x0012) IAC0
19 (0x0013) IAC1
20 (0x0014) TG1 TG0 MS1 MS0
21 (0x0015) TestTone_Ampl1_L0
22 (0x0016) TestTone_Ampl1_L1
23 (0x0017) TestTone_Ampl2_L0
MemID Memory Start Address Memory Contents
2 Data RAM 0x 02 0000 C-code Read/Write Data
C-code Stack region
C-code IRQ Stack region
4 CoProcessor Coef RAM 0x 04 0000 Filter coefficients
5 SHARED RAM 0x 05 0000 Data Packet buffers
Label vectors, Fifo control
Table 37: Memory Map for CODSP
Table 38: Data RAM: Memory Map
45
MTK-40131
Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
24 (0x0018) TestTone_Ampl2_L1
25 (0x0019) TestTone_Freq1_L0
26 (0x001A) TestTone_Freq1_L1
27 (0x001B) TestTone_Freq2_L0
28 (0x001C) TestTone_Freq2_L1
29 (0x001D) ACG
30 (0x001E) Sleep2 Pd1 Pd0 Rzd1 Rzd0 Sleep1
31 (0x001F) DialP_SatTxLevel
32 (0x0020) DialP_DebTime
Note:
Bit positions and memory locations not documented must not be changed.
46
MTK-40131
LBO register
This register controls various loop-back
modes, as well as the routing of the
GCI B channels to/from the physical
line analog channels. The bits are
codes as follows:
BnDown : GCI B channel n, Downstream direction
BnUp : GCI B channel n, Upstream direction
TX(m) : Analog ‘transmit’ signal (upstream direction), line m
RX(m) : Analog ‘receive’ signal (downstream direction), line m
Alarm Bits
- After initialisation (e.g. due to a hardware reset), the CODSP itself will make the upstream CI/Alarm bit
active, and set the AlarmReg with an InitRequest value (i.e. ”1xx”); the CI/Alarm bit will remain active
until the InitRequest is cleared by the GCI supervisor (indicating that the supervisor has done the necessary
re-initialisation of system parameters).
Mode D2 D1 D0 GCI side Analog side
Normal 0 0 0 TX(0) -> B1Up B1Down -> RX(0)
TX(1) -> B2Up B2Down -> RX(1)
Simplex loop B2 0 0 1 TX(0) -> B1Up B1Down -> RX(0)
B2Down -> B2Up TX(1) -> RX(1)
Simplex loop B1 0 1 0 B1Down -> B1Up TX(0) -> RX(0)
TX(1) -> B2Up B2Down -> RX(1)
Simplex loop B1 and B2 0 1 1 B1Down -> B1Up TX(0) -> RX(0)
B2Down -> B2Up TX(1) -> RX(1)
Duplex loopback 1 0 0 B2Down -> B1Up TX(0) -> RX(1)
B1Down -> B2Up TX(1) -> RX(0)
Reserved 1 0 1
Reserved 1 1 0
Swap mode 1 1 1 TX(0) -> B2Up B1Down -> RX(1)
TX(1) -> B1Up B2Down -> RX(0)
- In order to check the contents of the AlarmReg, execute the following GCI command:
ReadRequest ( MemId=2, Add=0x0010 );
This results in a 4 nibble value, e.g. ”0xabgd”, read by the supervisor.
- In order to clear the InitRequest alarm, in principle one must only clear one bit.
Therefore the supervisor should execute the following commands:
NewValue = ”0xabgd” AND ”0xFFFB”;
WriteRequest ( MemId=2, Add=0x0010, NewValue );
- Note that the other bits in the alarm register are updated by the DSP at a 8kHz rate, and that they
are only used by the GCI supervisor; therefore the other bits might also be overwritten for one cycle,
clearing all bits (inclusive the InitRequest bit) in one command:
WriteRequest ( MemId=2, Add=0x0010, 0x0000 );
Table 39: LBO Register Description
47
MTK-40131
Meaning and Default Values of the Parameters
Name Address Position Description Mapping Default
Sh0, Sh1 00, 01 0 SHLIC test mode control bit 0: normal mode 0
1: test mode (normal)
Tst0, Tst1 00, 01 1 SHLIC test switch control bit 0: open switch 0
1: closed switch (open)
Br0, Br1 00, 01 2 SHLIC battery reversal control 0: non reversed 0
bit 1: reversed (non rev.)
Bs0, Bs1 00, 01 3 SHLIC battery selection control 0: BATS selection L 0
bit for NonAct_X variant 1: BATR selection H (NonAct_L)
Bsa0, Bsa1 00, 01 4 SHLIC battery selection control 0: BATS selection L 0
bit for ActAdsi_X variant 1: BATR selection H (ActAdsi_L)
Bbs0, Bbs1 00, 01 6:5 SHLIC battery selection control 0=’00’:BATS L 0
bit for ActRng_Sph_X variant 1=’01’:BATR H (ActRng_Sph_L)
2=’10’:BATS+bias LA
3=’11’:BATR+bias HA
TX_Gain_0 TX_Gain_1 03 15:0 Gain factor in TX direction 320
04 for Line0 and Line1 (0dB)
RX_Gain_0 05 15:0 Gain factor in RX direction 384
RX_Gain_1 06 for Line0 and Line1 ( -7dB)
Dzd1, Dzd0 07 1:0 Disable digital zco path 0: enable 1
1: disable (disabled)
Td1, Td0 08 1:0 Disable Tx path at 0: enable 0
pdm level 1: disable (enabled)
CurLim_Threshold 09 7:0 Current limitation val = 0 .. 127 51
threshold parameter unit = 0.63 mA (32 mA)
(eq = 0 .. 80 mA)
CurLim_RLarge 09 15:8 Current limitation val = 0 .. 210 64
RLarge resistance parameter unit = 47 (3 k)
(Internal Resistance) (eq = 0 .. 10 k)
RF 10 1:0 Ringing frequency 0=’00’: 16Hz 3
1=’01’: 20Hz (50Hz)
2=’10’: 25Hz
3=’11’: 50 Hz
RM 10 2 Ringing mode 0: onoff mode 0
1: burst mode (onoff)
RIL 10 3 Enable interleaved ringing 0: non interleaved 1
1: interleaved (interl.)
RW 10 5 Ringing waveform 0: sine wave 0
1: trapezoidal wave (sine)
Ringing_Amplitude 11 7:0 Amplitude of ringing signal val = 0 .. 255 255
unit = 194 mV rms (max ampl)
Table 40: Data RAM: Description and Default Values
20 log TX-Gain_*
320
-7+20 logRX-Gain_*
384
48
MTK-40131
Name Address Position Description Mapping Default
Ringing_DC_Offset 11 15:8 DC offset of ringing signal val = 0 .. 255 0
(Between A&B-wire) unit = 250 mV (no offset)
Ringing_On_Period 12 7:0 Length of active ringing val = 0 .. 255 32
phase unit 32 msec (1 sec)
to be used in burst mode
Ringing_Off_Period 12 15:8 Length of silent ringing phase val = 0 .. 255 96
to be used in burst mode unit 32 msec (3 sec)
LBO 13 3:0 GCI loopback register val = 0 .. 15 0
(encoding see below) (noloop)
RTDAC_ThresholdHigh 14 7:0 Threshold Level high val = 0 .. 255 27
during ringing unit = 1,6 mA (43,2 mA)
RTDAC_ThresholdLow 14 15:8 Threshold Level low val = 0 .. 255 7
during ringing unit = 1,6 mA (11,2 mA)
RTDAC_GapTime 15 7:0 Gaptime during val = 0 .. 255 10
RTDAC Peak Detection unit = 125µs (1,25 ms)
RTDAC_Debouncetime 15 15:8 Deb.Time during RTDAC val = 0 .. 255 240 (30ms)
unit=125µs
AlarmReg 16 2:0 Alarm Status register val = 0 .. 7 4(InitReq’st)
(encoding see Table)
IDC1 17 7:0 DC line current of Line1, val = ” 0 ... 127 0
sampled at 2kHz unit = 0.63 mA
IDC0 17 15:8 DC line current of Line0, val = ” 0 ... 127 0
sampled at 2kHz unit = 0.63 mA
IAC0 18 15:0 AC line current of Line0, unit = 215/1.6V @ Tx 0
sampled at 8kHz
IAC1 19 15:0 AC line current of Line1, unit = 215/1.6V @ Tx 0
sampled at 8kHz
TG1, TG0 20 3,2 Tone Generator control bit 0 : do not add tone 0
for Line1 and Line0 1 : add tone (no tone)
MS1, MS0 20 1,0 Mute Speech control bit 0 : pass speech 0
for Line1 and Line0 1 : mute speech (no mute)
TestTone_Ampl1_L0 21 7:0 Amplitude of first sine val = 0 ... 255 63
TestTone_Ampl1_L1 22 for Line0 and Line1 (0dBm)
TestTone_Ampl2_L0 23 7:0 Amplitude of second sine val = 0 ... 255 63
TestTone_Ampl2_L1 24 for Line0 and Line1 (0dBm)
TestTone_Freq1_L0 25 15:0 Frequency of first sine unit = 250 Hz / 256 1024/256
TestTone_Freq1_L1 26 for Line0 and Line1 (1kHz)
TestTone_Freq2_L0 27 15:0 Frequency of second sine unit = 250 Hz / 256 512/256
TestTone_Freq2_L1 28 for Line0 and Line1 (500Hz)
ACG 29 7:0 Rx Amplitude correction for val = 0 ... 255 /128 103/128
ZCO synthesis (600 Ohm)
49
MTK-40131
Name Address Position Description Mapping Default
Pd1, Pd0 30 11:10 Power denial mode 1 = enable 0
line 1 0 = disable (disable)
Sleep2 (2) 30 13:12 Low power activation 00 = inactive 00
11 = active active
Sleep1 (2) 30 2:0 Sleep factor to be used when val = 0 ... 7 0
one line inactive eq = 0 ... 70% sleepy (0% sleep)
Rzd1, Rzd0 30 4:3 Disable analog zco path 0: enable 0
1: disable (enabled)
DialP_SatTxLevel 31 15:0 Tx Saturation level to be used unit = 48,83µV @ Tx 8192
for dial pulse detection (400mV)
DialP_DebTime 32 15:0 Debounce time to be used for unit = 125us 40
dial pulse detection (5 ms)
Note :
(1)
parameter names with figure 0 or 1 at the end reffer to the analog line 0 or line 1
(2)
In low power applications: recommended program value is sleep 1 = 5 combined
with sleep 2 = 3 will save power consumption when only 1 line off-hock.
50
MTK-40131
CoProcessor Coefficient RAM
MemID = 4
Address 11 10 9 8 7 6 5 4 3 2 1 0
00 (0x0000) Rx32KFilter coefficient : r0
01 (0x0001) r1
02 (0x0002) r4
03 (0x0003) s1
04 (0x0004) s2
05 (0x0005) r2
06 (0x0006) r3
07 (0x0007) r5
08 (0x0008) s3
09 (0x0009) s4
10 (0x000A) m0
11 (0x000B) m1
12 (0x000C) u0
13 (0x000D) u1
14 (0x000E) Hyb16KFilter coefficient : h0
15 (0x000F) h1
16 (0x0010) h2
17 (0x0011) h3
18 (0x0012) a0
19 (0x0013) c5
20 (0x0014) b0
21 (0x0015) Tx32KFilter coefficient : t0
22 (0x0016) t1
23 (0x0017) t8
24 (0x0018) q1
25 (0x0019) q2
26 (0x001A) t2
27 (0x001B) t3
28 (0x001C) t9
29 (0x001D) q3
30 (0x001E) q4
31 (0x001F) t4
32 (0x0020) t5
Table 41: Coprocessor Coefficient RAM: Memory Map
51
MTK-40131
Address 11 10 9 8 7 6 5 4 3 2 1 0
33 (0x0021) t10
34 (0x0022) q5
35 (0x0023) t6
36 (0x0024) t7
37 (0x0025) t11
38 (0x0026) q6
39 (0x0027) q7
40 (0x0028) c2
41 (0x0029) c3
42 (0x002A) ZcoTxFilter coefficient : Ftx
43 (0x002B) Ap
44 (0x002C) NAn
45 (0x002C) Constants : HLF
46 (0x002C) ONE_EIGHT
Access is similar to that of the Data
RAM parameters. Note however that
the GCI commands work with 2-byte
values whereas the memory contains
only 3-nibble values; because all values
are <12,0>, the most significant nibble
of the 2-byte GCI value will be a sign-
extension of the 12-bit value, in the
case of a ReadRequest; the most signifi-
cant nibble of a WriteRequest will be
neglected.
52
MTK-40131
Meaning and Default Values of the Parameters
Name Address Position Description Mapping Default
r0 00 11:0 Rx filter coefficient unit = intval / 512 int96
r1 01 11:0 Rx filter coefficient unit = intval / 512 int-78
r4 02 11:0 Rx filter coefficient unit = intval / 512 int96
s1 03 11:0 Rx filter coefficient unit = intval / 512 int642
s2 04 11:0 Rx filter coefficient unit = intval / 512 int-263
r2 05 11:0 Rx filter coefficient unit = intval / 512 int256
r3 06 11:0 Rx filter coefficient unit = intval / 512 int-303
r5 07 11:0 Rx filter coefficient unit = intval / 512 int256
s3 08 11:0 Rx filter coefficient unit = intval / 512 int746
s4 09 11:0 Rx filter coefficient unit = intval / 512 int-450
m0 10 11:0 Rx filter coefficient unit = intval / 512 int512
m1 11 11:0 Rx filter coefficient unit = intval / 512 int512
u0 12 11:0 Rx filter coefficient unit = intval / 512 int0
u1 13 11:0 Rx filter coefficient unit = intval / 512 int0
h0 14 11:0 Echo Cancelling coefficient unit = intval / 512 int-109
h1 15 11:0 Echo Cancelling coefficient unit = intval / 512 int2
h2 16 11:0 Echo Cancelling coefficient unit = intval / 512 int8
h3 17 11:0 Echo Cancelling coefficient unit = intval / 512 int32
a0 18 11:0 Echo Cancelling coefficient unit = intval / 512 int127
c5 19 11:0 Echo Cancelling coefficient unit = intval / 512 int512
b0 20 11:0 Echo Cancelling coefficient unit = intval / 512 int157
t0 21 11:0 Tx filter coefficient unit = intval / 512 int48
t1 22 11:0 Tx filter coefficient unit = intval / 512 int-37
t8 23 11:0 Tx filter coefficient unit = intval / 512 int48
q1 24 11:0 Tx filter coefficient unit = intval / 512 int728
q2 25 11:0 Tx filter coefficient unit = intval / 512 int-439
t2 26 11:0 Tx filter coefficient unit = intval / 512 int390
t3 27 11:0 Tx filter coefficient unit = intval / 512 int-492
t9 28 11:0 Tx filter coefficient unit = intval / 512 int390
q3 29 11:0 Tx filter coefficient unit = intval / 512 int573
q4 30 11:0 Tx filter coefficient unit = intval / 512 int-227
t4 31 11:0 Tx filter coefficient unit = intval / 512 int64
t5 32 11:0 Tx filter coefficient unit = intval / 512 int128
t10 33 11:0 Tx filter coefficient unit = intval / 512 int64
Table 42: Coprocessor Coefficient RAM: Description and Default Values
53
MTK-40131
Name Address Position Description Mapping Default
q5 34 11:0 Tx filter coefficient unit = intval / 512 int442
t6 35 11:0 Tx filter coefficient unit = intval / 512 int384
t7 36 11:0 Tx filter coefficient unit = intval / 512 int-768
t11 37 11:0 Tx filter coefficient unit = intval / 512 int384
q6 38 11:0 Tx filter coefficient unit = intval / 512 int962
q7 39 11:0 Tx filter coefficient unit = intval / 512 int-458
c2 40 11:0 Tx filter coefficient unit = intval / 512 int512
c3 41 11:0 Tx filter coefficient unit = intval / 512 int-512
Ftx 42 11:0 ZcoTx filter coefficient unit = intval / 512 int237
Ap 43 11:0 ZcoTx filter coefficient unit = intval / 512 int0
NAn 44 11:0 ZcoTx filter coefficient unit = intval / 512 int0
HLF 45 11:0 Constant definition unit = intval / 512 int256
ONE_EIGHT 46 11:0 Constant definition unit = intval / 512 int64
SHARED Memory
MemID = 5
Address 15 14 13 12 11 10 987654321 0
85 (0x0055) VLM HT Deb MF MM
86 (0x0056) SpiDo SpiDi SpiSk SpiCs SpiSe RBD SR* SR* SR* SR*
87 (0x0057) HSD_ThresholdHigh HSD_ThresholdLow
88 (0x0058) RTD_ThresholdHigh RTD_ThresholdLow
89 (0x0059) MeteringDutyCycle
90 (0x005A) ZcoShAlfa3 ZcoA2 Rxd* Alo* Sleep *
91 (0x005B) RZco ZcoGamma ZcoAlfa3
94 (0x005E) TL
Note :
Bit positions and memory locations not described here must not be changed.
Table 43: Shared Memory: Memory Map
54
MTK-40131
Meaning and Default Values of the Parameters
Name Address Position Description Mapping Default
VLM 85 14:11 Metering amplitude val = 0 .. 15 3
(unit value = dependin on Zco)
HT 85 10:9 HSD debounce time 0 = ’00’ : 8ms 2
1 = ’01’ : 24ms (16ms)
2 = ’10’ : 16ms
3 = ’11’ : 64ms
DEB 85 8 RTD debounce time 0 : 0 ms 1
1 : 30 ms (30ms)
MF 85 4 Metering frequency 0 : 12kHz 1
1 : 16kHz (16kHz )
MM 85 3 Metering mode 0 : burst mode 1
1 : onoff mode (onoff)
SPIDO 86 15 SPI Dout port 0
SPIDI 86 14 SPI Din port 0
SPISK 86 13 SPI SK port 0
SPICS 86 12 SPI CS port 0
SPISE 86 11 SPI port selection 0
RBD 86 10 Disable 1 = disabled 0
automatic ring activation 0 = enabled (enabled)
of Spick and Spick
SR (1) 86 5:4 software resets of 1 = reset block 0
1:0 SID1, SID0, CP, GCI 0 = no reset
Soft Resets (2) 86 5:0 Reset ability of HW blocks 0: no reset 0
(SID0, SID1, MRT, LS, CP, GCI) 1: reset block (no reset)
HSD_ThresholdHigh 87 13:7 HSD high threshold val = 0 .. 127 16
unit = 0.63mA (10mA)
= 0 .. 80 mA)
HSD_ThresholdLow 87 6:0 HSD low threshold val = 0 .. 127 10
unit = 0.63mA (6.3mA)
= 0 .. 80 mA)
RTD_ThresholdHigh 88 13:7 RTD high threshold val = 0 .. 127 16
unit = 0.63mA (10mA)
= 0 .. 80 mA)
RTD_ThresholdLow 88 6:0 RTD low threshold val = 0 .. 127 10
unit = 0.63mA (6.3mA)
= 0 .. 80 mA)
MeteringDutyCycle 89 15:8 Length of the metering burst val = 0 .. 255 150
to be used in ”burst” metering unit = 2ms (300ms)
mode = 0 .. 510ms)
ZcoShAlfa3 90 15:1 Central office (1) 0
Impedance parameter (600)
Table 44: Shared Memory: Description and Default Values
MTK-40131
Name Address Position Description Mapping Default
ZcoA2 90 13:7 Central office (1) 0
Impedance parameter (600)
RxD (1) 90 6 RxDisable at input of analog 0: enabled rx path 0
part 1: disable rx path (enabled)
ALO (2) 90 4 Analog loopback at pdm 0: disabled loop 0
1: enable loop (disabled)
Sleep (2) 90 2:0 Sleep factor actually used by val = 0 ... 7 0
the processor = 0 ... 70% sleepy (0% sleep)
RZco 91 11:8 Central office (1) 3
Impedance parameter (600)
ZcoGamma 91 7:4 Central office (1) 0
Impedance parameter (600)
ZcoAlfa3 91 3:0 Central office (1) 0
Impedance parameter (600)
TL 94 1:0 Transcode Law selection 0 = ‘00’: A Law 0
1 = ‘01’: N Law (A-Law)
2 = ‘10’: Linear
Notes:
(1) Examples of other Zco parameters are listed on page 19 ‘ Examples Zco Coëfficient’
in this manual.
Else: contact Alcatel Microelectronics for assistance.
(2) Do not change these values.
55
Package :General Dimensions of the MTC-20232PQ
MTK-40131
DS 0256b 12/98
Alcatel Microelectronics acknowledges the trademarks of all companies referred to in this document.
This document contains information on a new product.
Alcatel Microelectronics
reserves the right to make
changes in specifications at any time and without notice.
The information furnished by
Alcatel Microelectronics
in this
document is believed to be accurate and reliable.
However, no responsibility is assumed by
Alcatel Micro-
electronics
for its use, nor for any infringements of patents or
other rights of third parties resulting from its use.
No licence is granted under any patents or patent rights
of
Alcatel Microelectronics
.
Central Europe
Arabellastraße 4
81925 München
Germany
Tel. +49 89 920 07 70
Fax +49 89 910 15 59
Sales Offices
Excelsiorlaan 44-46
1930 Zaventem
Belgium
Tel. +32 2 718 18 11
Fax +32 2 725 37 49
Southern Europe
10, rue Latécoère, B.P.57
78140 Vélizy Cedex
France
Tel. +33 1 46 32 53 86
Fax +33 1 46 32 55 68
Italy & Mediter.area
Via Trento 30
20059 Vimercate MI
Italy
Tel. +39 039 686 4520
Fax +39 039 686 6899
Stuttgart Office
Schwieberdingerstraße 9
70435 Stuttgart
Germany
Tel. +49 711 821 45 304
Fax +49 711 821 44 619
Westerring 15
9700 Oudenaarde
Belgium
Tel. +32 55 33 24 70
Fax +32 55 33 27 68
USA
M/S 412-115
1225 N. Alma Road
Richardson
TX 75081-2206
Tel. +1 972 996 2489
Fax +1 972 996 2503
Sales &
Design Centres
Marketing &
Design Centre
Headquarters
Manufacturing
& Customer Service
Alcatel Microelectronics
info@mie.alcatel.be
http://www.alcatel.com/telecom/micro
Benelux & Nordic
Countries
Excelsiorlaan 44-46
1930 Zaventem
Belgium
Tel. +32 2 718 18 11
Fax +32 2 725 37 49
Northern Germany
TRIAS
Moerser Landstraße 408
47802 Krefeld
Germany
Tel. +49 2151 95 30 10
Fax +49 2151 95 30 105
Representatives
USA
Premier Technical Sales SAN DIEGO, CA, 2011 Via Tiempo, Cardiff, CA 92007, Tel. (760) 943 6222, Fax (760) 943 0425
SANTA CLARA, CA, 3235 Kifer Road, Suite 110, Santa Clara, CA 95051, Tel. (408) 736 2260, Fax (408) 736 2826
TUSTIN, CA, 2660 Walnut Ave, Unit H, Tustin, CA 92680, Tel. (714) 573 8242, Fax (714) 573 4942
ATLANTA, GA, 135 Arden Way, Peachtree City, GA 30269, Tel. (770) 632 9648, Fax (770) 486 4098
BOSTON, MA, 33 Boston Post Road West, Suite 270, Marlboro, MA 01752, Tel. (508) 460 1730, Fax (508) 460 1731
PORTLAND, OR, 5319 S.W. Westgate Dr. Suite 136, Portland, OR 97221, Tel. (503) 297 3956, Fax (503) 297 4956
AUSTIN, TX, 12148 Jollyville Road, Unit 422, Austin, TX 78759, Tel. (512) 257 8218, Fax (512) 257 1714
DALLAS, TX, 800 East Campbell Road, Suite 199, Richardson, TX 75081, Tel. (972) 680 5233, Fax (972) 680 5234
OTTAWA, ONTARIO, CANADA, 43 Pretty Street, Stittsville, Ontario, K2S1A4 Canada, Tel. (613) 836 1779, Fax (613) 836 4459
Taiwan ROC
Alcatel ITS Ltd
Suite D, 8th floor 133
Section 3, Min Seng E. Rd
Taipei 015,
Taiwan
Tel. +886 2 717 1255
Fax +886 2 717 1250
Japan
Alcatel ITS Japan Ltd
Yubisu Gdn Pl Twr 24
20-3 Ebisu 4-chrome,
Shibuyaku
Tokyo, 150, Japan
Tel. +81 3 5424 8561
Fax +81 3 5424 8581
UK
Alfa- Micro Comp.Ltd
Springfield Hse, Cranes Rd
Sheborne St. John
Basingstoke, HA RG24 9LJ
United Kingdom
Tel. +44 12 56 851 770
Fax +44 12 56 851 771
Package: General Dimensions
of the MTC-30132SO
28 lead small outline
plastic DWG.NR 87-0038
.299(7.60)
.291(7.40) .420(10.65)
.393(10.00)
.020(0.49)
.013(0.35)
.713(18.10)
.696(17.70)
.050 TYP
.012(0.30)
.003(0.10)
.105(2.65)
.092(2.35)
.030(0.75)
.009(0.25)
- 8°
.010TYP) .050(1.27)
.015(0.40)
x 45°