austriamicrosystems AG is now ams AG The technical content of this austriamicrosystems datasheet is still valid. Contact information: Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: ams_sales@ams.com Please visit our website at www.ams.com D ata sh eet A S3 7 11 Q u a d B u c k H ig h Cu r r e n t P M IC w i th Ch a r g e r HV Backlight Driver 2x step up with external transistor - e.g. 0.5-1A@5V; 40mA@50V Voltage control mode and over-voltage protection The device offers advanced power management functions. All necessary ICs and peripherals in a battery powered mobile device are supplied by the AS3711. It features 3 DCDC buck converters as well as 8 low noise LDOs. The different regulated supply voltages are programmable via the serial control interface. 4MHz operation with 1uH coils are reducing cost and PCB space. 3 programmable current sinks (max. 40mA) Possible external PWM dimming input (DLS, CABC) AS3711 further features a DCDC buck controller which is ideal to support processor core currents up to 3A. AS3711 contains a linear or switching mode Li-Ion battery charger with constant current and constant voltage. The maximum charging current is 1.5A. An integrated battery switch and an optional external switch are separating the battery during charging or whenever an external power supply is present. With this switch it is also possible to operate with no or deeply discharged batteries. A programmable current limit (100mA - 2.5A) can be used to control the maximum current used from a USB supply or charger input. Additional features are a 30V OV protection and battery temperature supervision. The single supply voltage may vary from 2.7V to 5.5V. ca 2 Key Features Voltage Generation Programmable trickle charging (25-220mA) Programmable constant current charging (up to 1500mA) Programmable constant voltage charging (3.9V-4.25V) am lc s on A te G nt st il The two step-up converter generate voltages for e.g.the backlight, classD amplifier, USB host support or LCD display supply. Both constant voltage (for e.g. OLED supply) as well as constant current (white LED backlight) operations with three current sinks are possible. An internal voltage protection is limiting the output voltage in the case of external component failures. Battery Charger al id The AS3711 is a compact System PMU with integrated battery charger and back light driver. lv 1 General Description 3 DCDC step down regulators (2-4MHz) - DVM (0.6V-3.3V;1x 1.2-1.5A, 2x 0.7-1A) - 60A quiescent current - 2A with combined DCDC 2 & 3 DCDC step down controller ni Charger time-out and temperature supervision Selectable current limitation for USB mode Integrated battery switch & ideal diode (linear mode) External battery switch control (switching mode) External 30V OV protection Supervisor Automatic battery monitoring with interrupt generation and selectable warning level Automatic temperature monitoring with interrupt generation and selectable warning and shutdown levels Real Time Clock Ultra low power 32kHz oscillator Sec and minute counter, auto wake-up Programmable alarm Repeating alarm (seconds, minutes, 2 minutes, or 8 minutes) 32kHz clock output to peripheral <1A total power consumption General Purpose IOs 10-bit general purpose ADC input Wake-up/sleep and DVM input PWM (DLS, CABC) dimming input Q32k clock output - 2x 1.2-3-3V, 6x 0.9-3.3V; 150-300mA - 30A quiescent current (low power mode) 1 ultra low power always on LDO 2.5V, 10mA Status output for: charger, low battery, power good and step-up over-current Interrupt output Power supply supervision PWM output 4sec and 8sec emergency shut-down Step-up feedback input Stand-by function with voltage selection ch Te - DVM (0.6V-3.3V; 2-3A) 2 analog low noise LDOs, 6 digital LDOs www.austriamicrosystems.com 1.2 1 - 102 OTP programmable BOOT Sequence Control Interface Programmable regulator default voltages I2C control lines, including watchdog Programmable start-up sequence ON input General Purpose ADC Bidirectional reset, with selectable delay 10-bit resolution Ultra low power standby mode Several internal / external sources Power-On Reset Circuit Packaging QFN56 7x7mm 0.4mm pitch 3 Application The device is suitable for Portable Media Players, Portable Navigation Devices, E-Books, Mobile Internet Devices, and Tablet PCs. . Te ch ni ca am lc s on A te G nt st il Figure 1. AS3711 Block Diagram al id VUSB, VSUP, CHGIN, VBAT GPIOx, CURRx XOUT32K, SENSEN_SU1, LX_SD4 Chip temperature lv - www.austriamicrosystems.com 1.2 2 - 102 AS3711 2V1 Datasheet - C o n t e n t s Contents 1 General Description 2 Key Features 3 Application .................................................................................................................................................................. 1 ............................................................................................................................................................................ 1 ................................................................................................................................................................................ 2 4 Pin Assignments ....................................................................................................................................................................... 4 4.1 Pin Descriptions 6 Electrical Characteristics al id ................................................................................................................................................................................... 4 5 Absolute Maximum Ratings ...................................................................................................................................................... 7 .......................................................................................................................................................... 8 7 Typical Operating Characteristics ............................................................................................................................................. 9 8 Detailed Description - Power Management Functions ........................................................................................................... 10 ............................................................................................................................................................. 10 8.2 DCDC Step-Down Controller ............................................................................................................................................................. 16 lv 8.1 DCDC Step-Down Converter ..................................................................................................................................................................... 19 8.4 Digital LDO Regulators ...................................................................................................................................................................... 21 am lc s on A te G nt st il 8.3 Analog LDO Regulators 8.5 Low power LDO V2_5 Regulators 8.6 DCDC Step-Up Converter 8.7 Current Sinks 8.8 Charger ...................................................................................................................................................... 23 .................................................................................................................................................................. 24 ..................................................................................................................................................................................... 30 .............................................................................................................................................................................................. 31 9 Detailed Description - System Functions 9.1 Start-up 9.2 Reset ................................................................................................................................ 39 .............................................................................................................................................................................................. 39 .................................................................................................................................................................................................. 41 9.3 Stand-by ............................................................................................................................................................................................. 43 9.4 Internal References 9.5 GPIO Pins ............................................................................................................................................................................ 44 .......................................................................................................................................................................................... 45 9.6 Supervisor .......................................................................................................................................................................................... 48 9.7 Watchdog ........................................................................................................................................................................................... 49 9.8 Interrupt Generation 9.9 10-Bit ADC ........................................................................................................................................................................... 50 ......................................................................................................................................................................................... 51 9.10 Real Time Clock ............................................................................................................................................................................... 53 10 Register Overview ......................................................................................................................................................... 54 ca 9.11 2-Wire-Serial Control Interface ................................................................................................................................................................ 56 11 Application Information ......................................................................................................................................................... 95 ......................................................................................................................................... 98 ni 12 Package Drawings and Markings ........................................................................................................................................................... 101 Te ch 13 Ordering Information www.austriamicrosystems.com 1.2 3 - 102 AS3711 2V1 Datasheet - P i n A s s i g n m e n t s 4 Pin Assignments Te ch ni ca am lc s on A te G nt st il lv al id Figure 2. Pin Assignments (Top View) www.austriamicrosystems.com 1.2 4 - 102 AS3711 2V1 Datasheet - P i n A s s i g n m e n t s 4.1 Pin Descriptions Table 1. Pin Descriptions Pin Number Pin Name 1 EXTBATSW ANA OUT External Battery Switch Gate Driver Output open 2 XOFF ANA OUT External OV NMOS Gate Driver Output open 3 CHGIN SUP IN Wall adapter or USB Bus Power Input (after protection) 4 VSUP_CHG SUP IO Current Limiter Output, Charger Input, connect to VSUPx 5 CHGOUT ANA OUT 6 VSUP_SD3 SUP IN DCDC Step Down 3 Pos. Supply Terminal 7 LX_SD3 DIG OUT DCDC Step Down 3 Switch Output to Coil 8 FB_SD3 ANA IN DCDC Step Down 3 Feedback Pin 9 FB_SD2 ANA IN DCDC Step Down 2 Feedback Pin 10 LX_SD2 11 VSUP_SD2 12 FB_SD1 13 LX_SD1 14 VSUP_SD1 15 CURR1 16 CURR2 17 CURR3 18 VINLDO78 19 LDO8 20 LDO7 21 VSUP_GPIO 22 ON 23 SCL 24 SDA 25 XRES 26 GPIO1 27 Description if not used al id Pin Type open Linear and DCDC Charger output always needed open lv always needed open open open am lc s on A te G nt st il AS3711 DCDC Step Down 2 Switch Output to Coil open SUP IN DCDC Step Down 2 Pos. Supply Terminal always needed ANA IN DCDC Step Down 1 Feedback Pin open DIG OUT DCDC Step Down 1 Switch Output to Coil open SUP IN DCDC Step Down 1 Pos. Supply Terminal always needed ANA IO Load Current Sink 1 Terminal open ANA IO Load Current Sink 2 Terminal open ANA IO Load Current Sink 3 Terminal open SUP IN LDO 7 & 8 Positive Supply Terminal, connect to VSUP_CHG always needed ANA OUT LDO8 Output open ANA OUT LDO7 Output open SUP IN GPIO Positive Supply Terminal, connect to VSUP_CHG always needed DIG IN Power Up Input open DIG IN 2-wire Serial IF Clock Input open ca DIG OUT 2-wire Serial IF Data I/O open DIG IO Reset IO open ANA IO General Purpose IO 1 open GPIO2 ANA IO General Purpose IO 2 open 28 GPIO3 ANA IO General Purpose IO 3 open 29 GPIO4 ANA IO General Purpose IO 4 open 30 LDO2 ANA OUT LDO2 Output open 31 VINLDO123 SUP IN LDO 1, 2 & 3 Positive Supply Terminal, connect to VSUP_CHG always needed 32 LDO1 ANA OUT LDO1 Output open 33 LDO3 ANA OUT LDO3 Output open 34 VBAT SUP IO Li-Ion Battery Terminal open 35 VUSB SUP IN Wall adapter or USB Bus Power Input (before protection) open 36 CREF ANA IO Reference Bypass Capacitor Terminal always needed Te ch ni DIG IO www.austriamicrosystems.com 1.2 5 - 102 AS3711 2V1 Datasheet - P i n A s s i g n m e n t s Table 1. Pin Descriptions Pin Number Pin Name 37 V2_5 ANA OUT Internal 2.5V Regulator Supply Output always needed 38 XOUT32 ANA OUT RTC 32kHz Crystal Drive Terminal open 39 XIN32 ANA IN RTC 32kHz Crystal Feedback Terminal open 40 BATTEMP ANA IO Li-Ion Battery Charger Temperature Sensor Input 41 SENSEN_SD4 ANA IN DCDC Step Down 4 Negative Sense Resistor Input 42 NGATE_SD4 ANA OUT DCDC Step Down 4 ext. NMOS Gate Driver Output 43 LX_SD4 ANAIN 44 PGATE_SD4 ANA OUT 45 VSUP_SU SUP IN DCDC Step Down 4 Positive Supply Terminal, connect to VSUP_CHG always needed 46 FB_SD4 ANA IN DCDC Step Down 4 Feedback Pin 47 SENSEN_SU1 48 GATE_SU1 49 GATE_SU2 50 SENSEP 51 SENSEN_SU2 52 FB_SU1 53 LDO6 54 LDO5 55 LDO4 56 LDO456 Description if not used al id Pin Type open open open DCDC Step Down 4 ext. PMOS Gate Driver Output open lv DCDC Step Down 4 Sense Input open open am lc s on A te G nt st il AS3711 ANA IN DCDC Step Up 1 Negative Sense Resistor Input open ANA OUT DCDC Step Up 1 ext. NMOS Gate Driver Output open ANA OUT DCDC Step Up 2 ext. NMOS Gate Driver Output open ANA IN DCDC Step Up 1, 2 & Step Down 4 Positive Sense Resistor Input open ANA IN DCDC Step Up 2 Negative Sense Resistor Input open ANA IN DCDC Step Up 1 Feedback Pin open ANA OUT LDO6 Output open ANA OUT LDO5 Output open ANA OUT LDO4 Output open LDO 4, 5 & 6 Positive Supply Terminal, connect to VSUP_CHG always needed Te ch ni ca SUP IN www.austriamicrosystems.com 1.2 6 - 102 AS3711 2V1 Datasheet - A b s o l u t e M a x i m u m R a t i n g s 5 Absolute Maximum Ratings Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 8 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 2. Absolute Maximum Ratings Parameter Min Max Unit Comments al id Symbol Electrical Parameters -0.5 7.0 V 3V pins -0.5 5.0 V Applicable for pins V2_5, CREF, ON, BATTEMP, XIN32, XOUT32 30V pins -0.5 32 V Applicable for pin VUSB, XOFF, CURR1/2/3 Input Current (latch-up immunity) -100 100 mA Norm: JEDEC JESD78 1.8 W PT for QFN56 package (RTH ~ 30K/W) 1.5 kV Norm: JEDEC JESD22-A114F +85 C +125 C am lc s on A te G nt st il lv 5V pins Applicable for pins VSUP_CHG, VSUP_SD1/2/3, VSUP_SU, VSUP_GPIO, VIN_LDO123/456/78, GPIO1/2/3/4, GATE_SU1/2, NGATE_SD4, PGATE_SD4, FB_SU1, SENSEP, SENSEN_SU1/2, SENSEN_SD4, VBAT, LDO1/2/3/4/5/6/7/8, FB_SD1/2/ 3/4, LX_SD1/2/3/4, XRES, SCL, SDA Continuous Power Dissipation (TA = +70C) PT Continuous power dissipation Electrostatic Discharge Electrostatic Discharge HBM 1 Temperature Ranges and Storage Conditions TAMB Operating Temperature TJ Junction Temperature -40 Storage Temperature Range -55 +150 C Humidity non-condensing 5 85 % 260 C Temperature (soldering) 2 Package Body Temperature ca TBODY Moisture Sensitive Level 3 Norm IPC/JEDEC J-STD-020 The lead finish for Pb-free leaded packages is matte tin (100% Sn) Represents a max. floor life time of 168h Te ch ni 1. Depending on actual PCB layout and PCB used 2. The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices" www.austriamicrosystems.com 1.2 7 - 102 AS3711 2V1 Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s 6 Electrical Characteristics VSUPx=+2.7V...+5.5V, TA =-40C...+85C. Typical values are at VSUPx=+3.6V, TA=+25C, unless otherwise specified. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods. Table 3. Electrical Characteristics Min Typ Max Unit Charger HV Input 0 5 30 V CHGIN Charger LV Input 0 5 5.5 V VSUPx Supply Voltage VSUP_x 2.7 3.6 5.5 V VINLDO123 Supply Voltage for LDO 1, 2 & 3 2.7 3.6 5.5 V VINLDO456 Supply Voltage for LDO 4, 5 & 6 1.8 3.6 5.5 V VINLDO78 Supply Voltage for LDO 7 & 8 1.8 3.6 5.5 V V2_5 Voltage on Pin V2_5 2.4 2.5 2.6 V Ilow_power Low Power current @ VSUPx = 4.2V 220 A Ipower_off Power-Off current All regulators off V2_5 on 10 A al id VUSB Condition lv Parameter Te ch ni ca am lc s on A te G nt st il Symbol www.austriamicrosystems.com 1.2 8 - 102 AS3711 2V1 Datasheet - Ty p i c a l O p e r a t i n g C h a r a c t e r i s t i c s 7 Typical Operating Characteristics Te ch ni ca am lc s on A te G nt st il lv al id please see operating characteristics in the block description chapters. www.austriamicrosystems.com 1.2 9 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8 Detailed Description - Power Management Functions 8.1 DCDC Step-Down Converter 8.1.1 General Description al id The step-down converter is a high efficiency fixed frequency current mode regulator. By using low resistance internal PMOS and NMOS switches efficiency up to 95% can be achieved. The fast switching frequency allows using small inductors, without increasing the current ripple. The unique feedback and regulation circuit guarantees optimum load and line regulation over the whole output voltage range, up to an output current of 1A (SD2, SD3) and 1.5A for SD1, with an output capacitor of only 10F. The implemented current limitation protects the DCDC and the coil during overload condition. Mode Settings ch 8.1.2 ni ca am lc s on A te G nt st il lv Figure 3. Step Down DC/DC Converter Block diagram Low ripple, low noise operation: Bit settings: sdX_low_noise=1 Te In this mode there is no minimum coil current necessary before switching off the PMOS. As long as the load current is superior to the ripple current the device operates in continuous mode. When the load current gets lower, the discontinuous mode is triggered. As result, the auto-zero comparator stops the NMOS conduction to avoid load discharger and the duty cycle is reduced down to tmin_on to keep the regulation loop stable. This results in a very low ripple and noise, but decreased efficiency, at light loads, especially at low input to output voltage differences. Only in the case the load current gets so small that less than the minimum on-time of the PMOS would be needed to keep the loop in regulation the regulator will enter low power mode operation. The crossover point is about 15mA for Vin=3V, Vout=1.2V, 1uH, 4MHz. www.austriamicrosystems.com 1.2 10 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s am lc s on A te G nt st il lv al id Figure 4. DCDC Buck with enabled low noise mode High efficiency operation (default setting): Bit settings: sdX_low_noise=0 In this mode there is a minimum coil current necessary before switching off the PMOS. As a result there are less pulses necessary at low output loads, and therefore the efficiency at low output load is increased. As drawback this mode increases the ripple up to a higher output currents. The crossover point to low power mode is already reached at reasonable high output currents. (e.g. @110mA for Vin=3V, Vout=1.2V, 1uH, 4MHz) Te ch ni ca Figure 5. DCDC Buck with disabled low noise mode It's possible to switch between these two modes during operation: www.austriamicrosystems.com 1.2 11 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Low power mode operation (automatically controlled): As soon as the output voltage stays above the desired target value for a certain time, some internal blocks will be powered down leaving the output floating to lower the power consumption. Normal operation starts as soon as the output drops below the target value for a similar amount of time. To minimize the accuracy error some internal circuits are kept powered to assure a minimized output voltage ripple. Two addition guard bands, based on comparators, are set at +/-5% of the target value to react quickly on large over/undershoots by immediately turning on the output drivers without the normal time delays. This ensures a minimized ripple also in very extreme load conditions. al id DVM (Dynamic Voltage Management) To minimize the over-/undershoot during a change of the output voltage, the DVM can be enabled. With DVM the output voltage will ramp up/ down with a selectable slope after the new value was written to the registers. Without DVM the slew rate of the output voltage is only determined by external components like the coil and load capacitor as well as the load current. DVM can be selected for all step-down converters, but only for one at a time. (see sd_dvm_select and dvm_time description) lv Fast Regulation Mode This mode can be used to react faster on sudden load changes and thus minimize the over-/undershoot of the output voltage. This mode needs an 22uF output capacitor instead the 10uF one to guarantee the stability of the regulator. the mode is enabled by setting sdX_fast =1. am lc s on A te G nt st il Selectable Frequency Operation Especially for very low load conditions, e.g. during a sleep mode of a processor, the switching frequency can be reduced to achieve a higher efficiency. The frequency for SD1, SD2 and SD3 can be set to 2, 3 or 4MHz. This mode is selected by setting sdX_freq and sdX_fsel to the appropriate values. 100% PMOS ON Mode for Low Dropout Regulation For low input to output voltage difference the DCDC converter can use 100% duty cycle for the PMOS transistor, which is then in LDO mode. 8.1.3 Step-Down Converter Configuration Modes The step down DCDC converters have two configuration modes to deliver different output currents for the applications. The operating mode is selected by setting the bit sd3_slave (the default is set by the Boot-OTP). Te ch ni ca Figure 6. DC/DC step-down SD1, SD2, SD3 Normal Operating Mode; sd3_slave = 0 www.austriamicrosystems.com 1.2 12 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.1.4 Parameter am lc s on A te G nt st il lv al id Figure 7. DC/DC step-down SD1, SD2, SD3 2A Operating Mode; sd3_slave = 1 Table 4. Step Down DC/DC Converter Parameters Symbol VIN Parameter Note Min Input voltage Pin VSUP_SDx Regulated output voltage VOUT_tol Output voltage tolerance ILIMIT Current limit P-Switch ON resistance RNSW N-Switch ON resistance ni RPSW Load current ch Iload min. 40mV ca VOUT Te fSW Switching frequency tmin_on minimum on time eff Efficiency IVDD Current consumption www.austriamicrosystems.com Typ Max Unit 2.7 5.5 V 0.6125 3.35 V -3 +3 % SD1 1.8 A SD2, SD3 1.2 A SD1; VSUP_SDx=3.0V 0.17 0.4 SD2, SD3; VSUP_SDx=3.0V 0.25 0.5 SD1; VSUP_SDx=3.0V 0.17 0.4 SD2, SD3; VSUP_SDx=3.0V 0.25 0.5 SD1 0 1.5 A SD2, SD3 0 1 A sdX_frequ=1, sdX_fsel=1; fclk_int =4MHz 4 MHz sdX_frequ=1, sdX_fsel=0; fclk_int =4MHz 3 MHz sdX_frequ=0, sdX_fsel=0; fclk_int =4MHz 2 MHz 40 ns Iout=300mA, Vout=2V, VSUP=3.5V 92 % Operating current without load 60 Shutdown current 0.1 1.2 A 13 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Table 5. Step Down DC/DC External Components Parameter CFB_SD1 Output capacitor CFB_SD2-3 Output capacitor CVSUP_SD1-3 Input capacitor Min Typ Ceramic X5R or X7R 10.0 15 F Ceramic X5R or X7R, fast mode=1 20.0 30 F Ceramic X5R or X7R 8.0 10 F Ceramic X5R or X7R, fast mode=1 16.0 20 F Inductor Ceramic X5R or X7R 2.2 4MHz operation 1 3MHz operation 1 2MHz operation 2.2 Max Unit F H lv LSD1-SD3 Note al id Symbol All measurements where done with 55m chip coils (Murata LQM2HPN1R0MG0). Using coils with lower on-resistance will increase the efficiency especially at higher output currents. 100 100 95 95 90 90 85 80 75 70 65 60 Efficiency (%) 85 Efficiency (%) am lc s on A te G nt st il Figure 8. Step Down DC/DC SD1 Efficiency vs. Output Current; VSUP = 3.0V, 3MHz operation, TA = +25C Vout = 1.0V Vout = 1.0V, low noise 55 Vout = 3.0V 0.01 0.1 1 65 60 Vout = 1.2V Vout = 1.2V, low noise Vout = 2.5V 45 Vout = 3.0V, low noise 40 0.001 70 50 Vout = 1.8V, low noise 45 75 55 Vout = 1.8V 50 80 40 0.001 10 Vout = 2.5V, low noise 0.01 Output Current (A) 0.1 1 10 Output Current (A) ca Figure 9. Step Down DC/DC SD1 Efficiency vs. Output Current; VSUP = 3.8V, 3MHz operation, TA = +25C 100 80 75 ch Efficiency (%) 85 95 90 85 Efficiency (%) 90 100 ni 95 70 65 60 Vout = 1.0V Vout = 1.0V, low noise Te 55 Vout = 1.8V 50 Vout = 1.8V, low noise Vout = 3.0V 45 40 0.001 0.1 1 75 70 65 60 55 Vout = 1.2V 50 Vout = 1.2V, low noise 10 40 0.001 Output Current (A) www.austriamicrosystems.com Vout = 2.5V 45 Vout = 3.0V, low noise 0.01 80 Vout = 2.5V, low noise 0.01 0.1 1 10 Output Current (A) 1.2 14 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 100 100 95 95 90 90 85 85 80 80 75 70 65 60 Vout = 1.0V Vout = 1.0V, low noise 55 75 al id Efficiency (%) 70 65 60 Vout = 1.8V 55 50 Vout = 1.8V, low noise 50 Vout = 1.2V, low noise 45 Vout = 3.0V 45 Vout = 2.5V Vout = 1.2V Vout = 3.0V, low noise 40 0.001 0.01 0.1 1 40 0.001 10 lv Efficiency (%) Figure 10. Step Down DC/DC SD2 & SD3 Efficiency vs. Output Current; VSUP = 3.0V, 3MHz operation, TA = +25C Vout = 2.5V, low noise 0.01 Output Current (A) 0.1 1 10 am lc s on A te G nt st il Output Current (A) Figure 11. Step Down DC/DC SD2 & SD3 Efficiency vs. Output Current; VSUP = 3.8V, 3MHz operation, TA = +25C 100 100 95 95 90 90 85 80 75 70 65 Efficiency (%) Efficiency (%) 85 Vout = 1.0V 60 80 75 70 65 60 Vout = 1.0V, low noise 55 Vout = 1.8V 50 Vout = 1.8V, low noise Vout = 3.0V 45 0.01 0.1 1 Vout = 1.2V 50 Vout = 1.2V, low noise Vout = 2.5V 45 Vout = 3.0V, low noise 40 0.001 55 10 40 0.001 0.01 0.1 1 10 Output Current (A) Te ch ni ca Output Current (A) Vout = 2.5V, low noise www.austriamicrosystems.com 1.2 15 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.2 DCDC Step-Down Controller 8.2.1 General Description The Step-Down controller SD4 uses a paired external NMOS, PMOS to achieve higher output currents. the maximum output current is determined by the external transistor and shunt used. 8.2.2 Parameter am lc s on A te G nt st il lv al id Figure 12. DC/DC step-down Controller Table 6. Step Down DC/DC Controller Parameters Symbol VIN Parameter Note Min Input voltage Pin VSUP_SDx Typ Max Unit 2.7 5.5 V 0.6125 3.3 V -3 +3 % Regulated output voltage VOUT_tol Output voltage tolerance min. 40mV Vrsense_max Current limit voltage at Rsense E.g.: 2.6A for 0.033 sense resistor 100 mV fSW Switching frequency fclk_int = 4MHz 1 MHz ca VOUT Table 7. Step Down DC/DC Controller External Components Symbol Parameter Note Min Typ Max Unit paired NMOS-PMOS ch QSD4 ni External Components 1.6A shunt CFB_SD4 Output capacitor Te RSD4 FDC6327C PMOS: Ron=250mOhm, 1.6A NMOS: Ron=120mOhm, 2.7A 0.15W; +/- 1% 50 m Ceramic X5R or X7R 16.0 20 F Ceramic X5R or X7R, fast mode=1 32.0 40 F CVSUP_SD4 Input capacitor Ceramic X5R or X7R 10 F LSD4 Inductor 2A rated, 1MHz operation 2.2 H QSD4 paired NMOS-PMOS FDC6420C PMOS: Ron=190mOhm, 2.2A NMOS: Ron=95mOhm, 3A RSD4 shunt 0.2W; +/- 1% 33 External Components 2.2A www.austriamicrosystems.com 1.2 m 16 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Table 7. Step Down DC/DC Controller External Components Parameter Note Min Typ CFB_SD4 Output capacitor CVSUP_SU Input capacitor LSD4 Ceramic X5R or X7R 24.0 30 F Ceramic X5R or X7R, fast mode=1 48.0 60 F Ceramic X5R or X7R 10 F Inductor 2.5A rated, 1MHz operation 1.5 H QSD4 paired NMOS-PMOS NTHD3102C PMOS: Ron=83mOhm, 4.2A NMOS: Ron=37mOhm, 5.5A RSD4 shunt 0.3W; +/- 1% 25 CFB_SD4 Output capacitor CVSUP_SU Input capacitor External Components 3A 32.0 64.0 Inductor LSD4 m F 80 F 10 F am lc s on A te G nt st il Ceramic X5R or X7R 40 Unit lv Ceramic X5R or X7R Ceramic X5R or X7R, fast mode =1 Max al id Symbol 3A rated, 1MHz operation 1 H All measurements where done with the 2.2A transistors (Fairchild FDC6420C) and 70m chip coils (Murata LQM2HPN1R0MG0). Using coils with lower on-resistance will increase the efficiency especially at higher output currents. Figure 13. Step-Down DC/DC SD4 Controller Efficiency vs. Output Current; VSUP = 3.0V, TA = +25C 100 100 95 95 90 90 85 80 75 70 65 60 Efficiency (%) Efficiency (%) 85 Vout = 1.0V Vout = 1.0V, low noise 55 75 70 65 60 55 Vout = 1.8V 50 80 Vout = 1.2V Vout = 1.2V, low noise 50 Vout = 1.8V, low noise Vout = 2.5V Vout = 3.0V 45 45 40 0.001 ca Vout = 3.0V, low noise 0.01 0.1 1 10 40 0.001 0.01 0.1 1 10 Output Current (A) Te ch ni Output Current (A) Vout = 2.5V, low noise www.austriamicrosystems.com 1.2 17 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 100 100 95 95 90 90 85 85 80 80 75 70 65 Vout = 1.0V 55 Vout = 1.0V, low noise Vout = 3.0V 0.01 0.1 1 Vout = 1.2V Vout = 1.2V, low noise Vout = 2.5V 45 Vout = 3.0V, low noise 40 0.001 60 50 Vout = 1.8V, low noise 45 65 55 Vout = 1.8V 50 70 10 40 0.001 Vout = 2.5V, low noise 0.01 lv 60 75 al id Efficiency (%) Efficiency (%) Figure 14. Step-Down DC/DC SD4 Controller Efficiency vs. Output Current; VSUP = 3.8V, TA = +25C 0.1 1 10 Output Current (A) Te ch ni ca am lc s on A te G nt st il Output Current (A) www.austriamicrosystems.com 1.2 18 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.3 Analog LDO Regulators 8.3.1 General description LDO1 and LDO2 are designed to supply sensitive analogue circuits like LNA's, Transceivers, VCO's and other critical RF components of cellular radios. Another application is the supply of audio devices or as a reference for AD and DA converters. The design is optimized to deliver the best compromise between quiescent current and regulator performance for battery powered devices. The default guaranteed operating current during start-up is 150mA, but can be set to 250mA with ldoX_ilimit = 1. lv To save power in low-power states where the full performance is not needed the bias current can be reduce by setting reg_low_bias_mode=1. Parameter am lc s on A te G nt st il Figure 15. Analog LDO Block diagram 8.3.2 al id Stability is guaranteed with ceramic output capacitors of 1F 20% (X5R) or 2.2F +100/-50% (Z5U). The low ESR of these caps ensures low output impedance at high frequencies. Regulation performance is excellent even under low dropout conditions, when the power transistor has to operate in linear mode. Power supply rejection is high enough to suppress the PA-ripple on the battery in TDMA systems at the output. The low noise performance allows direct connection of noise sensitive circuits without additional filtering networks. The low impedance of the power device enables the device to deliver up to IOUT current even at nearly discharged batteries without any decrease of performance. Symbol Parameter 1 Output current ch RON Te PSRR Note Max Unit 2.7 5.5 V ldoX_ilimit = 0 0 150 mA ldoX_ilimit = 1 0 250 Supply voltage range ni VLDO123_IN IOUT ca Table 8. Analog LDO (LDO1, LDO2) Characteristics VLDO123_IN=3.7V; ILOAD=150mA; Tamb=25C; CLOAD =2.2F (Ceramic); unless otherwise specified On resistance Power supply rejection ratio Min Typ LDO1, LDO2 1 f=1kHz 70 f=100kHz 40 dB IOFF Shut down current IVDD Supply current Noise Output noise 10Hz < f < 100kHz 50 Vrms tstart Startup time low current limit used during start-up 200 s www.austriamicrosystems.com 100 nA without load 50 A without load, reg_low_bias_mode=1 30 A 1.2 19 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Table 8. Analog LDO (LDO1, LDO2) Characteristics VLDO123_IN=3.7V; ILOAD=150mA; Tamb=25C; CLOAD =2.2F (Ceramic); unless otherwise specified Parameter Min Vout Output voltage Vout_tol Output voltage tolerance VLineReg Line regulation VLoadReg Load regulation ILIMIT_LDO1,2_L low current limit ldoX_ilimit = 0 ILIMIT_LDO1,2_H high current limit ldoX_ilimit = 1 CLOAD_LDO1,2_L Ceramic load capacitor LDO1 / LDO2; ldoX_ilimit = 0 1 CLOAD_LDO1,2_H Ceramic load capacitor LDO1 / LDO2; ldoX_ilimit = 1 2 Typ Max Unit 1.2 3.3 V min. 40mV -3 3 % Static -1 1 Transient; Slope: tr=10s -10 Static -1 Transient; Slope: tr=10s -10 10 1 10 mV mA lv 300 mV 500 mA 5 F 5 F am lc s on A te G nt st il Note al id Symbol Te ch ni ca 1.Guaranteed by design and verified by laboratory evaluation and characterization; not production tested. www.austriamicrosystems.com 1.2 20 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.4 Digital LDO Regulators 8.4.1 General Description Digital LDOs offer a wide input (1.8V to 5.5V) as well as a wide output (0.9 to 3.3V) voltage range to be used for general purpose peripheral supply. Up to 300mA possible output currents are offered with good noise and regulation performance and very low quiescent current even suitable for stand-by power supply. 8.4.2 Parameter am lc s on A te G nt st il lv al id Figure 16. Digital LDO Block diagram Table 9. Digital LDO (LDO3, LDO4, LDO5, LDO6, LDO7, LDO8) Characteristics VLDOx_IN=3.7V; ILOAD=150mA; Tamb=25C; CLOAD =1F (Ceramic); unless otherwise specified Symbol Parameter Note Min Typ Max Unit VLDO123_IN Supply voltage range 2.7 5.5 V VLDO456_IN Supply voltage range 1.75 5.5 V VLDO78_IN Supply voltage range 1.75 5.5 V IOUT ldoX_ilimit = 0 0 150 mA Output current ldoX_ilimit = 1 0 300 mA LDO4, LDO5, LDO6 1 LDO3, LDO7, LDO8 2 ca 1 PSRR Power supply rejection ratio f=1kHz 60 f=100kHz 30 Shut down current ch IOFF On resistance ni RON 100 Supply current without load tstart Startup time low current used during start-up Vout Output voltage Vsupply>3.0V, VCP=5.2V, Iout<200mA Vout_tol Output voltage tolerance min. 40mV VLineReg Line regulation VLoadReg Load regulation Te IVDD www.austriamicrosystems.com dB 30 nA 43 A 200 s 0.9 3.3 V -3 3 % Static 0.07 %/V Transient; Slope: tr=15s; delta 1V 20 mV Static 0.014 %/mA Transient; Slope: tr=15s; 1mA->300mA 30 mV 1.2 21 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Table 9. Digital LDO (LDO3, LDO4, LDO5, LDO6, LDO7, LDO8) Characteristics VLDOx_IN=3.7V; ILOAD=150mA; Tamb=25C; CLOAD =1F (Ceramic); unless otherwise specified Symbol Parameter Note Min Typ Max Unit ILIMIT_LDO3-8_L low current limit ldoX_ilimit = 0 300 mA ILIMIT_LDO3-8_H high current limit ldoX_ilimit = 1 500 mA 1.Guaranteed by design and verified by laboratory evaluation and characterization; not production tested www.austriamicrosystems.com 1.2 22 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.5 Low power LDO V2_5 Regulators 8.5.1 General Description The low power LDO V2_5 is needed to supply the chip core (analog and digital) of the device. It is designed to get the lowest possible power consumption, and still offering reasonable regulation characteristics. The regulator has two supply inputs selecting automatically the higher one. This gives the possibility to supply the chip core either with the battery or with the charger depending on the conditions. Bulk switch comparators are used to avoid any parasitic current flow. To ensure high PSRR and stability, a low-ESR ceramic capacitor of min. 1F must be connected to the output. 8.5.2 Parameter Table 10. Low power LDO (V2_5) Characteristics,VBAT=3.7V; ILOAD_ext=0; Tamb=25C; CLOAD =1 F (Ceramic); unless otherwise specified Symbol VBAT VUSB Parameter Note Supply voltage rage RON On resistance IOFF Shut down current IVDD Supply current tstart Startup time Vout Output voltage www.austriamicrosystems.com Min Max 2.7 5.5 4.2 5.5 Guaranteed per design Guaranteed per design, consider chip internal load for measurements. 2.4 1.2 Typ Unit V 50 100 nA 3 A 200 s 2.5 2.6 V 23 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.6 DCDC Step-Up Converter 8.6.1 General Description The DC/DC Step Up converter is a high efficiency current mode PWM regulator, which provides an output voltage dependent on the maximum VDS voltage of the external transistor, and maximum load current selectable by the external shunt resistor. For Example: 5V, 0.5-1A @ 1Mhz 25V, 50mA @ 1MHz 40V, 20mA @ 500kHz A constant switching frequency results in a low noise on supply and output voltage. Figure 17. DC/DC step-up Converter 1 www.austriamicrosystems.com 1.2 24 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Figure 18. DC/DC step-up Converter 2 8.6.2 Feedback selection SU1 For step up SU1, the feedback is always FB_SU1. 8.6.3 Feedback Selection SU2 For step up SU2 following feedback selections are possible (selected by setpup2_fb): (see Figure 18) Current Feedback CURR1, CURR2 or CURR3 can be selected by stepup2_fb as a current feedback pin. The step-up converter is regulated such that the required current at the feedback path can be supported. stepup2_fbprot selects the overvoltage protection feedback pin (LX_SD4, GPIO2, GPIO3 or GPIO4). In this mode the output voltage will be limited by limiting the voltage on the selected feedback pin to 1.25V (select the external resistor network and stepup2_v to adjust this limitation voltage). stepup2_prot_dis has to be set to 0, otherwise the protection is disabled. Always choose the path with the higher voltage drop as feedback to guarantee adequate supply for the other, unregulated path. Current Feedback with Automatic Feedback Selection Same as above, but when currX_ctrl = 10b for the used current sinks, the chip automatically selects the highest string (CURR1, CURR2 or CURR3) as feedback input. www.austriamicrosystems.com 1.2 25 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Voltage Feedback stepup2_fb = 00b. LX_SD4, GPIO2, GPIO3 or GPIO4 can be selected by stepup2_fbprot as a voltage feedback input. The step-up converter output voltage is regulated by regulating the selected feedback pin voltage to 1.25V. Calculating Resistors for Voltage Feedback or Over-Voltage Protection Bit stepupX_res should be set to 1 in voltage feedback mode using two resistors. The output voltage is regulated to a constant value, given by: R1 + R2 V SU = ------------------- x 1, 25 + I FB x R 1 R2 If R2 is not used, the output voltage is: V SU = 1, 25 + I FB x R 1 VSU: Step up regulator output voltage R1 Feedback resistor R1 R2 Feedback resistor R2 IFB: Tuning current on DCDC_FB pin: stepupX_v (0..31A (1A steps)) Example: Table 11. Step Up Output Voltage (Voltage mode or protection voltage) IFB (stepupX_v) VSU VSU A R1=1M ,R2 not used R1=500k ,R2=64k 0 - 11 1 - 11.5 2 - 12 3 - 12.5 4 - 13 5 6.25 13.5 6 7.25 14 7 8.25 14.5 8 9.25 15 9 10.25 15.5 10 11.25 16 11 12.25 16.5 12 13.25 17 13 14.25 17.5 14 15.25 18 15 16.25 18.5 Note: The voltage on pin CURR1, CURR2 and CURR3 must never exceed 30V. www.austriamicrosystems.com 1.2 26 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.6.4 Output disconnect As the output voltage is always on, an additional output transistor can be added to reduce shutdown current through R1, R2 and the connected output circuit. Note: A similar circuit can be used for step up converter 2. Figure 19. StepUp 1 with regulated output voltage (15V), and switch off function of output voltage, to reduce shutdown current 8.6.5 StepUp1 Load Detection and Over-current Protection Circuit This circuit protects the DCDC step up1 converter during short circuit and startup, by regulation of the output current. An additional feature is the detection of a minimum output load of the Step-up converter. It is also possible to use this circuit without the DCDC step up converter, by using the sense resistor only: Detection circuit: If the voltage on Rsense exceeds VDETECT for more than 1ms, or the DCDC Step up converter is not in pulse-skip for more than 1ms, the stepup1_det bit will be set. Over-current protection: If the Over-current voltage VOVCURRENT has been exceeded by more than 5ms the bit stpup1_oc will be set and can only reset, by switching off and on the Protection circuit by writing stpup1_shortprot 0 - 1. If stpup1_oc is set the load will be disconnected, if stpup1_oc_timeout=1 www.austriamicrosystems.com 1.2 27 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Figure 20. StepUp 1 Load Detection and Over-current Protection Application Circuit 8.6.6 Parameter Table 12. DC/DC Step-up Controller Parameters Symbol Parameter Note IVDD Quiescent Current Pulse skipping mode VFB1 Feedback voltage for external resistor divider: for constant voltage control VFB2 Feedback voltage for current sink regulation CURR1, CURR2 or CURR3 Additional tuning current at FB_SUx adjustable by software in 1A steps 0 31 A Accuracy of feedback current @ full scale -7 7 % Vrsense_max Current limit voltage at Rsense E.g.: 0.65A for 0.15 sense resistor RSW switch resistance ON-resistance of external switching transistor Iload Load current at 25V output voltage fIN Switching frequency internal CLK frequency/4, default 1MHz tMIN_ON Minimum on time MDC Maximum duty cycle IDCDC_FB Min Typ Max 140 1.20 1.25 A 1.30 0.6 @ 1MHz V V 100 0 Unit mV 1 50 mA fclk_int/4 MHz 130 ns 91 % Table 13. StepUp1 protection/detection circuit parameters Symbol Parameter Note Min Typ Max Unit VDETECT Detection Threshold For Rsense=0.150 => 83mA typ. 2 12.5 25 mV VOVCURRENT Over-current Threshold rising For Rsense=0.150 => 1.2A typ. 150 180 215 mV www.austriamicrosystems.com 1.2 28 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Table 13. StepUp1 protection/detection circuit parameters Symbol Parameter VOVhysteresis Over-current Hysteresis tOV_timeout Over-current timeout tdetect Detection de-bounce time Note Min Typ Max Unit 50 mV Interrupt and/or external PMOS switching off after timeout fclk_int = 2.2MHz 5 ms fclk_int = 2.2MHz 1 ms Table 14. DC/DC Step-up Controller External Components Symbol Parameter Note Cout Output capacitor ceramic, 20% 2.2 F Use inductors with small Cparasitic (<100pF) to get high efficiency; Vout >8V 10 H Use inductors with small Cparasitic (<100pF) to get high efficiency; Vout <8V 4.7 H VGS(TH) threshold voltage 1.3 LSU Inductor QSU C1 / C2 8.6.7 Transistor Feedback capacitor ratio Min Typ Max 1.5 Vout_max +20% VDS max drain to source voltage V V RDS(ON) drain - source on resistance 0.35 QGS total gate charge @ VGS=4.5V 3 ratio should be smaller than the feedback resistor ratio (inverted) to avoid overshoots during start-up Unit 5 nC R2 / R1 F Step-Up DC/DC Controller Efficiency vs. Output Current; VSUP = 3.8V, TA = +25C 92 90 88 86 ] % 84[ff E 82 80 0 www.austriamicrosystems.com 0,2 ILoad[A] 0,4 1.2 0,6 29 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.7 Current Sinks 8.7.1 General Description These are general-purpose current sinks intended to control the backlight(s), buzzer and vibrator. CURR1 and CURR2, CURR3 are high voltage (30V) current sinks, e.g. for series of white LEDs. Current sinks CURR1, CURR2 and CURR3 can be controlled individually. The step-up DCDC converter (SU2) may supply them with voltages up to 30V. For an automatic feedback selection the used current sinks can be assigned to the SU2 booster. If not used as a current sink, CURR3 can be used to output several status signals. In this mode the CURR3 output acts like a open-drain output and needs an external pull-up resistor for generating logic high levels. 8.7.2 Parameter Table 15. Current Sinks Characteristics Symbol Parameter Note Min ICURR1,2,3 CURR1,2 & 3 current, 00h-3Fh For V(DCDC_CURRx) > 0.5V resolution = 0.157mA 0 IDCDC_protect Current sink protection Current Protection Current if stpup2_on=1 and currx_current=00h absolute Accuracy All Current sinks -8 +8 % VCURR1,2,3 Voltage compliance during normal operation 0.5 30 V www.austriamicrosystems.com 1.2 Typ Max Unit 40 mA 2 A 30 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.8 Charger 8.8.1 General Description The AS3711 device serves as a standalone battery charge controller supporting rechargeable lithium Ion (Li+) and) batteries. Requiring only a few external components, a full-featured battery charger with a high degree of flexibility can easily be realized. The main features of the controller are: Charge adapter detection PowerPath management & internal voltage regulator (V2_5), for dead battery startup Low current (soft) charging Low current (trickle) charging Constant current charging Constant voltage charging 30V Overvoltage protection Battery presence indication Operation without battery Input current limitation Input voltage drop regulation Programmable linear or switched mode operation Bypass mode for high input current application (up to 6A) Figure 21. Charger Application Block Diagram, Step Down charger mode www.austriamicrosystems.com 1.2 31 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Figure 22. Charger Application Block Diagram, Linear charger mode 8.8.2 Charging Cycle Description Charge adapter detection The charge controller uses an integrated detection circuit to determine if an external charge adapter has been applied to the VUSB pin. If the adapter voltage exceeds the battery voltage at pin VBAT by VCHDET the ChDet bit in the ChargerStatus register will be set. The detection circuit will reset the charge controller (bit ChDet is cleared) as soon as the voltage at the VUSB pin drops to only VCHMIN above the battery voltage. In case the AS3710AS3711 device is reset the charge controller will also be reset, even if a charge adapter is applied to the VUSB pin. Soft charging Soft charge mode is started when an external charge adapter has been detected, the bat_charging_enable is set and the battery voltage at pin VBAT is below the VSOFT threshold. Low current (trickle) charging Trickle charge mode is started when an external charge adapter has been detected bat_charging_enable is set and the battery voltage at pin VBAT is below the VTRICKLE threshold and above VSOFT threshold; bits ChDet and Trickle will be set in the ChargerStatus register. In this mode the charge current will be limited to TrickleCurrent (set in the ChargerCurrent register) to prevent undue stress in case of deeply discharged batteries. Once VTRICKLE has been exceeded, the charger will change over to constant current charging (Trickle is cleared). Constant current charging Constant current charging is initiated when bat_charging_enable is set and the battery voltage at pin VBAT is above the VTRICKLE and below VCHOFF. The CCM bit is set when the charger has started, and the charge current will be limited to ConstantCurrent by the battery charge controller. When the battery approaches full charge, its voltage will reach the charge termination threshold VCHOFF. VCHOFF depends on the ChVoltEOC bits settings. Top-off charge will be started (CVM will be set). Constant voltage charging Constant voltage charge mode is initiated and the CVM bit will be set when the VCHOFF threshold has been reached. The charge current is monitored during constant voltage charging. It will be decreasing from its initial value during constant current charging and eventually drop below the value set by TrickleCurrent. If the measured charge current is less than or equal to TrickleCurrent, the charging cycle is terminated and EOC is set. www.austriamicrosystems.com 1.2 32 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.8.3 Charger States 8.8.4 Stop charging conditions There are multiple safety features implemented that trigger a stop_charging condition: These are the following: - Battery temperature too high. If ntc_on=1 and voltage at pin NTC is below VBATTEMP - Timeout timer expired (If ch_timeout>0 and charging time has been exceeded. (Can be reset by unplugging the charger, setting chg_on=0 or writing charging_tmax=0) - VUSB over-voltage detected - Die temp>140deg (ov_temp_140 set) 8.8.5 Battery presence indication and operation without battery After EOC state is reached a timer for NOBAT detection is started. If there is no battery present, the VBAT voltage will drop to VRESUME. Depending on the load on VBAT and the capacitor on VBAT this might take some milliseconds to 1 second. If the RESUME mode is enabled (Bit auto_resume=1), the charger will restart charging (ConstantCurrent charging) after 100msec delay. The 100msec dead time is necessary to get a battery oscillation frequency below 10Hz, if there is no battery present. If the NOBAT detection timer is below 2 seconds after reaching EOC state, and this happens 2 times in serial, the Nobat bit in ChargerStatus register is set. If an battery is inserted the bit will be reset after the timer exceeds the 2 seconds. In addition, if the nobat_ntc_det bit is set the looping will be stopped and a NTC detection is started. A pull up current of 0.5uA is applied to BATTEMP. If the BATTEMP voltage is above 1.8V, the state machine stays in the no bat state. If the BATTEMP voltage is below 1.8V, a charging cycle is initiated. 8.8.6 Charger overvoltage protection This blocks checks if the charger voltage VUSB is above VCHOVH. If the VUSB voltage is above VCHOVH , the pin XOFF is pulled to GND immediately, to protect the pin VCHG_IN, and the charger is set into off state. If the VUSB voltage is below VCHOVH the XOFF pin is charged up to VXOFF_REG with an integrated charge pump. If the pin exceeds VXOFF_MIN the usb_prot_ready bit is set and the charger is started. 8.8.7 NTC supervision This charger block also features a supply for an external NTC resistor to measure the battery temperature while charging. If the temperature is too high (voltage on BATTEMP pin is below VBATTEMP_ON) the charger will stop operation. If needed an interrupt can be generated based on this event. When the battery temperature drops the charger the voltage on BATTEMP pin will rise above VBATTEMP_OFF and the charger will start charging again. This is forming a temperature hysteresis of about 3 to 5C to avoid an oscillation of the charger. www.austriamicrosystems.com 1.2 33 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s The levels for switching off the charger (ntc_temp: 45C or 55C) as well as the type of NTC (ntc_10k: 10k or 100k) can be selected via register settings. The battery temperature supervision via the NTC can be switched off (ntc_on = 0). The supply for the NTC will be only on when a charger is detected and ntc_on bit is set. 8.8.8 Charger Modes Figure 23. Linear Charger Modes www.austriamicrosystems.com 1.2 34 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Figure 24. DCDC Charger Modes 8.8.9 Alternative Charger Input Configurations Figure 25. Charger with Current Limiter Bypass www.austriamicrosystems.com 1.2 35 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s 8.8.10 Parameter TA= 25C, unless otherwise specified. Table 16. Charger Parameter Symbol VCHDET VCHMIN Parameter Condition Min Typ Max Unit Charger Detection threshold VUSB-VBAT Hysteresis is > 40mV 50 75 105 mV 0 20 35 mV VSOFT Apply ISOFT charging current below that VBAT voltage 1.8 V ISOFT Charging current if VBAT is below VSOFT 22 mA VTRICKLE Trickle to CC current threshold VBAT rising 2.9 V mA V ITRICKLE Trickle/EOC current limit Programmable in 60mA steps 60.. 240 VCHOFF Charge termination threshold programmable in 20mV steps between 3.5 and 4.44V 3.5.. 4.44 @ ChVoltEOC=35 (4.2V) ICC CC current limit 4.15 linear charging mode -10% -7% USB input current limit @ 470mA VRESUME Resume voltage limit to start charger VBAT falling threshold (depending on ChVoltResume) VSUP_min VSUP level for charging current regulation (reduction), to avoid voltage drop on VSUP Trickle current (or constant current in linear mode) will be regulated down, if VSUP drops below this level 4.242 250.. 1500 Programmable in 50mA steps IUSB_limit 4.20 470 V mA +10% mA +6% mA 140/233 mV 3.9 -6% 4.2 4.5 3% V 4.7 IREV_OFF Reverse current shut down VDiode RON_BATSW VSUP_CHG = 5V, VUSB open 5 A Ideal Diode start voltage 50 mV Battery Switch On-resistance 0.10 Temp Supervision VBATTEMP_ON Battery Temp. high level (50 or 55C) VSUP >3V NTCbeta=4200 500 or 400 mV VBATTEMP_OFF Battery Temp. low level (45 or 50C) VSUP >3V NTCbeta=4200 600 or 500 mV IBATTEMP NTC Bias Current 100k NTC 10k NTC -15% 15 150 +15% 6.2 +3% A XOFF overvoltage protection monitor voltage on VUSB, disable charging beyond this voltage (200mV hysteresis) VCHOVH VUSB Overvoltage Detection VXOFF_min Minimum XOFF voltage for charger startup 7.5 V VXOFF_REG Regulation voltage for XOFF pin 10 V IXOFF External pull down current on XOFF Connect XOFF pin to MOSFET gates only pin www.austriamicrosystems.com 1.2 -3% 6.0 100 V nA 36 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Table 17. External Components Symbol Q1PROT_NMOS Description Condition Min FDN337N Vds=30V, 2.2A Typ Max 65 Unit m FDN339AN Vds=20V, 3A 35 m FDN327N Vds=20V, 2A 70 m FDG311N Vds=20V, 1.9A 115 m 82 m Si1472DH FDC637AN Vds=20V, 6.2A 24 m FDT439N Vds=30V, 6.3A 45 m FDN306P @ 4.5V 40 m FDC602 @ 4.5V 33 m FDC642 @ 4.5V 65 m CUSB Bypass capacitor on VUSB pin 20%, X5R or X7R dielectric / 25V 4.7 F CVSUP_CHG Bypass capacitor on VSUP_CHG X5R or X7R dielectric near to pin VSUP_CHG 4.7 F CVSUP_MIN Bypass capacitor on VSUP X5R or X7R dielectric, total value CVBAT Bypass capacitor on VBAT X5R or X7R dielectric 10 F LQM2HPN1R0MJ0 (MURATA) Ron=90mOhm / 1.5A rated current 1 H MLP2520S1R0M (TDK) Ron=85mOhm / 1.5A rated current 1 H Q1PROT_NMOS_HC BYPASS Q2BATSW_NMOS LCHGOUT DCHGOUT F 10 PMEG2010 (NXP) 1A NSR10F20NXT5G (ONSEMI) 1A 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 1,2 1 Input Current (A) Efficiency (%) Figure 26. Step-Down vs Linear Charger; VSUP = 4.5/5.0V, TA = +25C SD charger 4.5V linear charger 4.5V 0,8 0,6 0,4 SD charger 4.5V linear charger 4.5V 0,2 SD charger 5V SD charger 5V linear charger 5V linear charger 5V 0 1 2 3 4 5 1 Battery Voltage (V) www.austriamicrosystems.com 2 3 4 5 Battery Voltage (V) 1.2 37 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - P o w e r M a n a g e m e n t F u n c t i o n s Figure 27. Step-Down vs Linear Charger; VSUP = 4.5/5.0V, TA = +25C 2,5 Internal Power Dissipation (W) SD charger 4.5V linear charger 4.5V 2 SD charger 5V linear charger 5V 1,5 1 0,5 0 1 2 3 4 5 Battery Voltage (V) www.austriamicrosystems.com 1.2 38 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s 9 Detailed Description - System Functions 9.1 Start-up Figure 28. Startup flow chart www.austriamicrosystems.com 1.2 39 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s 9.1.1 Normal Startup During a normal reset cycle (e.g. after the battery or a charger is inserted), after V2_5 is above VPOR and VSUP is above ResVoltRise a normal startup happens: The external capacitor on CREF is charged to 1.8V. Configuration of Charger (DCDC or linear) and SD2/SD3 (combined mode or separated) is read from the Boot-OTP. Startup State machine reads out the internal Boot-OTP. The start-up sequence of Step-Down Converter, LDO's and GPIOs are controlled by the Boot-OTP. Reset-Timer is set by the Boot-OTP The reset is released when the Reset Timer expires (external pin XRES) 9.1.2 Startup from Charger If the voltage on pin VUSB is within VSTARTCHARGER, the AS3711 is started (even with VBAT = 0V). This allows the battery to be charged (even from deeply discharged batteries) and finally a normal startup to happen. 9.1.3 Parameter Table 18. Charger and ON-input Startup Conditions Symbol Parameter Note Min Typ Max unit VSTARTCHARGER Voltage on VUSB for system to start on Pin VUSB 4.2 5.0 30 V VON_IL ON Low Level input voltage -0.3 0.4 VON_IH ON High Level input 1.4 VVSUP_G ION_PD ON Pull down current 4 www.austriamicrosystems.com 1.2 PIO 12 A 40 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s 9.2 Reset 9.2.1 General Description XRES is a low active bi-directional pin. An external pull-up to the periphery supply has to be added. During each reset cycle the following states are controlled by the AS3711: pin XRES is forced to GND normal startup with programmable power-on sequence and regulator voltages (see Start-up on page 39) reset is active until the programmable reset timer (set by register bits res_timer<2:0>) expires all registers are set to their default values after power-on, except the reset control- and status-registers. XRES is pulled high by the external resistor and the whole system is leaving the reset state Note: Programming is controlled by the internal Boot-OTP 9.2.2 Parameter Table 19. XRES-input Characteristics Symbol Parameter VXRES_IL XRES Low Level input voltage VXRES_IH XRES High Level input voltage Note Min Typ Max Unit -0.3 0.4 V 1.4 VSUP_G PIO V 9.2.3 Reset Conditions Reset can be activated from 7 different sources: Power on (battery or charger insertion) Low Battery Software forced reset Power off mode External triggered through the pin XRES Over-temperature Watchdog On-key long press Voltage detection: There are two types of voltage dependent resets: VPOR and VXRES. VPOR monitors the voltage on V2_5 and VXRES monitors the voltage on VSUP. The linear regulator for V2_5 is always on and uses the voltage CHGIN or VBAT VSUP as its source. The pin XRES is only released if V2_5 is above VPOR and VSUP is above ResVotlRise. www.austriamicrosystems.com 1.2 41 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s Table 20. Reset Levels Symbol Parameter Note Min Typ Max Unit VPOR Overall power on reset Monitor voltage on V2_5; power on reset for all internal functions 1.5 2.0 2.3 V VXRESRISE Reset level for Vsupply rising Monitor voltage on VSUP; rising level ResVolt 1 Rise V Reset level for Vsupply falling Monitor voltage on VSUP; falling level 2.7 V VXRESFALLING if SupResEn=1 only ResVoltF all V FastResEn = 0 3 ms VXRESMASK Mask time for VXRESFALLING. Duration for VBAT 5 <> 5 no voltage select by GPIO for regulator <> 5 5 GPIO2 controls regulator selected by reg1_select, reg2_select and reg3_select 5 <> 5 GPIO1 controls regulator selected by reg1_select, reg2_select and reg3_select 5 5 GPIO1 controls regulator selected by reg1_select GPIO2 controls regulator selected by reg2_select Stand-by and Vselect input This mode is very similar to the Vselct mode described in the previous paragraph. In addition to switch between 2 register settings of 2 regulators the chip is set into stand-by mode when the GPIOx pin goes low and wakes up again when the pin is pulled high. The gpioX_mode should be set to input. While GPIO3 & GPIO4 always control all regulators selected by regX_select, GPIO1 & GPIO2 may be used to control two regulators separately.: Table 25. GPIO Stand-by plus Vselect modes gpio1_iosf = gpio2_iosf = Vselect mode stand-by control <> 6 <> 6 no voltage select by GPIO for regulator no <> 6 6 GPIO2 controls regulator selected by reg1_select, reg2_select and reg3_select yes 6 <> 6 GPIO1 controls regulator selected by reg1_select, reg2_select and reg3_select yes 6 6 GPIO1 controls regulator selected by reg1_select GPIO2 controls regulator selected by reg2_select yes PWRGOOD output This signal will go high at the end of the start-up sequence. This can be used as an second reset signal to the processor to e.g. start oscillators. The gpioX_mode should be set to output. Q32k output When selected the GPIOx will provide the 32kHz RTC crystal frequency. If the oscillator is not enabled or not assembled a internal RC oscillator based clock will be used for the output. The gpioX_mode should be set to output. Watchdog input When pulling the GPIO high the watchdog will be triggered to avoid a reset cycle initiated ba the watchdog. The gpioX_mode should be set to input. SU1 OC output This output signal can be used to control an external disconnect transistor if SU1 detects an over current condition. The gpioX_mode should be set to output. Charger active output When selected, the GPIOx will go high if the charger is active. The gpioX_mode should be set to output. EOC output When selected, the GPIOx will go high if the charger has reached the EOC state. The gpioX_mode should be set to output. 100/500mA charger input Whith this function the charger input current limiter can be set to 100 or 500mA (low power or high power USB limit). The gpioX_mode should be set to input. 500/2.5A charger input Whith this function the charger input current limiter can be set to 500 or 2.5A (high power USB limit or full current enabled). The gpioX_mode should be set to input. www.austriamicrosystems.com 1.2 46 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s Charging enable input When pulling the GPIO to high the charger is being enabled and vice versa. This is to enable the charger without I2C communication. The gpioX_mode should be set to input. PWM output The gpio block includes an internal programmable PWM generator (can be connected to any of the GPIO outputs). Its timing is defined by pwm_h_time, pwm_l_time and pwm_div. The gpioX_mode should be set to output. 9.5.3 Parameter Table 26. GPIO Pin Characteristics VVSUP=2.7 to 5.5V; Tamb= -20 to +70C; unless otherwise specified Symbol Parameter Note Max Unit VGPIOMAX Maximum voltage on GPIO1...4 pins Pin VSUP_GPIO is used as supply for the GPIO pins VVSUP_GPIO+ 0.3 V VOL Low level output voltage IOL=+1mA; digital output -0.3 +0.4 V VOH High level output voltage IOH=-1mA; digital push-pull output 0.8VVSUP_GPIO VVSUP_GPIO V VIL Low level input voltage digital input -0.3 0.4 V VIH High level input voltage digital input 1.4 VVSUP_GPIO V ILEAKAGE Leakage current high impedance 10 A Rpull-up Pull-up resistance if enabled, VSUP_GPIO=3.6V 300 k Rpull-down Pull-down resistance digital input; if enabled; VSUP_GPIO=3.6V 300 k www.austriamicrosystems.com Min 1.2 Typ 47 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s 9.6 Supervisor All LDO's, the DCDC step ups and DCDC step downs have an integrated over-current protection. An overtemperature protection of the chip is also integrated which can be switched on with the serial interface signal temp_pmc_on (enabled by default; it is not recommended to disable the over-temperature protection). 9.6.1 General Description The chip has two signals for the serial interface: ov_temp_110 and ov_temp_140. The flag ov_temp_110 is automatically reset if the overtemperature condition is removed, whereas ov_temp_140 has to be reset by the serial interface with the signal rst_ov_temp_140. If the flag ov_temp_140 is set, an automatic reset of the complete chip is initiated. The chip will only start-up when the temperature falls below the T110 level (including hysteresis). The flag ov_temp_140 is not affected by this reset cycle allowing the software to detect the reason for this unexpected shutdown. Table 27. Over-temperature Detection Symbol Parameter T110 Min Typ Max Unit ov_temp_110 rising threshold 95 110 125 C T140 ov_temp_140 rising threshold 125 140 155 C Thyst ov_temp_110 and ov_temp_140 hysteresis www.austriamicrosystems.com Note 5 1.2 C 48 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s 9.7 Watchdog 9.7.1 General Description The purpose of the watchdog is to detect a deadlock of the software. If the watchdog is active, it must receive a continuous trigger signal within a programmable time window. If there is no signal anymore for a certain time period from a defined pad or special serial interface bit, it starts either a complete reset cycle or changes the state of an output pin, which can be used e.g. as an interrupt to the processor. The watchdog is highly configurable by the following register bits: The complete block can be switched on by wtdg_on = 1 and off by wtdg_on = 0. The watchdog time window is defined by the register wtdg_min_timer and wtdg_max_timer. The trigger signal can be configured by register wtdg_sw_sig and gpio1_iosf or gpio4_iosf. If the watchdog expires, the system can start automatically a reset cycle if wtdg_reset_on = 1. 9.7.2 Parameter Figure 30. Watchdog timing diagram tmin tmax wtdg_trigger tmin www.austriamicrosystems.com tmax 1.2 49 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s 9.8 Interrupt Generation 9.8.1 General Description The interrupt controller generates an interrupt request for the host controller as soon as one or more of the bits in the Interrupt 1...3 register are set by pulling high pin INT (INT has to be selected as a GPIO output function). The output polarity can be changed to active low (XINT) by using the gpioX_invert bit of the selected GPIO. All the interrupt sources can be enabled in the Interrupt Mask 1...3 register. The Interrupt 1...3 registers are cleared automatically after the host controller has read them. To prevent the AS3711 device from losing an interrupt event, the register that is read is captured before it is transmitted to the host controller via the serial interface. As soon as the transmission of the captured value is complete a logical AND operation with the bit wise inverted captured value is applied to the register to clear all interrupt bits that have already been transmitted. Clearing the read interrupt bits takes 2 clock cycles, a read access to the same register before the clearing process has completed will yield a value of `0'. Note that an interrupt that has been present at the previous read access will be cleared as well in case it occurs again before the clearing process has completed. During a read access to one of the interrupt registers the INT pin will be released. As soon as the transferred bits of the interrupt register have been cleared the INT pin will be pulled high in case a new interrupt has occurred in the meantime. By doing so the interrupt controller will work correctly with host controllers that are edge- and level-sensitive on their interrupt request input. Multiple byte read access is recommended to avoid reading the Interrupt 1 register over and over again in response to a new interrupt that has occurred in the same register (and thus pulling high pin INT) before the Interrupt 2,3 register has been read. www.austriamicrosystems.com 1.2 50 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s 9.9 10-Bit ADC This general purpose ADC can be used for measuring several voltages and currents to perform functions like battery monitor, temperature supervision, button press detection, etc. 9.9.1 Input Sources Table 28. ADC10 Input Sources # Source Range LSB Mode Description 0 BATTEMP 1.8V 1.76mV 1:1 check battery charging temperature 1 DIE temperature 1.8V 1.76mV 1:1 Tj = (0.866 * ADC10<9:0>) - 274 2 XOUT32X 1.8V 1.76mV 1:1 3 CURR1 1.0V 1.76mV 1:1 4 CURR2 1.0V 1.76mV 1:1 5 CURR3 1.0V 1.76mV 1:1 6 VUSB 15V 26.4mV 15:1 check USB charger HV input 7 CHGIN 5.5V 7.03mV 4:1 check USB charger LV input 8 VBAT 5.5V 7.03mV 4:1 check Li-Ion battery voltage 9 VSUP 5.5V 7.03mV 4:1 check main system supply voltage A SENSEN_SU1 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1 B LX_SD4 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1 C GPIO2 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1 D GPIO3 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1 E GPIO4 1.8V / 5.5V 1.76 / 7.03mV 1:1 / 4:1 F 9.9.2 reserved Parameter Table 29. ADC Characteristics Symbol Parameter Note Resolution Min Typ Max 10 Input Voltage Range Vin for 1:1 mode Differential Nonlinearity DNL 1LSB 1.76mV for 1:1 (depending on selected channel) Integral Nonlinearity Unit Bit 0 1.8 V 0.25 LSB INL 0.5 LSB Input Offset Voltage Vos 2 LSB Input Impedance Rin Input Capacitance Cin Power Supply Current Idd Power Down Current 100 M 9 during conversion only pF 500 A Idd 100 nA Conversion Time Tc 40 s Clock Frequency fc fclk_int/8 kHz Settling time of S&H ts Transient Parameters (25C) www.austriamicrosystems.com internal CLK frequency/8 1 1.2 s 51 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s Figure 31. ADC Timing-diagram I2C Bus start_conversion=1 1 275kHz 2 3 12 13 Sample ADC_ON start_adc result_not ready D<9:0> old_Data www.austriamicrosystems.com Data not valid Data ready 1.2 52 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s 9.10 Real Time Clock 9.10.1 General Description The RTC module provides time information to the system. It is implemented as a 6-bit counter that is incremented every second - with the 32kHz oscillator delivering the necessary accurate time base - and is reset to 0 each time the counter value is 60. An additional 24-bit minute counter is incremented each time the 6-bit counter is reset to 0. Both counters are set to 0 at a power-on-reset. The host controller can set the counter to any value by setting the RTC 1...4 registers. To prevent ambiguous time information because of the 30-bit value being incremented before all of the 4 registers have been read or written, a 30-bit parallel shadow register is implemented. Every time a write/read access via the serial interface occurs the parallel shadow register is updated with the current value of the 30-bit counter. Any write access to the RTCSecond register will disable the update of the parallel register and set the value of the appropriate byte of the parallel register. Any subsequent write access to the RTCMinute3 register will transfer the current value of the 30-bit parallel register to the RTCSecond/Minute1..3 registers and the update of the parallel register is enabled again. Similarly, any read access to the RTCSecond register will freeze the current value of the parallel register and submit the appropriate byte to the host controller via the serial interface. Any subsequent read access to the RTCMinute3 register will enable the update of the parallel register again. This mechanism makes sure that the maximum error of the value that is written to or read from the registers is 1 second. To start the RTC, rtc_on bit has to be set to 1. The RTC stops automatically at its highest value (3F,FF,FF,FF) to prevent overrun. 9.10.2 Alarm The RTC module includes an alarm function. When the content of the RTCAlarm registers equals the content of the RTC registers bit rtc_alarm will be set in the interrupt register. Furthermore the RTC module can generate a repeating interrupt every second, every minute, every 2 minutes or every 8 minutes. To avoid ambiguous behavior during write access to the RTCAlarm registers any write access to the RTCAlarmSecond register will disable the alarm function; any subsequent write access to the RTCAlarmMinute3 will enable the alarm function again. www.austriamicrosystems.com 1.2 53 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s 9.11 2-Wire-Serial Control Interface 9.11.1 Feature List Fast-mode capability (max. SCL-frequency is 400 kHz) 7+1-bit addressing mode 60h x 8-bit data registers (word address 0x00 - 0x60) Write formats: Single-Byte-Write, Page-Write Read formats: Current-Address-Read, Random-Read, Sequential-Read SDA input delay and SCL spike filtering by integrated RC-components 9.11.2 Protocol Table 30. 2-Wire Serial Symbol Definition Symbol Definition RW Note S Start condition after stop R 1 bit Sr Repeated start R 1 bit DW Device address for write R 1000 0000b (80h) DR Device address for read R 1000 0001b (81h) WA Word address R 8 bit A Acknowledge W 1 bit N No Acknowledge R 1 bit reg_data Register data/write R 8 bit data (n) Register data/read W 8 bit P Stop condition R 1 bit WA++ Increment word address internally R during acknowledge Figure 32. Byte Write S DW A WA A reg_data A P write register WA++ Figure 33. Page Write S DW A WA A reg_data 1 A reg_data 2 write register WA++ A write register WA++ ... reg_data n A P write register WA++ Byte Write and Page Write formats are used to write data to the slave. The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The devicewrite address is followed by the word address. After the word address any number of data bytes can be sent to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations. For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register byte transmitted from the slave. In Read Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally. www.austriamicrosystems.com 1.2 54 - 102 AS3711 2V1 Datasheet - D e t a i l e d D e s c r i p t i o n - S y s t e m F u n c t i o n s Figure 34. Random Read S DW A WA A Sr DR A data N P read register WA++ Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master. The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address. In order to change the data direction a repeated START condition is issued on the 1st SCL pulse after the acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus. Figure 35. Sequential Read S DW A WA A Sr DR A data read register WA++ A reg_data 2 read register WA++ A ... reg_data n N P read register WA++ Sequential Read is the extended form of Random Read, as more than one register-data bytes are transferred subsequently. In difference to the Random Read, for a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a not-acknowledge following the last data byte and generate the STOP condition subsequently. Figure 36. Current Address Read S DR A read register WA++ data A reg_data 2 read register WA++ A ... reg_data n N P read register WA++ To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read address. Analogous to Random Read, a single byte transfer is terminated with a not-acknowledge after the 1st register byte. Analogous to Sequential Read an unlimited number of data bytes can be transferred, where the data bytes has to be responded with an acknowledge from the master. For termination of the transmission the master sends a not-acknowledge following the last data byte and a subsequent STOP condition. 9.11.3 Parameter Table 31. I2C SDA,SCL Characteristics Symbol Parameter VIL SCL,SDA Low Level input voltage VIH SCL,SDA High Level input voltage Note Min Typ Max Unit -0.3 0.4 V 1.4 VSUP_G PIO V The AS3711 is compatible to the NXP two wire specification http://www.nxp.com/acrobat_download2/literature/9398/39340011.pdf Version 2.1 January 2000 for standard and fast mode (no high speed mode). www.austriamicrosystems.com 1.2 55 - 102 1.2 56 - 102 Addr Name 00h SD1Voltage sd1_frequ sd1_vsel<6:0> 01h SD2Voltage sd2_frequ sd2_vsel<6:0> 02h SD3Voltage sd3_frequ sd3_vsel<6:0> 03h SD4Voltage 04h LDO1Voltage ldo1_on ldo1_ilimit - ldo1_vsel<4:0> 05h LDO2Voltage ldo2_on ldo2_ilimit - ldo2_vsel<4:0> 06h LDO3Voltage ldo3_on ldo3_ilimit ldo3_vsel<5:0> 07h LDO4Voltage ldo4_on ldo4_ilimit ldo4_vsel<5:0> 08h LDO5Voltage ldo5_on ldo5_ilimit ldo5_vsel<5:0> 09h LDO6Voltage ldo6_on ldo6_ilimit ldo6_vsel<5:0> 0ah LDO7Voltage ldo7_on ldo7_ilimit ldo7_vsel<5:0> 0bh LDO8Voltage ldo8_on ldo8_ilimit ldo8_vsel<5:0> 0ch GPIO1control gpio1_invert gpio1_iosf<6:3> gpio1_mode<2:0> 0dh GPIO2control gpio2_invert gpio2_iosf<6:3> gpio2_mode<2:0> 0eh GPIO3control gpio3_invert gpio3_iosf<6:3> gpio3_mode<2:0> 0fh GPIO4control gpio4_invert gpio4_iosf<6:3> gpio4_mode<2:0> 10h SD_control - sd4_enable sd3_enable sd2_enable sd1_enable 20h GPIOsignal_out - gpio4_out gpio3_out gpio2_out gpio1_out 21h GPIOsignal_in - gpio4_in gpio3_in gpio2_in gpio1_in 22h Reg1_Voltage reg1_voltage<7:0> 23h Reg2_Voltage reg2_voltage<7:0> 24h Reg_control 25h GPIOctrl_sd gpio_ctrl_sd4<7:6> gpio_ctrl_sd3<5:4> gpio_ctrl_sd2<3:2> gpio_ctrl_sd1<1:0> 26h GPIOctrl_ldo1 gpio_ctrl_ldo4<7:6> gpio_ctrl_ldo3<5:4> gpio_ctrl_ldo2<3:2> gpio_ctrl_ldo1<1:0> 27h GPIOctrl_ldo2 gpio_ctrl_ldo8<7:6> gpio_ctrl_ldo7<5:4> gpio_ctrl_ldo6<3:2> gpio_ctrl_ldo5<1:0> 2bh Reg3_Voltage sd4_vsel<6:0> reg2_select<7:4> reg1_select<3:0> reg3_voltage<7:0> AS3711 2V1 Table 32. Register Overview Datasheet - R e g i s t e r O v e r v i e w www.austriamicrosystems.com 10 Register Overview 57 - 102 Name 2ch Reg_control3 30h SD_control1 31h SD_control2 32h Battery_voltage_monitor 33h Startup_Control 34h ResetTimer - stby_reset_disabl e auto_off 35h ReferenceControl on_reset_delay reg_low_bias_mo de clk_div2 36h ResetControl onkey_reset 37h OvertemperatureControl 38h WatchdogControl 39h Reg_standby_mod1 disable_regpd 3ah Reg_standby_mod2 ldo8_stby_on 40h curr_control 41h pwm_control_l pwm_l_time<7:0> 42h pwm_control_h pwm_h_time<7:0> 43h curr1_value curr1_current<7:0> 44h curr2_value curr2_current<7:0> 45h curr3_value curr3_current<7:0> 46h Watchdog_min_timer wtdg_min_timer<7:0> 47h Watchdog_max_timer wtdg_max_timer<7:0> 48h WatchdogSoftwareSignal 50h Stepup_control1 stepup1_v<7:3> stepup1_res stepup1_freq stepup1_on 51h Stepup_control2 stepup2_v<7:3> stepup2_res stepup2_freq stepup2_on 53h Stepup_control4 54h Stepup_control5 sd4_low_noise sd3_low_noise sd2_low_noise sd1_low_noise dvm_time<5:4> SupResEn sd4_fast sd3_fast sd2_fast sd1_fast sd3_slave sd3_fsel sd2_fsel sd1_fsel ResVoltFall<5:3> ResVoltRise<2:0> - chg_pwr_off_en off_delay<4:3> - standby_mode_on rst_ov_temp_140 ldo6_stby_on ldo5_stby_on power_off force_reset ov_temp_140 ov_temp_110 temp_pmc_on wtdg_res_on wtdg_on sd4_stby_on sd3_stby_on sd2_stby_on sd1_stby_on ldo4_stby_on ldo3_stby_on ldo2_stby_on ldo1_stby_on curr3_ctrl<7:4> curr2_ctrl<3:2> pwm_div<7:6> stpup1_det stpup1_oc low_power_on on_input - power_off_at_vsup low res_timer<1:0> clk_int<3:1> reset_reason<6:3> ldo7_stby_on reg3_select<3:0> sd_dvm_select<7:6> FastResEn curr1_ctrl<1:0> - wtdg_sw_sig stpup1_oc_timeout stpup1_shortprot stpup2_pwm_lowf stepup2_prot_dis stepup2_fb<1:0> - stepup2_pwm_mod e stepup12_clkinv stepup2_fbprot<1:0> AS3711 2V1 1.2 Addr Datasheet - R e g i s t e r O v e r v i e w www.austriamicrosystems.com Table 32. Register Overview 58 - 102 Name 60h RTCcontrol 61h RTCSecond second<7:0> 62h RTCMinute1 minute0<7:0> 63h RTCMinute2 minute1<7:0> 64h RTCMinute3 minute2<7:0> 65h RTCAlarmSecond alarmsecond<7:0> 66h RTCAlarmMinute1 alarmminute0<7:0> 67h RTCAlarmMinute2 alarmminute1<7:0> 68h RTCAlarmMinute3 alarmminute2<7:0> 69h SRAM SRAM<7:0> 70h ADC_control start_conversion 71h ADC_MSB_result result_not_ready 72h ADC_LSB_result 73h RegStatus curr3_lv curr2_lv curr1_lv - sd4_lv sd3_lv sd2_lv sd1_lv 74h InterruptMask1 LowBat_int_m ovtmp_int_m onkey_int_m chdet_int_m eoc_int_m resume_int_m nobat_int_m trickle_int_m 75h InterruptMask2 rtc_rep_int_m stpup1_det_m stpup1_oc_m bat_temp_m sd4_lv_int_m sd3_lv_int_m sd2_lv_int_m sd1_lv_int_m 76h InterruptMask3 gpio_restart_int_m gpio_int_m rtc_alarm_int_m 77h InterruptStatus1 LowBat_int_i ovtmp_int_i onkey_int_i chdet_int_i eoc_int_i resume_int_i nobat_int_i trickle_int_i 78h InterruptStatus2 rtc_rep_int_i stpup1_det_i stpup1_oc_i bat_temp_i sd4_lv_int_i sd3_lv_int_i sd2_lv_int_i sd1_lv_int_i 79h InterrupStatus3 gpio_restart_int_i gpio_int_i rtc_alarm_int_i 80h ChargerControl1 81h ChargerVoltageControl 82h ChargerCurrentControl eoc_current cc_lowlimit 83h Chargerconfig - Charging_1Hz_clk 84h NTCsupervision 85h Chargersupervision - adc_on rtc_irq_mode<4:3> adc_slow rtc_on gpio_lv rtc_alarm_wakeup rtc_rep_wakeup_e _en n D9_3<6:0> D2_0<2:0> - auto_resume bat_charging_enab le usb_current<4:1> vsup_min<7:6> ovprot_dis usb_chgEn ChVoltEOC<5:0> ConstantCurrent<5:2> ChVoltResume dcdc_chmode TrickleCurrent<1:0> temp_sel<4:3> - adc_select<3:0> - nobat_ntc_det vsup_voltage<2:0> ntc_temp charging_tmax ntc_10k ch_timeout<3:0> ntc_on AS3711 2V1 1.2 Addr Datasheet - R e g i s t e r O v e r v i e w www.austriamicrosystems.com Table 32. Register Overview Name 86h ChargerStatus1 Nobat Battemp_hi EOC CVM Trickle Resume CCM ChDet 87h ChargerStatus2 - usb_prot_ready batsw_on batsw_mode 8eh LockRegister - charger_lock 90h ASIC_ID1 91h ASIC_ID2 ID1<7:0> - revision<3:0> reg_lock<1:0> AS3711 2V1 Addr Datasheet - R e g i s t e r O v e r v i e w www.austriamicrosystems.com Table 32. Register Overview 1.2 59 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w SD1Voltage Register (Address 00h). SD1Voltage Addr: 00h Bit Bit Name Default Access 7 sd1_frequ 0 RW Selects between high and low frequency dependent on sd1_fsel 0 : 2MHz if sd1_fsel=0, 3MHz if sd1_fsel=1 1 : 3MHz if sd1_fsel=0, 4MHz if sd1_fsel=1 RW The voltage select bits set the DC/DC output voltage level and power the DC/DC converter down. 00h : DC/DC powered down 01h-40h : V_SD1=0.6V+sd1_vsel*12.5mV 41h-70h : V_SD1=1.4V+(sd1_vsel-40h)*25mV 71h-7Fh : V_SD1=2.6V+(sd1_vsel-70h)*50mV 6:0 sd1_vsel 'b0000000 Bit Description SD2Voltage Register (Address 01h). SD2Voltage Addr: 01h Bit Bit Name Default Access 7 sd2_frequ 0 RW Selects between high and low frequency dependent on sd2_fsel 0 : 2MHz if sd2_fsel=0, 3MHz if sd2_fsel=1 1 : 3MHz if sd2_fsel=0, 4MHz if sd2_fsel=1 RW The voltage select bits set the DC/DC output voltage level and power the DC/DC converter down. 00h : DC/DC powered down 01h-40h : V_SD2=0.6V+sd2_vsel*12.5mV 41h-70h : V_SD2=1.4V+(sd2_vsel-40h)*25mV 71h-7Fh : V_SD2=2.6V+(sd2_vsel-70h)*50mV 6:0 sd2_vsel 'b000 0000 Bit Description SD3Voltage Register (Address 02h). SD3Voltage Addr: 02h Bit Bit Name Default Access 7 sd3_frequ 0 RW Selects between high and low frequency dependent on sd3_fsel 0 : 2MHz if sd3_fsel=0, 3MHz if sd3_fsel=1 1 : 3MHz if sd3_fsel=0, 4MHz if sd3_fsel=1 RW The voltage select bits set the DC/DC output voltage level and power the DC/DC converter down. 00h : DC/DC powered down 01h-40h : V_SD3=0.6V+sd3_vsel*12.5mV 41h-70h : V_SD3=1.4V+(sd3_vsel-40h)*25mV 71h-7Fh : V_SD3=2.6V+(sd3_vsel-70h)*50mV 6:0 sd3_vsel www.austriamicrosystems.com 'b000 0000 Bit Description 1.2 60 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w SD4Voltage Register (Address 03h). SD4Voltage Addr: 03h Bit Bit Name Default Access 7 - 0 RW - RW The voltage select bits set the DC/DC output voltage level and power the DC/DC converter down. 00h : DC/DC powered down 01h-40h : V_SD4=0.6V+sd4_vsel*12.5mV 41h-70h : V_SD4=1.4V+(sd4_vsel-40h)*25mV 71h-7Fh : V_SD4=2.6V+(sd4_vsel-70h)*50mV 6:0 sd4_vsel 'b000 0000 Bit Description LDO1Voltage Register (Address 04h). LDO1Voltage Addr: 04h Bit Bit Name Default Access Bit Description 7 ldo1_on 0 RW Switch on of LDO1 0 : LDO off 1 : LDO on 6 ldo1_ilimit 0 RW Sets limit of LDO1 0 : 150mA limit 1 : 250mA limit 4:0 ldo1_vsel 'b0 0000 RW The voltage select bits set the LDO output voltage 0h-0Fh : 1.2V + ldo1_vsel*50mV 10h-1Fh : 1.8V + (ldo1_vsel-16)*100mV LDO2Voltage Register (Address 05h). LDO2Voltage Addr: 05h Bit Bit Name Default Access 7 ldo2_on 0 RW Switch on of LDO2 0 : LDO off 1 : LDO on 6 ldo2_ilimit 0 RW Sets limit of LDO2 0 : 150mA limit 1 : 250mA limit 4:0 ldo2_vsel 'b0 0000 RW The voltage select bits set the LDO output voltage 0h-0Fh : 1.2V + ldo2_vsel*50mV 10h-1Fh : 1.8V + (ldo2_vsel-16)*100mV www.austriamicrosystems.com Bit Description 1.2 61 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w LDO3Voltage Register (Address 06h). LDO3Voltage Addr: 06h Bit Bit Name Default Access 7 ldo3_on 0 RW Switch on of LDO3 0 :LDO off 1 :LDO on 6 ldo3_ilimit 0 RW Sets limit of LDO3 0 : 150mA operating range 1 :300mA operating range RW The voltage select bits set the LDO output voltage 00h-10h : V_LDO3=0.9V+ldo3_vsel*50mV 11h-1fh : do not use 20h-3Fh : V_LDO3=1.75V+(ldo3_vsel-20h)*50mV 5:0 ldo3_vsel 'b00 0000 Bit Description LDO4Voltage Register (Address 07h). LDO4Voltage Addr: 07h Bit Bit Name Default Access 7 ldo4_on 0 RW Switch on of LDO4 0 :LDO off 1 :LDO on 6 ldo4_ilimit 0 RW Sets limit of LDO4 0 :150mA operating range 1 :300mA operating range RW The voltage select bits set the LDO output voltage 00h-10h :V_LDO4=0.9V+ldo4_vsel*50mV 11h-1fh :Do not use 20h-3Fh :V_LDO4=1.75V+(ldo4_vsel-20h)*50mV 5:0 ldo4_vsel 'b00 0000 Bit Description LDO5Voltage Register (Address 08h). LDO5Voltage Addr: 08h Bit Bit Name Default Access 7 ldo5_on 0 RW Switch on of LDO5 0 :LDO off 1 :LDO on 6 ldo5_ilimit 0 RW Sets limit of LDO5 0 :150mA operating range 1 :300mA operating range 5:0 ldo5_vsel 'b00 0000 RW The voltage select bits set the LDO output voltage 00h-10h :V_LDO5=0.9V+ldo5_vsel*50mV 11h-1fh :Do not use 20h-3Fh :V_LDO5=1.75V+(ldo5_vsel-20h)*50mV www.austriamicrosystems.com Bit Description 1.2 62 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w LDO6Voltage Register (Address 09h). LDO6Voltage Addr: 09h Bit Bit Name Default Access 7 ldo6_on 0 RW Switch on of LDO6 0 :LDO off 1 :LDO on 6 ldo6_ilimit 0 RW Sets limit of LDO6 0 :150mA operating range 1 :300mA operating range RW The voltage select bits set the LDO output voltage 00h-10h :V_LDO6=0.9V+ldo6_vsel*50mV 11h-1fh :Do not use 20h-3Fh :V_LDO6=1.75V+(ldo6_vsel-20h)*50mV 5:0 ldo6_vsel 'b00 0000 Bit Description LDO7Voltage Register (Address 0ah). LDO7Voltage Addr: 0ah Bit Bit Name Default Access 7 ldo7_on 0 RW Switch on of LDO7 0 :LDO off 1 :LDO on 6 ldo7_ilimit 0 RW Sets limit of LDO7 0 :150mA operating range 1 :300mA operating range RW The voltage select bits set the LDO output voltage 00h-10h :V_LDO7=0.9V+ldo7_vsel*50mV 11h-1fh :Do not use 20h-3Fh :V_LDO7=1.75V+(ldo7_vsel-20h)*50mV 5:0 ldo7_vsel 'b00 0000 Bit Description LDO8Voltage Register (Address 0bh). LDO8Voltage Addr: 0bh Bit Bit Name Default Access 7 ldo8_on 0 RW Switch on of LDO8 0 :LDO off 1 :LDO on 6 ldo8_ilimit 0 RW Sets limit of LDO8 0 :150mA operating range 1 :300mA operating range 5:0 ldo8_vsel 'b00 0000 RW The voltage select bits set the LDO output voltage 00h-10h :V_LDO8=0.9V+ldo8_vsel*50mV 11h-1fh :Do not use 20h-3Fh :V_LDO8=1.75V+(ldo8_vsel-20h)*50mV www.austriamicrosystems.com Bit Description 1.2 63 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w GPIO1control Register (Address 0ch). GPIO1control Addr: 0ch Bit Bit Name Default Access 7 gpio1_invert 0 RW Invert GPIO input/output 0 :Normal mode 1 :Invert input or output RW Select the GPIO special function .0 :Normal I/O operation .1 :Interrupt output .2 :VSUP_low output .3 :GPIO interrupt input .4 :Current sink PWM input .5 : Vselect input, (apply on reg1_select, reg2_select and reg3_select, if gpio2_iosf=5 then apply on reg1_select only) .6 :standby + Vselect + restart interrupt input .7 :pwr_good output .8 :Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz divider is used) .9 :Watchdog input 10 :Charger active output 11 :EOC output 12 :100/500mA charger input 13 :500mA/2.5A charger input 14 :PWM output 15 :Charger enable input RW Selects the GPIO mode (I, I/O, Tri, Pulls) 0 :Input 1 :Output (push and pull) 2 :IO (open drain, only NMOS is active) 3 :Tristate 4 :Input with pullup 5 :Input with pulldown 6 :IO (open drain (NMOS) with pullup) 7 :n/a 6:3 2:0 gpio1_iosf gpio1_mode www.austriamicrosystems.com 'b0000 'b011 Bit Description 1.2 64 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w GPIO2control Register (Address 0dh). GPIO2control Addr: 0dh Bit Bit Name Default Access 7 gpio2_invert 0 RW Invert GPIO input/output 0 :Normal mode 1 :Invert input or output RW Select the GPIO special function .0 :Normal i/o operation .1 :Interrupt output .2 :VSUP_low output .3 :GPIO interrupt input .4 :Current sink PWM input .5 :Vselect input, (apply on reg1_select, reg2_select and reg3_select, if gpio1_iosf=5 then apply on reg2_select and reg3_select only) .6 :standby + Vselect + restart interrupt input .7 :pwr_good output .8 :Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz divider is used) .9 :Stepup1 over-current output 10 :Charger active output 11 :EOC output 12 :100/500mA charger input 13 :500mA/2.5A charger input 14 :PWM output 15 :Charger enable input RW Selects the GPIO mode (I, I/O, Tri, Pulls) 0 :Input 1 :Output (push and pull) 2 :IO (open drain, only NMOS is active) 3 :ADC input (tristate) 4 :Input with pullup 5 :Input with pulldown 6 :IO (open drain (NMOS) with pullup) 7 :ADC input with pulldown 6:3 2:0 gpio2_iosf gpio2_mode www.austriamicrosystems.com 'b0000 'b011 Bit Description 1.2 65 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w GPIO3control Register (Address 0eh). GPIO3control Addr: 0eh Bit Bit Name Default Access 7 gpio3_invert 0 RW Invert GPIO input/output 0 : Normal mode 1 : Invert input or output RW Select the GPIO special function .0 : Normal i/o operation .1 : Interrupt output .2 : VSUP_low output .3 : GPIO interrupt input .4 : Currentsink PWM input .5 : Vselect input, (apply on reg1_select, reg2_select and reg3_select) .6 : standby + Vselect + restart interrupt input .7 : pwr_good output .8 :Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz divider is used) .9 : Stepup1 over-current output 10 : Charger active output 11 : EOC output 12 : 100/500mA charger input 13 : 500mA/2.5A charger input 14 : PWM output 15 : Charger enable input RW Selects the GPIO mode (I, I/O, Tri, Pulls) 0 :Input 1 :Output (push and pull) 2 :IO (open drain, only NMOS is active) 3 :ADC input (tristate) 4 :Input with pullup 5 :Input with pulldown 6 :IO (open drain (NMOS) with pullup) 7 :ADC input with pulldown 6:3 2:0 gpio3_iosf gpio3_mode www.austriamicrosystems.com 'b0000 'b011 Bit Description 1.2 66 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w GPIO4control Register (Address 0fh). GPIO4control Addr: 0fh Bit Bit Name Default Access 7 gpio4_invert 0 RW Invert GPIO input/output 0 :Normal mode 1 :Invert input or output RW Select the GPIO special function .0 :Normal i/o operation .1 :Interrupt output .2 :VSUP_low output .3 :GPIO interrupt input .4 :Currentsink PWM input .5 :Vselect input, (apply on reg1_select, reg2_select and reg3_select) .6 :standby + Vselect + restart interrupt input .7 :pwr_good output .8 :Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz divider is used) .9 :Watchdog input 10 :Charger active output 11 :EOC output 12 :100/500mA charger input 13 :500mA/2.5A charger input 14 :PWM output 15 :Charger enable input RW Selects the GPIO mode (I, I/O, Tri, Pulls) 0 :Input 1 :Output (push and pull) 2 :IO (open drain, only NMOS is active) 3 :ADC input (tristate) 4 :Input with pullup 5 :Input with pulldown 6 :IO (open drain (NMOS) with pullup) 7 :ADC input with pulldown 6:3 2:0 gpio4_iosf gpio4_mode 'b0000 'b011 Bit Description SD_control Register (Address 10h). SD_control Addr: 10h Bit Bit Name Default Access 7:4 - 'b0000 n/a do not use 3 sd4_enable 'b1 RW Global stepdown4 enable 0 :SD4 off 1 :SD4 on 2 sd3_enable 'b1 RW Global stepdown3 enable 0 :SD3 off 1 :SD3 on 1 sd2_enable 'b1 RW Global stepdown2 enable 0 :SD2 off 1 :SD2 on 0 sd1_enable 'b1 RW Global stepdown1 enable 0 :SD1 off 1 :SD1 on www.austriamicrosystems.com Bit Description 1.2 67 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w GPIOsignal_out Register (Address 20h). GPIOsignal_out Addr: 20h Bit Bit Name Default Access Bit Description 7:4 - 'b0000 n/a do not use 3 gpio4_out 0 RW This bit determines the output signal of the GPIO4 pin when selected as output source. 2 gpio3_out 0 RW This bit determines the output signal of the GPIO3 pin when selected as output source. 1 gpio2_out 0 RW This bit determines the output signal of the GPIO2 pin when selected as output source. 0 gpio1_out 0 RW This bit determines the output signal of the GPIO1 pin when selected as output source. GPIOsignal_in Register (Address 21h). GPIOsignal_in Addr: 21h Bit Bit Name Default Access Bit Description 7:4 - 'b0000 n/a do not use 3 gpio4_in 0 RO This bit reflects the logic level of the GPIO4 pin when configured as digital input pin. 2 gpio3_in 0 RO This bit reflects the logic level of the GPIO3 pin when configured as digital input pin. 1 gpio2_in 0 RO This bit reflects the logic level of the GPIO2 pin when configured as digital input pin. 0 gpio1_in 0 RO This bit reflects the logic level of the GPIO1 pin when configured as digital input pin. Reg1_Voltage Register (Address 22h). Reg1_Voltage Addr: 22h Bit 7:0 Bit Name reg1_voltage Default 'b0000 0000 Access RW Bit Description This register is mapped to the register address 0h+Reg1_select , if gioX_iosf = 5 or 6 (Vselect input), and the GPIOx input = 1. This feature allows voltage switching of a predefined regulator with just one GPIO input. 0 ..FFh :Selects voltage, ilimit, on or frequency bits of LDO or DCDC Reg2_Voltage Register (Address 23h). Reg2_Voltage Addr: 23h Bit 7:0 Bit Name reg2_voltage www.austriamicrosystems.com Default 'b0000 0000 Access RW Bit Description This register is mapped to the register address 0h+Reg3_select , if gioX_iosf=5 or 6 (Vselect input), and GPIOx input = 1, This feature allows voltage switching of a predefined regulator with just one GPIO input 0 ..FFh : Selects voltage, ilimit, on or frequency bits of LDO or DCDC 1.2 68 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w Reg_control Register (Address 24h). Reg_control Addr: 24h Bit Bit Name Default Access Bit Description 7:4 reg2_select 'b1111 RW Selects regulator for mapping feature; if reg_select2 0Ch, then feature is disabled. 3:0 reg1_select 'b1111 RW Selects regulator for mapping feature; if reg_select1 0Ch, then feature is disabled. GPIOctrl_sd Register (Address 25h). GPIOctrl_sd Addr: 25h Bit 7:6 5:4 3:2 1:0 Bit Name gpio_ctrl_sd4 gpio_ctrl_sd3 gpio_ctrl_sd2 gpio_ctrl_sd1 www.austriamicrosystems.com Default 'b00 'b00 'b00 'b00 Access Bit Description RW Enable GPIO control of DCDC SD4. GPIO ctrl only enabled, if sd4_vsel > 0 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 RW Enable GPIO control of DCDC SD3. GPIO ctrl only enabled, if sd3_vsel > 0 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 RW Enable GPIO control of DCDC SD2. GPIO ctrl only enabled, if sd2_vsel > 0 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 RW Enable GPIO control of DCDC SD1. GPIO ctrl only enabled, if sd1_vsel > 0 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 1.2 69 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w GPIOctrl_ldo1 Register (Address 26h). GPIOctrl_ldo1 Addr: 26h Bit 7:6 5:4 3:2 1:0 Bit Name gpio_ctrl_ldo4 gpio_ctrl_ldo3 gpio_ctrl_ldo2 gpio_ctrl_ldo1 Default 'b00 'b00 'b00 'b00 Access Bit Description RW Enable GPIO control of LDO4. GPIO ctrl only enabled, if ldo4_on = 1 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 RW Enable GPIO control of LDO3. GPIO ctrl only enabled, if ldo3_on = 1 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 RW Enable GPIO control of LDO2. GPIO ctrl only enabled, if ldo2_on = 1 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 RW Enable GPIO control of LDO1. GPIO ctrl only enabled, if ldo1_on = 1 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 GPIOctrl_ldo2 Register (Address 27h). GPIOctrl_ldo2 Addr: 27h Bit 7:6 5:4 3:2 1:0 Bit Name gpio_ctrl_ldo8 gpio_ctrl_ldo7 gpio_ctrl_ldo6 gpio_ctrl_ldo5 www.austriamicrosystems.com Default 'b00 'b00 'b00 'b00 Access Bit Description RW Enable GPIO control of LDO8. GPIO ctrl only enabled, if ldo8_on = 1 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 RW Enable GPIO control of LDO7. GPIO ctrl only enabled, if ldo7_on = 1 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 RW Enable GPIO control of LDO6. GPIO ctrl only enabled, if ldo6_on = 1 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 RW Enable GPIO control of LDO5. GPIO ctrl only enabled, if ldo5_on = 1 0 :No GPIO control 1 :Controlled by GPIO1 2 :Controlled by GPIO2 3 :Controlled by GPIO3 1.2 70 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w Reg3_Voltage Register (Address 2bh). Reg3_Voltage Addr: 2bh Bit 7:0 Bit Name reg3_voltage Default 'b0000 0000 Access RW Bit Description This register is mapped to the register address 0h+Reg3_select , if gioX_iosf=5 or 6 (Vselect input), and GPIOx input = 1, This feature allows voltage switching of a predefined regulator with just one GPIO input 0 ..FFh : Selects voltage, ilimit, on or frequency bits of LDO or DCDC Reg_control3 Register (Address 2ch). Reg_control3 Addr: 2ch Bit Bit Name Default Access 7:4 - 'b0000 n/a do not use 3:0 reg3_select 'b1111 RW Selects regulator for mapping feature; if reg_select3 0Ch, then feature is disabled. www.austriamicrosystems.com Bit Description 1.2 71 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w SD_control1 Register (Address 30h). SD_control1 Addr: 30h Bit 7 6 5 Bit Name sd4_low_noise sd3_low_noise sd2_low_noise 4 sd1_low_noise 3 sd4_fast 2 1 0 sd3_fast sd2_fast sd1_fast www.austriamicrosystems.com Default 0 0 0 0 0 0 0 0 Access Bit Description RW Enables low noise mode of SD4. If enabled, smaller current pulses and output ripple is activated. 0 :Normal mode. Minimum current pulses of >100mA applied in skip mode. 1 :Low noise mode. Only minimum on time applied in skip mode. RW Enables low noise mode of SD3. If enabled, smaller current pulses and output ripple is activated. 0 :Normal mode. Minimum current pulses of >100mA applied in skip mode. 1 :Low noise mode. Only minimum on time applied in skip mode. RW Enables low noise mode of SD2. If enabled, smaller current pulses and output ripple is activated. 0 :Normal mode. Minimum current pulses of >100mA applied in skip mode. 1 :Low noise mode. Only minimum on time applied in skip mode. RW Enables low noise mode of SD1. If enabled, smaller current pulses and output ripple is activated. 0 :Normal mode. Minimum current pulses of >100mA applied in skip mode. 1 :Low noise mode. Only minimum on time applied in skip mode. RW Selects a faster regulation mode for SD4 suitable for larger load changes. 0 :normal mode 1 :fast mode, double Cext required (see external components) RW Selects a faster regulation mode for SD3 suitable for larger load changes. 0 :normal mode 1 :fast mode, double Cext required (see external components) RW Selects a faster regulation mode for SD2 suitable for larger load changes. 0 :normal mode 1 :fast mode, double Cext required (see external components) RW Selects a faster regulation mode for SD1 suitable for larger load changes. 0 :normal mode 1 :fast mode, double Cext required (see external components) 1.2 72 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w SD_control2 Register (Address 31h). SD_control2 Addr: 31h Bit 7:6 Bit Name sd_dvm_select Default 'b00 Access Bit Description RW Apply DVM counter to the following DCDC converter: 0 :Select SD1 for DVM 1 :Select SD2 for DVM 2 :Select SD3 for DVM 3 :Select SD4 for DVM 5:4 dvm_time 'b00 RW Time steps of DVM voltage change of selected step down, if voltage of step Down is changed during operation (sdx_vsel) voltage is decreased/increased by single steps 12.5mV 0 :0 sec, immediate change (no DVM) 1 :4 sec time delay between steps 2 :8 sec time delay between steps 3 :16 sec time delay between steps 3 sd3_slave 0 RW Enables slave mode of SD3 0 :Normal mode of SD3 1 :SD3 is slave of SD2 2 sd3_fsel 0 RW Selects between high and low frequency range 0 :2 or 3MHz frequency (selectable by sd3_frequ) 1 :3 or 4MHz frequency (selectable by sd3_frequ) 1 sd2_fsel 0 RW Selects between high and low frequency range 0 :2 or 3MHz frequency (selectable by sd2_frequ) 1 :3 or 4MHz frequency (selectable by sd2_frequ) 0 sd1_fsel 0 RW Selects between high and low frequency range 0 :2 or 3MHz frequency (selectable by sd1_frequ) 1 :3 or 4MHz frequency (selectable by sd1_frequ) www.austriamicrosystems.com 1.2 73 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w Battery_voltage_monitor Register (Address 32h). Battery_voltage_monitor Addr: 32h Bit Bit Name Default Access 7 FastResEn 0 RW 6 SupResEn 0 RW Bit Description 0 :ResVoltFall debounce time = 3msec 1 :ResVoltFall debounce time = 4sec 0 :A reset is generated if VSUP falls below 2.7V ** 1 :A reset is generated if VSUP falls below ResVoltFall ** If VBAT falls below ResVoltFall only an interrupt is generated (if enabled) and the Processor can shut down the system) This value determines the reset level ResVoltFall for falling VBAT. It is recommended to set this value at least 200mV lower than ResVoltRise 5:3 ResVoltFall 'b000 RW 0 :2.7V 1 :2.9V 2 :3.1V 3 :3.2V 4 :3.3V 5 :3.4V 6 :3.5V 7 :3.6V This value determines the reset level ResVoltRise for rising VBAT. It is recommended to set this value at least 200mV higher than ResVoltFall 2:0 ResVoltRise 'b000 RO (OTP) 0 :2.7V 1 :2.9V 2 :3.1V 3 :3.2V 4 :3.3V 5 :3.4V 6 :3.5V 7 :3.6V Startup_Control Register (Address 33h). Startup_Control Addr: 33h Bit Bit Name Default Access 7:2 - `b00 0000 n/a 1 0 chg_pwr_off_en power_off_at_vsuplow www.austriamicrosystems.com 0 0 Bit Description do not use RO (OTP) Select charger detection in power off mode Read only (OTP setting) 0 :Exit of Power Off mode, if charger is detected (level detection) 1 :Exit of Power Off mode, if charger insertion is detected (rising edge detection) . RW Switch on Power off mode if low VSUP is detected during active or standby mode (Pin ON= low and bit auto_off=0) 0 :If low battery is detected, battery voltage is continuously monitored and chip startup initiated if battery voltage is above ResVoltRise 1 :If low battery is detected, enter power off mode 1.2 74 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w ResetTimer Register (Address 34h). ResetTimer Addr: 34h Bit Bit Name Default Access Bit Description 7 - 'b0 n/a do not use 6 stby_reset_disable 0 RW Disable Reset output signal (pin XRES) in standby mode. 0 :Normal mode, reset is active in standby mode 1 :No reset in standby mode and during exit of standy mode 5 auto_off 0 RO Defines startup behavior at first battery insertion 0 :Startup of chip if VBAT>ResVoltRise 1 :Enter power off mode (Startup with ON key or charger insertion) 4:3 off_delay 'b01 RW Set Delay between I2C command, GPIO or Reset signal for power_off, standby mode or reset and execution of that command. 0 :No delay 1 :8 msec 2 :16 msec 3 :32 msec 2 - 'b0 n/a do not use RW Set RESTime, after the last regulator has started 0 :RESTIME = 10ms 1 :RESTIME = 50ms 2 :RESTIME = 100ms 3 :RESTIME = 150ms 1:0 res_timer www.austriamicrosystems.com 'b00 1.2 75 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w ReferenceControl Register (Address 35h). ReferenceControl Addr: 35h Bit Bit Name Default Access 7 on_reset_delay 0 RW Sets the on reset delay time 0 :8 sec (if onkey_reset=1) 1 :4 sec (if onkey_reset=1) 6 reg_low_bias_mode 0 RW Sets the on reset delay time 0 :normal operation 1 :reduces the bias for the analog LDO1 and LDO2 RW Divide internal clock oscillator by 2 to reduce quiescent current for low power operation 0 :Normal mode 1 :Internal clock frequency divided by two. All timings are increased by two. Switching frequency of all DCDC converters are divided by two. Reduced transient performance of DCDC converters. RW Setting to 1 sets the PMU into standby mode. All regulators are disabled except those regulators enabled by register Reg standby mode. XRES will be pulled to low. A normal startup of all regulators will be done with any interrupt (has to be enabled before entering standby mode). During this startup, regulators defined by Reg standby mode register are continuously on. RW Sets the internal CLK frequency fCLK used for DCDCs, PWM, ... 0 :4 MHz (default) 1 :3.8 MHz 2 :3.6 MHz 3 :3.4 MHz 4 :3.2 MHz 5 :3.0 MHz 6 :2.8 MHz 7 :2.6 MHz All frequencies, timings and delays in this datasheet are based on 4MHz clk_int RW Enable low power mode of internal reference. 0 :Standard mode 1 :Low power mode - all specification except noise parameters are still valid. Iq reduced by approx. 30A 5 4 3:1 0 clk_div2 standby_mode_on clk_int low_power_on www.austriamicrosystems.com 0 0 'b000 0 Bit Description 1.2 76 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w ResetControl Register (Address 36h). ResetControl Addr: 36h Bit Bit Name Default Access 7 onkey_reset 0 RW Bit Description 0 :Reset after 4/8 seconds ON pressed disabled 1 :Reset after 4/8 seconds ON pressed enabled Flags to indicate to the software the reason for the last reset .0 :VPOR has been reached (battery or charger insertion from scratch) .1 :ResVoltFall was reached (battery voltage drop below 2.75V) .2 :Software forced by force_reset .3 :Software forced by power_off and ON was pulled high .4 :Software forced by power_off and charger was detected .5 :External triggered through the pin XRES .6 :Reset caused by overtemperature T140 .7 :Reset caused by watchdog .8 :Reset caused by 4/8 seconds ON press .9 :NA 10 :Reset caused by RTC repeated wakeup or alarm wakeup 11 :Reset caused by interrupt in standby mode 12 :Reset caused by ON pulled high in standby mode 6:3 reset_reason 'b0000 RW 2 on_input 0 R_PUSH 1 power_off 0 RW Setting to 1 starts a reset cycle, but waits after the Reg_off state for a rising edge on the pin ON or until the charger is detected. 0 force_reset 0 RW Setting to 1 starts a complete reset cycle Read: This flag represents the state of the ON pad directly Write: Setting to 1 resets the 4/8 sec. onkey_reset timer OvertemperatureControl Register (Address 37h). OvertemperatureControl Addr: 37h Bit Bit Name Default Access 7:4 - 'b0000 n/a do not use 3 rst_ov_temp_140 0 RW If the over-temperature threshold 2 has been reached, the flag ov_temp_140 is set and a reset cycle is started. ov_temp_140 should be reset by writing 1 and afterward 0 to rst_ov_temp_140. 2 ov_temp_140 0 RO Flag that the over-temperature threshold 2 (T140) has been reached this flag is not reset by a over-temperature caused reset and has to be reset by rst_ov_temp_140. 1 ov_temp_110 0 RO Flag that the over-temperature threshold 1 (T110) has been reached 0 temp_pmc_on 1 RO Switch on / off of temperature supervision; default: on - all other bits are only valid if set to 1. Leave at 1, do not disable www.austriamicrosystems.com Bit Description 1.2 77 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w WatchdogControl Register (Address 38h). WatchdogControl Addr: 38h Bit Bit Name Default Access Bit Description 7:2 - 'b00 0000 n/a do not use 1 wtdg_res_on 0 RW If the watchdog expires and wtdg_res_on = 1 a reset cycle will be started 0 wtdg_on 0 RW Switches on the complete watchdog 0 :Watchdog off 1 :Watchdog enabled Reg_standby_mod1 Register (Address 39h). Reg_standby_mod1 Addr: 39h Bit Bit Name Default Access Bit Description 7 disable_regpd 0 RW This bit disables the pulldown of all regulators 0 :Normal operation approx. 1k pulldown of all regulators 1 :Pulldown disabled >100k of all regulators 6:4 - b000 n/a do not use 3 sd4_stby_on 0 RW Enable Step down 4 in standby mode 2 sd3_stby_on 0 RW Enable Step down 3 in standby mode 1 sd2_stby_on 0 RW Enable Step down 2 in standby mode 0 sd1_stby_on 0 RW Enable Step down 1 in standby mode Reg_standby_mod2 Register (Address 3ah). Reg_standby_mod2 Addr: 3ah Bit Bit Name Default Access 7 ldo8_stby_on 0 RW Enable LDO8 in standby mode 6 ldo7_stby_on 0 RW Enable LDO7 in standby mode 5 ldo6_stby_on 0 RW Enable LDO6 in standby mode 4 ldo5_stby_on 0 RW Enable LDO5 in standby mode 3 ldo4_stby_on 0 RW Enable LDO4 in standby mode 2 ldo3_stby_on 0 RW Enable LDO3 in standby mode 1 ldo2_stby_on 0 RW Enable LDO2 in standby mode 0 ldo1_stby_on 0 RW Enable LDO1 in standby mode www.austriamicrosystems.com Bit Description 1.2 78 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w curr_control Register (Address 40h). curr_control Addr: 40h Bit 7:4 3:2 1:0 Bit Name curr3_ctrl curr2_ctrl curr1_ctrl Default 'b0000 'b00 'b00 Access Bit Description RW On/Off control of the pad CURR3 ...0 :Current sink is turned off ...1 :Current sink is active .. .2 :Current sink is active and LED string connected to SU2. Required for automatic feedback selection. .3 :Controlled by internal PWM generator, or external, if gpioX_iosf=4 .4 :XINT output (active low interrupt output) .5 :VSUP_low output .6 :Charger active output .7 :EOC output .8 :Inverted signal of ON pin as output .9 :Signal of ON pin as output 10: Q32k output (if osc_pd=1 then internal RC oscillator with 32kHz divider is used) .11 :PWM output .12 :PWRGOOD output 13-15 :NA RW On/Off control of the pad CURR2 0 :Current sink is turned off 1 :Current sink is active 2 :Current sink is active and LED string connected to SU2. Required for automatic feedback selection. 3 :Controlled by internal PWM generator, or external, if gpioX_iosf=4 RW On/Off control of the pad CURR1 0 :Current sink is turned off 1 :Current sink is active 2 :Current sink is active and LED string connected to SU2. Required for automatic feedback selection. 3 :Controlled by internal PWM generator, or external, if gpioX_iosf=4 pwm_control_l Register (Address 41h). pwm_control_l Addr: 41h Bit 7:0 Bit Name pwm_l_time www.austriamicrosystems.com Default 'b00000000 Access RW Bit Description This bit defines the low time of the PWM generator in 1MHz units. .0 :pwm_div * 1sec .1 :pwm_div * 2sec .2 :pwm_div * 3sec ... :... 255 :pwm_div * 256sec 1.2 79 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w pwm_control_h Register (Address 42h). pwm_control_h Addr: 42h Bit 7:0 Bit Name pwm_h_time Default 'b00000000 Access RW Bit Description This bit defines the high time of the PWM generator in 1MHz units. ..0 :pwm_div * 1sec ..1 :pwm_div * 2sec ..2 :pwm_div * 3sec ... :... 255 :pwm_div * 256sec curr1_value Register (Address 43h). curr1_value Addr: 43h Bit 7:0 Bit Name curr1_current Default 'b00000000 Access RW Bit Description Defines the current into CURR1, if enabled by curr1_ctrl ..0 :Power down (default state) ..1 :0.15mA (LSB) ... :... 255 :38.25mA curr2_value Register (Address 44h). curr2_value Addr: 44h Bit 7:0 Bit Name curr2_current Default 'b00000000 Access RW Bit Description Defines the current into CURR2, if enabled by curr2_ctrl ..0 :Power down (default state) ..1 :0.15mA (LSB) ... :... 255 :38.25mA curr3_value Register (Address 45h). curr3_value Addr: 45h Bit 7:0 Bit Name curr3_current www.austriamicrosystems.com Default 'b00000000 Access RW Bit Description Defines the current into CURR3, if enabled by curr3_ctrl ..0 :Power down (default state) ..1 :0.15mA (LSB) ... :... 255 :38.25mA 1.2 80 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w Watchdog_min_timer Register (Address 46h). Watchdog_min_timer Addr: 46h Bit Bit Name Default Access 7:0 wtdg_min_timer 'b00000000 RW Bit Description Defines the minimum watchdog trigger time (LSB=7.5ms, range: 0 - 1.9s) Watchdog_max_timer Register (Address 47h). Watchdog_max_timer Addr: 47h Bit Bit Name Default Access 7:0 wtdg_max_timer 'b11111111 RW Bit Description Defines the maximum watchdog trigger time (LSB=7.5ms, range: 7.5ms - 1.9s), do not set to (00)h WatchdogSoftwareSignal Register (Address 48h). WatchdogSoftwareSignal Addr: 48h Bit Bit Name Default Access Bit Description This bit defines the divider ratio of the prescaler for the PWM generator. 0 :Divide by 1 1 :Divide by 2 2 :Divide by 4 3 :Divide by 16 7:6 pwm_div 'b00 RW 0 wtdg_sw_sig 0 PUSH Trigger input by the serial interface if gpioX_iosf<>9 Access Bit Description Stepup_control1 Register (Address 50h). Stepup_control1 Addr: 50h Bit 7:3 Bit Name stepup1_v Default 'b0000 RW Defines the tuning current at FB_SU1 pin; ..0 :0 A ..1 :1 A ... :... .31 :31 A 2 stepup1_res 0 RW Gain selection for DCDC SU1 0 :If FB_SU1 is used with current feedback only (Only R1,C1 connected) 1 :If FB_SU1 is used with external resistor divider (2 resistors) 1 stepup1_freq 0 RW Selects SU1 frequency 0 :1 MHz 1 :0.5 MHz 0 stepup1_on 0 RW On/Off control of SU1 0 :SU1 off 1 :SU1 on www.austriamicrosystems.com 1.2 81 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w Stepup_control2 Register (Address 51h). Stepup_control2 Addr: 51h Bit 7:3 Bit Name stepup2_v Default 'b00000 Access Bit Description RW Defines the tuning current at FB_SU2 pin ..0 :0 A ..1 :1 A ... :... .31 :31 A 2 stepup2_res 0 RW Gain selection for DCDC SU2 0 :If DCDC is used with current feedback (CURR1,CURR2,CURR3) or if FB_SU2 is used with current feedback only (Only R1,C1 connected) 1 :If FB_SU2 is used with external resistor divider (2 resistors) 1 stepup2_freq 0 RW Selects SU3 frequency 0 :1 MHz 1 :0.5 MHz 0 stepup2_on 0 RW On/Off control of SU2 0 :SU2 off 1 :SU2 on www.austriamicrosystems.com 1.2 82 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w Stepup_control4 Register (Address 53h). Stepup_control4 Addr: 53h Bit Bit Name Default Access Bit Description 7 stpup1_det 0 RO SU1 detection status register 0 :VRsense < VDETECT for more than 1ms, and DCDC SU1 converter is in pulseskip for more than 1ms. 1 :VRsense > VDETECT for more than 1ms, or the DCDC SU1 converter is not in pulseskip for more than 1ms. 6 stpup1_oc 0 RO SU1 overcurrent status bit 0 :VRsense < VOVCURRENT 1 :VRsense > VOVCURRENT for more than 5ms (latched state) 5 stpup1_oc_timeout 0 RW Controls GPIOx switch-off, after overcurrent timeout (5ms) for DCDC SU1 0 :Disabled 1 :Enabled 4 stpup1_shortprot 0 RW Enables Protection and Detection circuit for DCDC SU1 0 :No protection and load detection 1 :Short protection and load detection enabled RW Selects PWM operation of SU2 0 :High frequency operation PWM>20kHz** 1 :Low frequency PWM operation: stepup2_on and curr1...3_on (if PWM enabled) switched off during PWM low time ** Step_up switched on all the time. (current sinks are not switched off (currX_on=1 all the time), but currX_current masked to 00h during PWM low time.). During PWM off-time then feedback voltage is sampled. RW DCDC SU2 overvoltage protection to prevent damage of external NFET, if CURR1, CURR2 or CURR3 feedback selected, and no LED string connected. 0 :Switch off DCDC SU2 if the voltage on FB_SU2 exceeds 1.25V 1 :Overvoltage protection disabled 3 2 stpup2_pwm_lowf stepup2_prot_dis 0 0 Controls the feedback source 0 :voltage feedback (external resistor divider) selected by 1:0 stepup2_fb www.austriamicrosystems.com 'b00 RW stepup2_fbprot 1 :CURR1 feedback enabled (feedback through white LEDs) 2 :CURR2 feedback enabled (feedback through white LEDs) 3 :CURR3 feedback enabled (feedback through white LEDs) 1.2 83 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w Stepup_control5 Register (Address 54h). Stepup_control5 Addr: 54h Bit Bit Name Default Access 7:4 - 'b0000 n/a do not use 3 stepup2_pwm_mode 0 RW Enable PWM mode 0 :Normal operation 1 :PWM mode operation. Feedback is sampled during PWM off-time, if stpup2_lowf=0. 2 stepup12_clkinv 0 RW Invert input clock of SU1 and SU2 converter 0 :Use positive edge of internal clk 1 :Use negative edge of internal clk RW Controls the feedback protection of SU2 with external resistor divider (regulated to 0.8V). 0 : LX_SD4 enabled as input (If SD4 not used) 1 : GPIO2 enabled as input 2 : GPIO3 enabled as input 3 : GPIO4 enabled as input 1:0 stepup2_fbprot 'b00 Bit Description RTCcontrol Register (Address 60h). RTCcontrol Addr: 60h Bit Bit Name Default Access 7:5 - 'b000 n/a Bit Description do not use 0 :Generates an interrupt every second 1 :Generates an interrupt every minute 2 :Generates an interrupt every 2 minute 3 :Generates an interrupt every 8 minute 4:3 rtc_irq_mode 'b00 RW 2 rtc_on 0 RW 1 rtc_alarm_wakeup_en 0 RW 0 :Disables RTC alarm wake-up in power off mode 1 :Enable RTC alarm wake-up in power off mode 0 rtc_rep_wakeup_en 0 RW 0 :Disables RTC repeated wake-up in power off mode 1 :Enable RTC repeated wake-up in power off mode Switch on the 32kHz RTC oscillator 0 :32kHz oscillator disabled 1 :32kHz oscillator enabled RTCSecond Register (Address 61h). RTCSecond Addr: 61h Bit Bit Name Default Access 7:0 second 00h RW Bit Description - RTCMinute1 Register (Address 62h). RTCMinute1 Addr: 62h Bit Bit Name Default Access 7:0 minute0 00h RW www.austriamicrosystems.com Bit Description - 1.2 84 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w RTCMinute2 Register (Address 63h). RTCMinute2 Addr: 63h Bit Bit Name Default Access 7:0 minute1 00h RW Bit Description - RTCMinute3 Register (Address 64h). RTCMinute3 Addr: 64h Bit Bit Name Default Access 7:0 minute2 00h RW Bit Description - RTCAlarmSecond Register (Address 65h). RTCAlarmSecond Addr: 65h Bit 7:0 Bit Name alarmsecond Default 3Fh Access RW Bit Description AlarmMinute2 has to be written to latch the whole alarm register RTCAlarmMinute Register (Address 66h). RTCAlarmMinute Addr: 66h Bit Bit Name Default Access 7:0 alarmminute0 FFh RW Bit Description AlarmMinute2 has to be written to latch the whole alarm register RTCAlarmMinute2 Register (Address 67h). RTCAlarmMinute2 Addr: 67h Bit Bit Name 7:0 alarmminute1 Default FFh Access RW Bit Description AlarmMinute2 has to be written to latch the whole alarm register RTCAlarmMinute3 Register (Address 68h). RTCAlarmMinute3 Addr: 68h Bit Bit Name Default Access 7:0 alarmminute2 FFh RW Bit Description - SRAM Register (Address 69h). SRAM Addr: 69h Bit Bit Name Default Access 7:0 SRAM 00h RW www.austriamicrosystems.com Bit Description - 1.2 85 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w ADC_control Register (Address 70h). ADC_control Addr: 70h Bit Bit Name Default Access 7 start_conversion 0 RW Writing a 1 into this bit starts one ADC conversion 6 adc_on 0 RW Writing a 1 into this bit continuously activates the ADC S/H and the input multiplexer. The ADC and the MUX are also activated for a conversion period when start_conversion is set to 1. Useful for high impedance input sources on ADC inputs 5 adc_slow 0 RW Select ADC sampling frequency 0 :250kHz (conversion time: approx. 60s) 1 :62.5kHz (conversion time:approx. 240s) 4 gpio_lv RW 0 :High voltage range of GPIO1...4/SENSEN_SU1 (4:1 divider active) 1 :Low voltage range of GPIO1...4/SENSEN_SU1 (1:1 divider, 1.8V max) RW Selects an ADC channel .0 :BATTEMP NTCADCIN (1:1) .1 :Temperature sensor: DIE temperature [C] = adc_result * 0.866 274 (1:1) .2 :XOUT32K (1:1, 1.8Vmax) .3 :CURR1 (1:1, 1V max) .4 :CURR2 (1:1, 1V max) .5 :CURR3 (1:1, 1V max) .6 :VUSB(15:1, 15V max) .7 :CHGIN (4:1) .8 :VBAT (4:1) .9 :VSUP (4:1) 10 :SENSEN_SU1 (4:1 or 1:1 ) 11 :LX_SD4 (4:1 or 1:1 ) 12 :GPIO2 (4:1 or 1:1 ) 13 :GPIO3 (4:1 or 1:1 ) 14 :GPIO4 (4:1 or 1:1 ) 15 :NA 3:0 adc_select 0 'b0000 Bit Description ADC_MSB_result Register (Address 71h). ADC_MSB_result Addr: 71h Bit Bit Name Default Access Bit Description 7 result_not_ready 0 RO Indicates end of conversion 0 result is ready 1 conversion is running 6:0 D9_3 'b000 0000 RO ADC result register Bit9..Bit3 ADC_LSB_result Register (Address 72h). ADC_LSB_result Addr: 72h Bit Bit Name Default Access 7:3 - 'b0000 0 n/a do not use 2:0 D2_0 'b000 RO ADC result register Bit2...Bit0 www.austriamicrosystems.com Bit Description 1.2 86 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w RegStatus Register (Address 73h). RegStatus Addr: 73h Bit Bit Name Default Access Bit Description 7 curr3_lv 0 RO Bit is set when voltage of current sink CURR3 drops below low voltage threshold (1ms debounce time default) 6 curr2_lv 0 RO Bit is set when voltage of current sink CURR2 drops below low voltage threshold (1ms debounce time default) 5 curr1_lv 0 RO Bit is set when voltage of current sink CURR1 drops below low voltage threshold (1ms debounce time default) 4 - 0 n/a do not use 3 sd4_lv 0 RO Bit is set when voltage of SD4 drops below low voltage threshold (-5%) (1ms debounce time default) 2 sd3_lv 0 RO Bit is set when voltage of SD3 drops below low voltage threshold (-5%) (1ms debounce time default) 1 sd2_lv 0 RO Bit is set when voltage of SD2 drops below low voltage threshold (-5%) (1ms debounce time default) 0 sd1_lv 0 RO Bit is set when voltage of SD1 drops below low voltage threshold (-5%) (1ms debounce time default) InterruptMask1 Register (Address 74h). InterruptMask1 Addr: 74h Bit Bit Name Default Access 7 LowBat_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 6 ovtmp_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 5 onkey_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 4 chdet_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 3 eoc_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 2 resume_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 1 nobat_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 0 trickle_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) www.austriamicrosystems.com Bit Description 1.2 87 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w InterruptMask2 Register (Address 75h). InterruptMask2 Addr: 75h Bit Bit Name Default Access Bit Description 7 rtc_rep_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 6 stpup1_det_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 5 stpup1_oc_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 4 bat_temp_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 3 sd4_lv_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 2 sd3_lv_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 1 sd2_lv_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 0 sd1_lv_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) InterruptMask3 Register (Address 76h). InterruptMask3 Addr: 76h Bit Bit Name Default Access Bit Description 7:3 - 'b0000 0 n/a 2 gpio_restart_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 1 gpio_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) 0 rtc_alarm_int_m 1 RW 0 :interrupt enabled 1 :interrupt masked (disabled) do not use InterruptStatus1 Register (Address 77h). InterruptStatus1 Addr: 77h Bit Bit Name Default Access 7 LowBat_int_i 0 POP Bit is set when VSUP drops below ResVoltFall 6 ovtmp_int_i 0 POP Bit is set when 110deg is exceeded 5 onkey_int_i 0 POP Rising and falling edge 4 chdet_int_i 0 POP Rising and falling edge 3 eoc_int_i 0 POP Rising and falling edge 2 resume_int_i 0 POP Rising and falling edge 1 nobat_int_i 0 POP Rising and falling edge 0 trickle_int_i 0 POP Rising and falling edge www.austriamicrosystems.com Bit Description 1.2 88 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w InterruptStatus2 Register (Address 78h). InterruptStatus2 Addr: 78h Bit Bit Name Default Access Bit Description 7 rtc_rep_int_i 0 POP Rising edge only 6 stpup1_det_i 0 POP Rising edge only 5 stpup1_oc_i 0 POP Rising edge only 4 bat_temp_i 0 POP Rising and falling edge 3 sd4_lv_int_i 0 POP Rising edge only 2 sd3_lv_int_i 0 POP Rising edge only 1 sd2_lv_int_i 0 POP Rising edge only 0 sd1_lv_int_i 0 POP Rising edge only Bit Description InterruptStatus3 Register (Address 79h). InterruptStatus3 Addr: 79h Bit Bit Name Default Access 7:3 - 'b0000 0 n/a do not use 2 gpio_restart_int_i 0 POP Falling edge 1 gpio_int_i 0 POP Rising and falling edge 0 rtc_alarm_int_i 0 POP Rising edge only www.austriamicrosystems.com 1.2 89 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w ChargerControl1 Register (Address 80h). ChargerControl1 Addr: 80h Bit Bit Name Default Access Bit Description 7 nobat_ntc_det 1 RW Enables nobat_det feature with NTC, ntc_nobat debounce time=100ms 6 auto_resume 1 RW 0 :charger will stay in EOC even when the battery voltage drops 1 :charger will start charging when the battery voltage hits the resume level 5 bat_charging_enable 0 RW 0 :USB is supplying VSUP, but battery switch is open. USB charger regulates to Vsup_voltage 1 :Normal battery charger operation form USB charger 4:1 usb_current 'b1000 RW Sets the USB input current limit, if not GPIO controlled .0 :94mA (USB low current, also if gpiox_iosf=12 and gpiox=0) .1 :141mA .2 :189mA .3 :237mA .4 :285mA .5 :332mA .6 :380mA .7 :428mA .8 :470mA (USB high current, also if gpiox_iosf=12 and gpiox=1) .9 :517mA 10 :754A 11 :1.29A 12 :1.7A 13 :2.53A 14 :2.53A 15 :2.53A 0 usb_chgEn 1 RW ON/OFF control of USB charger input current limiter 0 :input current limiter disabled 1 :input current limiter enabled ChargerVoltageControl Register (Address 81h). ChargerVoltageControl Addr: 81h Bit 7:6 5:0 Bit Name vsup_min ChVoltEOC www.austriamicrosystems.com Default 'b01 'b10 0011 Access Bit Description RW Regulate down battery charging current on that level of VSUP during trickle charging and constant current charging, to prevent voltage drop on VSUP. 0 :3.9V 1 :4.2V 2 :4.50V 3 :4.70V RW Sets the end-of-charge voltage level VCHOFF (20mV steps) ...0 :3.5V ...1 :3.52V ..... :... .35 :4.2V ..... :... 47-63 :4.44V 1.2 90 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w ChargerCurrentControl Register (Address 82h). ChargerCurrentControl Addr: 82h Bit Bit Name Default Access 7 eoc_current 0 RW Sets eoc_current 0 :eoc current = TrickleCurrent 1 :eoc current = TrickleCurrent / 2 6 cc_lowlimit 1 RW Sets the range of the charging current limit in constant current mode. 0 :Normal mode 1 :Low current mode Current=ConstantCurrent - 500mA RW Sets the charging current limit in constant current mode. .0 :750mA .1 :800mA .2 :850mA .3 :900mA .4 :950mA .5 :1000mA .6 :1050mA .7 :1100mA .8 :1150mA .9 :1200mA 10 :1250mA 11 :1300mA 12 :1350mA 13 :1400mA 14 :1450mA 15 :1500mA RW Sets the charging current limit in trickle current mode. 0 :60mA 1 :120mA 2 :180mA 3 :240mA 5:2 1:0 ConstantCurrent TrickleCurrent www.austriamicrosystems.com 'b0000 'b01 Bit Description 1.2 91 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w ChargerConfig Register (Address 83h). ChargerConfig Addr: 83h Bit Bit Name Default Access 7 - 0 n/a do not use 6 Charging_1Hz_clk 0 RW Sets the mode for the charging output status (gpioX_iosf=10) 0 :Normal operation: charging=1, not charging=0 1 :1Hz blinking operation: charging=1Hz, not charging=0 5 ChVoltResume 0 RW Sets the resume voltage level VCHRES. 0 :120mV 1 :240mV RW Selects temperature regulation of charging current (die temperature) 0 :110C 1 :90C 2 :120C 3 :130C RW Voltage regulation of VSUP of the input current limiter 0 :4.4V 1 :4.5V 2 :4.6V 3 :4.7V 4 :4.8V 5 :4.9V 6 :5.0V 7 :5.5V 4:3 2:0 temp_sel vsup_voltage 'b00 'b101 Bit Description NTCsupervision Register (Address 84h). NTCsupervision Addr: 84h Bit Bit Name Default Access 7:3 - 'b0000 0 n/a do not use 2 ntc_temp 0 RW Select NTC mode 0 :50deg temperature limit 1 :45deg temperature limit 1 ntc_10k 0 RW Select NTC resistor type 0 :100k 1 :10k 0 ntc_on 0 RW ON/OFF control of battery NTC supervision 0 :Disabled 1 :Enabled www.austriamicrosystems.com Bit Description 1.2 92 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w Chargersupervision Register (Address 85h). Chargersupervision Addr: 85h Bit Bit Name Default Access 7 - 0 n/a do not use 6 ovprot_dis 1 RW Disables external overvoltage protection, function of XOFF pin 0 :Overvoltage protection enabled 1 :Overvoltage protection disabled 5 dcdc_chmode 1 RW Enables DCDC charger mode 0 :Linear charger mode enabled 1 :Step down charger enabled 4 charging_tmax 1 RW 3:0 ch_timeout 'b0000 RW Bit Description 0 :Read: no time-out reached, Write: reset charger time-out counter 1 :ch_timeout reached and charging stopped Sets the charger time-out timer .0 :Off .1 :0.5 hour .2 :1 hour .3 :1.5 hour .4 :2 hour .5 :2.5 hour .6 :3 hour .7 :3.5 hour .8 :4 hour .9 :4.5 hour 10 :5 hour 11 :5.5 hour 12 :6 hour 13 :6.5 hour 14 :7 hour 15 :7.5 hour ChargerStatus1 Register (Address 86h). ChargerStatus1 Addr: 86h Bit Bit Name Default Access 7 Nobat 0 RO Bit is set, if no battery has been detected (after EOC measured on NTC) 6 Battemp_hi 0 RO Bit is set, if high battery temperature has been detected 5 EOC 0 RO Bit is set, if End of charge state has been reached 4 CVM 0 RO Bit is set, if charger is operating in constant voltage mode 3 Trickle 0 RO Bit is set, if charger is operating in trickle current. VBAT < 2.9V 2 Resume 0 RO Bit is set, if Battery voltage is below resume level 1 CCM 0 RO Bit is set, if charger is operating in constant current mode 0 ChDet 0 RO Bit is set when external charge adapter has been detected on pin VCHARGER www.austriamicrosystems.com Bit Description 1.2 93 - 102 AS3711 2V1 Datasheet - R e g i s t e r O v e r v i e w ChargerStatus2 Register (Address 87h). ChargerStatus2 Addr: 87h Bit Bit Name Default Access Bit Description 7:3 - `b0000 0 n/a do not use 2 usb_prot_ready 0 RO Bit indicates, that the USB input voltage protection pin XOFF is precharged to a voltage > 7.5V XOFF is pull to GND if an overvoltage on VUSB is detected. 1 batsw_on 0 RO 0 batsw_mode 0 RO Bits indicates the status of the battery switch 00 : Battery switch closed 01 : Battery switch open with ideal diode 10 : Charging mode 11 : Battery switch closed Lock Register (Address 8eh). Lock Addr: 8eh Bit Bit Name Default Access 7:3 - `b0000 0 n/a do not use 2 charger_lock 0 RW Enables lock of the following charger registers: 81h, 82h, 83h, Chargervoltagecontrol, Chargercurrentcontrol, Chargerconfig. Bits can only be set. Reset only with full reset cycle RW Enables lock of Regulator voltages Bits can only be set. Reset only with full reset cycle 0 :No lock 1 :Lock of voltage of LDOs (LDO1..8_vsel) (all bits) and voltage of StepDownBits(sd1..4_vsel) [5:6] only 2 :Lock voltage of StepDownbits 5:6 only (no LDOs) 3 :Lock voltage of StepDowns (all bits) and LDOs (all bits). Note: Setting sdx_vsel to 0 is possible all the time to allow switching off the regulator. Writing a non-zero value after that will restore the old value. 1:0 reg_lock 'b00 Bit Description ASIC_ID1 Register (Address 90h). ASIC_ID1 Addr: 90h Bit Bit Name Default Access 7:0 ID1 8Bh RO Bit Description - ASIC_ID2 Register (Address 91h). ASIC_ID2 Addr: 91h Bit Bit Name Default Access 3:0 revision 'b0000 RO www.austriamicrosystems.com Bit Description Note: Metal fuse!!! 1.2 94 - 102 D C B A C41 1 3 5 1 3 5 J5 2 4 6 BU4 GND R16 1M BU3 2.2uF 10uF C19 U2 5 4 3 2 1 I2C 2 4 6 100nF C28 Q2 VSUP BU2 VBAT 47uF C24 GND Shield BUS_GND D+ D- BUS_PWR BU1 C13 10uF C23 L3 D1 1H RESET R15 10k ON S1 4.7uF BATTEMP VSUP R17 10k 1 C15 4.7uF Q1 S2 C29 1 Q5 D4 1uF R9 1k VSUP Y1 57 25 24 23 22 38 39 37 36 40 5 34 4 1 3 2 35 2.2uF VSS(exp) XRES SDA SCL ON XOUT32 XIN32 V2_5 CREF BATTEMP CHGOUT VBAT VSUP_CHG EXTBATSW CHGIN XOFF VUSB 2.2uF C9 C10 C11 2.2uF VSUP 2 31 56 18 2 AS3711 VIN_LDO123 VIN_LDO456 VIN_LDO78 VUSB 3 2 GPIO1 GPIO2 GPIO3 GPIO4 VSUP_GPIO C17 D7 D6 26 27 28 29 21 CURR1 CURR2 CURR3 15 16 17 CURR1 CURR2 CURR3 32 30 33 55 54 53 20 19 GPIO1 GPIO2 GPIO3 GPIO4 C8 C3 C4 C5 C6 C7 C1 D8 2.2uF VSUP D9 FB_SD4 NGATE_SD4 LX_SD4 PGATE_SD4 SENSEN_SD4 GATE_SU2 SENSEN_SU2 FB_SU1 GATE_SU1 SENSEN_SU1 FB_SD1 LX_SD1 FB_SD2 LX_SD2 FB_SD3 LX_SD3 VSUP_SD1 VSUP_SD2 VSUP_SD3 46 42 43 44 41 49 51 52 48 47 12 13 9 10 8 7 14 11 6 1 Q6 3 L4 L2 L1 1H 1H 3 6 4 3 L7 1.5H C35 2.2uF 33m VSUP R19 C25 10F SD3 * SD1 10H L6 4.7H L5 Project Title 150m R7 VSUP 150m R4 C14 10F Date 01/06/2011 Originator * Size A4 Title C36 33uF SD4 SD2 C20 10F C21 2.2uF VSUP C16 2.2uF LDO1 LDO2 LDO3 LDO4 LDO5 LDO6 LDO7 LDO8 2.2uF C12 2.2uF 1H 1uF 1uF 2.2uF 2.2uF 2.2uF 1uF 2.2uF C2 SENSEP LDO1 LDO2 LDO3 LDO4 LDO5 LDO6 LDO7 LDO8 VSUP_SU 45 2 5 1 Q4 1 Q3 2.2uF C22 VSUP 3 2.2uF C31 2 3 1.2 2 www.austriamicrosystems.com 50 1 D3 D2 C30 33nF C34 4 SU1 C33 2.2uF SU2 C27 10uF of * Revision * 15nF Sheet * R14 100k 1M R11 1.5nF C32 R8 15nF C26 330k 1M R6 4 D C B A Datasheet - A p p l i c a t i o n I n f o r m a t i o n AS3711 2V1 11 Application Information Figure 37. AS3711 Application Schematic 95 - 102 AS3711 2V1 Datasheet - A p p l i c a t i o n I n f o r m a t i o n Figure 38. PCB Layout Recommendation for SD1, SD2, SD3 and Switched Mode Charger www.austriamicrosystems.com 1.2 96 - 102 AS3711 2V1 Datasheet - A p p l i c a t i o n I n f o r m a t i o n Figure 39. PCB Layout Recommendation for SU1, SU2, SD4 www.austriamicrosystems.com 1.2 97 - 102 AS3711 2V1 Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s 12 Package Drawings and Markings Figure 40. Package Drawings and Dimensions www.austriamicrosystems.com 1.2 98 - 102 AS3711 2V1 Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s Figure 41. QFN Marking Table 33. Package Code YWWZZZ YY WW X ZZ year working week assembly / packaging plant identifier free choice Table 34. Start-up Revision Code xx Sequence FF engineering samples, no sequence programmed or sequence programmed on request 00 default sequence (no sequence programmed) xx customer specified sequence programmed during production test www.austriamicrosystems.com 1.2 99 - 102 AS3711 2V1 Datasheet - R e v i s i o n H i s t o r y Revision History Revision Date Owner 0.10 3.2011 pkm Description Initial draft typo corrections; updated block diagrams, PCB layout recommendations, charger mode diagrams, application schematics, DCDC performance characteristics added register 2bh and 2ch for chip version 2v1. 0.20 10.2011 pkm, cwo 1.0 10.2011 pkm first official release 1.1 12.2011 pkm corrected ntc_on bit description, adjusted max die temperature, updated dcdc mode description pkm corrected "enter standby mode", GPIO1 input mode description, GPIO block diagram, GPIO IOSF, interrupt signal polarity added switching charger graphs, added step-up external components, ASIC ID 1.2 5.2012 Note: Typos may not be explicitly mentioned under revision history. www.austriamicrosystems.com 1.2 100 - 102 AS3711 2V1 Datasheet - O r d e r i n g I n f o r m a t i o n 13 Ordering Information The devices are available as the standard products shown below. Table 35. Ordering Information Ordering Code Marking Sequence Description Delivery Form Package AS3711-BQFR-FF M2V1-FF sequence programmable on request Quad Buck High Current PMIC with Charger Tray QFN56 7x7 0.4mm pitch AS3711-BQFP-00 M2V1-00 default sequence Quad Buck High Current PMIC with Charger Tape & Reel dry pack QFN56 7x7 0.4mm pitch AS3711-BQFP-xx M2V1-xx customer specified Quad Buck High Current PMIC with Charger Tape & Reel dry pack QFN56 7x7 0.4mm pitch Note: All products are RoHS compliant and austriamicrosystems green. Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect Technical Support is available at http://www.austriamicrosystems.com/Technical-Support For further information and requests, please contact us mailto: sales@austriamicrosystems.com or find your local distributor at http://www.austriamicrosystems.com/distributor www.austriamicrosystems.com 1.2 101 - 102 AS3711 2V1 Datasheet - C o p y r i g h t s Copyrights Copyright (c) 1997-2012, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered (R). All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. All products and companies mentioned are trademarks or registered trademarks of their respective companies. Disclaimer Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location. The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services. Contact Information Headquarters austriamicrosystems AG Tobelbaderstrasse 30 A-8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01 For Sales Offices, Distributors and Representatives, please visit: http://www.austriamicrosystems.com/contact www.austriamicrosystems.com 1.2 102 - 102 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: ams: AS3711-BQFP-00 AS3711-BQFR-FF AS3711-BQFP-03