1
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM ©2001, Micron Technology, Inc.
MT58L1MY18F_C.p65 – Rev. C, Pub. 9/01
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE FOR EVALUATION AND REFERENCE PURPOSES ONLY AND ARE SUBJECT TO CHANGE
BY MICRON WITHOUT NOTICE. PRODUCTS ARE ONLY WARRANTED BY MICRON TO MEET MICRON’S PRODUCTION DATA SHEET SPECIFICATIONS.
18Mb SYNCBURST
SRAM
FEATURES
Fast clock and OE# access times
Single +3.3V ±0.165V or +2.5V ±0.125V power supply
(VDD)
Separate +3.3V or +2.5V isolated output buffer supply
(VDDQ)
SNOOZE MODE for reduced-power standby
Common data inputs and data outputs
Individual BYTE WRITE control and GLOBAL WRITE
Three chip enables for simple depth expansion and
address pipelining
Clock-controlled and registered addresses, data I/Os,
and control signals
Internally self-timed WRITE cycle
Automatic power-down
Burst control (interleaved or linear burst)
Low capacitive bus loading
x18, x32, and x36 versions available
OPTIONS TQFP MARKING
Timing (Access/Cycle/MHz)
7.5ns/8.8ns/113 MHz -7.5
8.5ns/10ns/100 MHz -8.5
10ns/15ns/66 MHz -10
Configurations
3.3V VDD, 3.3V or 2.5V I/O
1 Meg x 18 MT58L1MY18F
512K x 32 MT58L512Y32F
512K x 36 MT58L512Y36F
2.5V VDD, 2.5V I/O
1 Meg x 18 MT58V1MV18F
512K x 32 MT58V512V32F
512K x 36 MT58V512V36F
Packages
100-pin TQFP (3-chip enable) T
165-pin FBGA F*
119-pin BGA B
Operating Temperature Range
Commercial (0ºC to +70ºC) None
Part Number Example:
MT58L512Y36FT-10
MT58L1MY18F, MT58V1MV18F,
MT58L512Y32F, MT58V512V32F,
MT58L512Y36F, MT58V512V36F
3V VDD, 3.3V or 2.5V I/O; 2.5V VDD, 2.5V I/O,
Flow-Through
* A Part Marking Guide for the FBGA devices can be found on Micron’s
Web site—http://www.micron.com/support/index.html.
NOTE: 1. JEDEC-standard MS-026 BHA (LQFP).
2. JEDEC-standard MS-028 BHA (PBGA).
119-Pin BGA2
165-Pin FBGA
100-Pin TQFP1
2
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 – Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
FUNCTIONAL BLOCK DIAGRAM
1 MEG x 18
DQs
DQPa
DQPb
ADDRESS
REGISTER
ADV#
CLK
BINARY
COUNTER AND
LOGIC
CLR
Q1
Q0
ADSC#
20 20 18 20
CE# ENABLE
REGISTER
2
OE#
SENSE
AMPS
1 Meg x 9 x 2
MEMORY
ARRAY
ADSP#
OUTPUT
BUFFERS
INPUT
REGISTERS
2
MODE
CE2
CE2#
GW#
BWE#
SA0, SA1, SAs
BWb#
BWa#
BYTE b
WRITE REGISTER
BYTE a
WRITE REGISTER
SA0'
SA1'
SA0-SA1
BYTE b
WRITE DRIVER
BYTE a
WRITE DRIVER
1818
18
18
9
9
9
9
NOTE: Functional block diagrams illustrate simplified device operation. See truth table, pin description, and timing diagrams for
detailed information.
DQs
DQPa
DQPb
DQPc
DQPd
ADDRESS
REGISTER
ADV#
CLK BINARY
COUNTER
AND LOGIC
CLR
Q1
Q0
ADSP#
ADSC#
19 19 17 19
CE#
CE2
CE2#
OE#
ENABLE
REGISTER
4
SENSE
AMPS
OUTPUT
BUFFERS
INPUT
REGISTERS
512K x 8 x 4
(x32)
512K x 9 x 4
(x36)
MEMORY
ARRAY
MODE
BWE#
GW#
BWd#
BWc#
BWb#
BWa#
BYTE d
WRITE REGISTER
BYTE c
WRITE REGISTER
BYTE b
WRITE REGISTER
BYTE a
WRITE REGISTER
BYTE b
WRITE DRIVER
BYTE c
WRITE DRIVER
BYTE d
WRITE DRIVER
SA0, SA1, SAs
SA0'
SA1'
SA0-SA1
BYTE a
WRITE DRIVER
363636
9
9
9
9
9
9
9
9
36
FUNCTIONAL BLOCK DIAGRAM
512K x 32/36
3
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
Address and write control are registered on-chip to
simplify WRITE cycles. This allows self-timed WRITE
cycles. Individual byte enables allow individual bytes to
be written. During WRITE cycles on the x18 device, BWa#
controls DQa pins and DQPa; BWb# controls DQb pins
and DQPb. During WRITE cycles on the x32 and x36
devices, BWa# controls DQa pins and DQPa; BWb#
controls DQb pins and DQPb; BWc# controls DQc pins
and DQPc; BWd# controls DQd pins and DQPd. GW#
LOW causes all bytes to be written. Parity bits are only
available on the x18 and x36 versions.
The device is ideally suited for 486, Pentium®, 680x0
and PowerPC systems and those systems that benefit from
a wide synchronous data bus. The device is also ideal in
generic 16-, 18-, 32-, 36-, 64-, and 72-bit-wide applica-
tions.
Please refer to the Micron Web site (www.micron.com/
sram) for the latest data sheet.
DUAL VOLTAGE I/O
The 3.3V VDD device is tested for 3.3V and 2.5V I/O
function. The 2.5V VDD device is tested for only 2.5V
I/O function.
GENERAL DESCRIPTION
The Micron® SyncBurst SRAM family employs high-
speed, low-power CMOS designs that are fabricated using
an advanced CMOS process.
Micron’s 18Mb SyncBurst SRAMs integrate a 1 Meg x
18, 512K x 32, or 512K x 36 SRAM core with advanced
synchronous peripheral circuitry and a 2-bit burst counter.
All synchronous inputs pass through registers controlled
by a positive-edge-triggered single-clock input (CLK). The
synchronous inputs include all addresses, all data inputs,
active LOW chip enable (CE#), two additional chip en-
ables for easy depth expansion (CE2#, CE2), burst control
inputs (ADSC#, ADSP#, ADV#), byte write enables (BWx#),
and global write (GW#).
Asynchronous inputs include the output enable (OE#),
clock (CLK) and snooze enable (ZZ). There is also a burst
mode input (MODE) that selects between interleaved and
linear burst modes. The data-out (Q), enabled by OE#, is
also asynchronous. WRITE cycles can be from one to two
bytes wide (x18) or from one to four bytes wide (x32/x36),
as controlled by the write control inputs.
Burst operation can be initiated with either address
status processor (ADSP#) or address status controller
(ADSC#) inputs. Subsequent burst addresses can be in-
ternally generated as controlled by the burst advance
input (ADV#).
4
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
NOTE: 1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.
PIN # x18 x32 x36
51 NC NF DQPa1
52 NC DQa DQa
53 NC DQa DQa
54 VDDQ
55 VSS
56 NC DQa DQa
57 NC DQa DQa
58 DQa
59 DQa
60 VSS
61 VDDQ
62 DQa
63 DQa
64 ZZ
65 VDD
66 NC
67 VSS
68 DQa DQb DQb
69 DQa DQb DQb
70 VDDQ
71 VSS
72 DQa DQb DQb
73 DQa DQb DQb
74 DQPa DQb DQb
75 NC DQb DQb
PIN # x18 x32 x36 PIN # x18 x32 x36
TQFP PIN ASSIGNMENT TABLE
26 VSS
27 VDDQ
28 NC DQd DQd
29 NC DQd DQd
30 NC NF DQPd1
31 MODE (LBO#)
32 SA
33 SA
34 SA
35 SA
36 SA1
37 SA0
38 DNU
39 DNU
40 VSS
41 VDD
42 SA
43 SA
44 SA
45 SA
46 SA
47 SA
48 SA
49 SA
50 SA
PIN # x18 x32 x36
1NCNFDQPc1
2NCDQc DQc
3NCDQc DQc
4VDDQ
5VSS
6NCDQc DQc
7NCDQc DQc
8DQb DQc DQc
9DQb DQc DQc
10 VSS
11 VDDQ
12 DQb DQc DQc
13 DQb DQc DQc
14 NC
15 VDD
16 NC
17 VSS
18 DQb DQd DQd
19 DQb DQd DQd
20 VDDQ
21 VSS
22 DQb DQd DQd
23 DQb DQd DQd
24 DQPb DQd DQd
25 NC DQd DQd
76 VSS
77 VDDQ
78 NC DQb DQb
79 NC DQb DQb
80 SA NF DQPb1
81 SA
82 SA
83 ADV#
84 ADSP#
85 ADSC#
86 OE# (G#)
87 BWE#
88 GW#
89 CLK
90 VSS
91 VDD
92 CE2#
93 BWa#
94 BWb#
95 NC BWc# BWc#
96 NC BWd# BWd#
97 CE2
98 CE#
99 SA
100 SA
5
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
SA
SA
ADV#
ADSP#
ADSC#
OE# (G#)
BWE#
GW#
CLK
V
SS
V
DD
CE2#
BWa#
BWb#
NC
NC
CE2
CE#
SA
SA
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
SA
NC
NC
V
DD
Q
V
SS
NC
DQPa
DQa
DQa
V
SS
V
DD
Q
DQa
DQa
V
SS
NC
V
DD
ZZ
DQa
DQa
V
DD
Q
V
SS
DQa
DQa
NC
NC
V
SS
V
DD
Q
NC
NC
NC
SA
SA
SA
SA
SA
SA
SA
SA
SA
V
DD
V
SS
DNU
DNU
SA0
SA1
SA
SA
SA
SA
MODE
(LBO#)
NC
NC
NC
V
DD
Q
V
SS
NC
NC
DQb
DQb
V
SS
V
DD
Q
DQb
DQb
NC
V
DD
NC
V
SS
DQb
DQb
V
DD
Q
V
SS
DQb
DQb
DQPb
NC
V
SS
V
DD
Q
NC
NC
NC
x18
PIN ASSIGNMENT (TOP VIEW)
100-PIN TQFP
NOTE: 1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.
SA
SA
ADV#
ADSP#
ADSC#
OE# (G#)
BWE#
GW#
CLK
VSS
VDD
CE2#
BWa#
BWb#
BWc#
BWd#
CE2
CE#
SA
SA
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
NF/DQPb
1
DQb
DQb
VDDQ
VSS
DQb
DQb
DQb
DQb
VSS
VDDQ
DQb
DQb
VSS
NC
VDD
ZZ
DQa
DQa
VDDQ
VSS
DQa
DQa
DQa
DQa
VSS
VDDQ
DQa
DQa
NF/DQPa
1
SA
SA
SA
SA
SA
SA
SA
SA
SA
VDD
VSS
DNU
DNU
SA0
SA1
SA
SA
SA
SA
MODE
(LBO#)
NF/DQPc
1
DQc
DQc
VDDQ
VSS
DQc
DQc
DQc
DQc
VSS
VDDQ
DQc
DQc
NC
VDD
NC
VSS
DQd
DQd
VDDQ
VSS
DQd
DQd
DQd
DQd
VSS
VDDQ
DQd
DQd
NF/DQPd
1
x32/x36
6
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
TQFP PIN DESCRIPTIONS
x18 x32/x36 SYMBOL TYPE DESCRIPTION
37 37 SA0 Input Synchronous Address Inputs: These inputs are registered and must
36 36 SA1 meet the setup and hold times around the rising edge of CLK.
32-35, 42-50, 32-35, 42-50, SA
80-82, 99, 81, 82, 99,
100 100
93 93 BWa# Input Synchronous Byte Write Enables: These active LOW inputs allow
94 94 BWb# individual bytes to be written and must meet the setup and hold
95 BWc# times around the rising edge of CLK. A byte write enable is LOW
96 BWd# for a WRITE cycle and HIGH for a READ cycle. For the x18 version,
BWa# controls DQa pins and DQPa; BWb# controls DQb pins and
DQPb. For the x32 and x36 versions, BWa# controls DQa pins and
DQPa; BWb# controls DQb pins and DQPb; BWc# controls DQc pins
and DQPc; BWd# controls DQd pins and DQPd. Parity is only
available on the x18 and x36 versions.
87 87 BWE# Input Byte Write Enable: This active LOW input permits BYTE WRITE
operations and must meet the setup and hold times around the
rising edge of CLK.
88 88 GW# Input Global Write: This active LOW input allows a full 18-, 32-, or 36-bit
WRITE to occur independent of the BWE# and BWx# lines and must
meet the setup and hold times around the rising edge of CLK.
89 89 CLK Input Clock: CLK registers address, data, chip enable, byte write enables,
and burst control inputs on its rising edge. All synchronous inputs
must meet setup and hold times around the clocks rising edge.
98 98 CE# Input Synchronous Chip Enable: This active LOW input is used to enable
the device and conditions the internal use of ADSP#. CE# is sampled
only when a new external address is loaded.
92 92 CE2# Input Synchronous Chip Enable: This active LOW input is used to enable
the device and is sampled only when a new external address is
loaded.
97 97 CE2 Input Synchronous Chip Enable: This active HIGH input is used to enable
the device and is sampled only when a new external address is
loaded.
86 86 OE# Input Output Enable: This
active LOW, asynchronous input enables the
(G#) data I/O output drivers. G# is the JEDEC-standard term for OE#.
83 83 ADV# Input Synchronous Address Advance: This active LOW input is used to
advance the internal burst counter, controlling burst access after the
external address is loaded. A HIGH on this pin effectively causes wait
states to be generated (no address advance). To ensure use of
correct address during a WRITE cycle, ADV# must be HIGH at the
rising edge of the first clock after an ADSP# cycle is initiated.
85 85 ADSC# Input Synchronous Address Status Controller: This active LOW input
interrupts any ongoing burst, causing a new external address to be
registered. A READ or WRITE is performed using the new address if
CE# is LOW. ADSC# is also used to place the chip into power-down
state when CE# is HIGH.
(continued on next page)
7
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
TQFP PIN DESCRIPTIONS (continued)
x18 x32/x36 SYMBOL TYPE DESCRIPTION
84 84 ADSP# Input Synchronous Address Status Processor: This active LOW input
interrupts any ongoing burst, causing a new external address to be
registered. A READ is performed using the new address,
independent of the byte write enables and ADSC#, but dependent
upon CE#, CE2, and CE2#. ADSP# is ignored if CE# is HIGH. Power-
down state is entered if CE2 is LOW or CE2# is HIGH.
31 31 MODE Input Mode: This input selects the burst sequence. A LOW on this pin
(LBO#) selects linear burst. NC or HIGH on this pin selects interleaved
burst. Do not alter input state while device is operating. LBO# is
the JEDEC-standard term for MODE.
64 64 ZZ Input Snooze Enable: This active HIGH, asynchronous input causes the
device to enter a low-power standby mode in which all data in the
memory array is retained. When ZZ is active, all other inputs are
ignored. This pin has an internal pull-down and can be floating.
(a) 58, 59, (a) 52, 53, DQa Input/ SRAM Data I/Os: For the x18 version, Byte a is associated with DQa
62, 63, 68, 69, 56-59, 62, 63 Output pins; Byte b is associated with DQb pins. For the x32 and x36
72, 73 versions, Byte a is associated with DQa pins; Byte b is associated
(b) 8, 9, 12, (b) 68, 69, DQb with DQb pins; Byte c is associated with DQc pins; Byte d is
13, 18, 19, 72-75, 78, 79 associated with DQd pins. Input data must meet setup and hold
22, 23 times around the rising edge of CLK.
(c) 2, 3, 6-9, DQc
12, 13
(d) 18, 19, DQd
22-25, 28, 29
74 51 NF/DQPa NC/ No Function /Parity Data I/Os: On the x32 version, these pins are No
24 80 NF/DQPb I/O Function (NF). On the x18 version, Byte a parity is DQPa; Byte b
1NF/DQPc parity is DQPb. On the x36 version, Byte a parity is DQPa; Byte b
30 NF/DQPd parity is DQPb; Byte c parity is DQPc; Byte d parity is DQPd.
No function pins are internally connected to the die and have the
capacitance of an input pin. It is allowable to leave these pins
unconnected or driven by signals.
15, 41, 65, 91 15, 41, 65, 91 V
DD
Supply Power Supply:
See DC Electrical Characteristics and Operating
Conditions for range.
4, 11, 20, 27, 4, 11, 20, 27, V
DD
Q Supply Isolated Output Buffer Supply: See DC Electrical Characteristics and
54, 61, 70, 77 54, 61, 70, 77 Operating Conditions for range.
5, 10, 17, 5, 10, 17, V
SS
Supply Ground:
GND.
21, 26, 40, 21, 26, 40,
55,60, 67, 55, 60, 67,
71, 76, 90 71, 76, 90
38, 39 38, 39 DNU Do Not Use: These signals may either be unconnected or wired to
GND to improve package heat dissipation.
1-3, 6, 7, 14, 14, 16, 66 NC No Connect: These signals are not internally connected and may be
16, 25, 28-30, connected to ground to improve package heat dissipation.
51-53, 56, 57,
66, 75, 78, 79,
95, 96
8
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
PIN LAYOUT (TOP VIEW)
165-PIN FBGA
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
2
CE#
CE2
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
NC
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
SA
SA
SA
SA
NC
DQb
DQb
DQb
DQb
V
SS
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
V
SS
DQb
DQb
DQb
DQb
DQPb
NC
MODE
(LBO#)
BWb#
NC
V
SS
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
SS
SA
SA
NC
BWa#
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
NC
TD1
TMS
CE2#
CLK
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
SA
SA1
SA0
BWE#
GW#
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
TD0
TCK
ADSC#
OE# (G#)
V
SS
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
SS
SA
SA
ADV#
ADSP#
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
NC
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
SA
SA
SA
SA
NC
NC
NC
NC
NC
NC
DQa
DQa
DQa
DQa
NC
SA
SA
SA
NC
DQPa
DQa
DQa
DQa
DQa
ZZ
NC
NC
NC
NC
NC
SA
SA
TOP VIEW
3456789
10 11
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
2
CE#
CE2
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
NC
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
SA
SA
SA
SA
NC
DQc
DQc
DQc
DQc
V
SS
DQd
DQd
DQd
DQd
NC
NC
NC
NC
NC
NF/DQPc
DQc
DQc
DQc
DQc
V
SS
DQd
DQd
DQd
DQd
NF/DQPd
NC
MODE
(LBO#)
BWc#
BWd#
V
SS
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
SS
SA
SA
BWb#
BWa#
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
NC
TD1
TMS
CE2#
CLK
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
SA
SA1
SA0
BWE#
GW#
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
TD0
TCK
ADSC#
OE# (G#)
V
SS
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
DD
V
SS
SA
SA
ADV#
ADSP#
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
NC
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
V
DD
Q
SA
SA
SA
SA
NC
DQb
DQb
DQb
DQb
NC
DQa
DQa
DQa
DQa
NC
SA
SA
NC
NC
NF/DQPb
DQb
DQb
DQb
DQb
ZZ
DQa
DQa
DQa
DQa
NF/DQPa
SA
SA
TOP VIEW
3456789
10 11
1
x18 x32/x36
NOTE: 1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.
9
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
FBGA PIN DESCRIPTIONS
x18 x32/x36 SYMBOL TYPE DESCRIPTION
6R 6R SA0 Input Synchronous Address Inputs: These inputs are registered and must
6P 6P SA1 meet the setup and hold times around the rising edge of CLK.
2A, 2B, 3P, 2A, 2B, 3P, SA
3R, 4P, 4R, 6N, 3R, 4P, 4R, 6N,
8P, 8R, 9P, 9R, 8P, 8R, 9P,
10A, 10B, 10P, 9R, 10A, 10B,
10R, 11A, 11P, 10P, 10R, 11P,
11R 11R
5B 5B BWa# Input Synchronous Byte Write Enables: These active LOW inputs allow
4A 5A BWb# individual bytes to be written and must meet the setup and hold
4A BWc# times around the rising edge of CLK. A byte write enable is LOW
4B BWd# for a WRITE cycle and HIGH for a READ cycle. For the x18 version,
BWa# controls DQa pins and DQPa; BWb# controls DQb pins and
DQPb. For the x32 and x36 versions, BWa# controls DQa pins and
DQPa; BWb# controls DQb pins and DQPb; BWc# controls DQc pins
and DQPc; BWd# controls DQd pins and DQPd. Parity is only
available on the x18 and x36 versions.
7A 7A BWE# Input Byte Write Enable: This active LOW input permits BYTE WRITE
operations and must meet the setup and hold times around the
rising edge of CLK.
7B 7B GW# Input Global Write: This active LOW input allows a full 18-, 32-, or 36-bit
WRITE to occur independent of the BWE# and BWx# lines and must
meet the setup and hold times around the rising edge of CLK.
6B 6B CLK Input Clock: This signal registers the address, data, chip enable, byte write
enables, and burst control inputs on its rising edge. All synchronous
inputs must meet setup and hold times around the clocks rising
edge.
3A 3A CE# Input Synchronous Chip Enable: This active LOW input is used to enable
the device and conditions the internal use of ADSP#. CE# is sampled
only when a new external address is loaded.
6A 6A CE2# Input Synchronous Chip Enable: This active LOW input is used to enable
the device and is sampled only when a new external address is
loaded.
11H 11H ZZ Input Snooze Enable: This active HIGH, asynchronous input causes the
device to enter a low-power standby mode in which all data in the
memory array is retained. When ZZ is active, all other inputs are
ignored.
3B 3B CE2 Input Synchronous Chip Enable: This active HIGH input is used to enable
the device and is sampled only when a new external address is
loaded.
8B 8B OE#(G#) Input Output Enable: This active LOW, asynchronous input enables the
data I/O output drivers.
(continued on next page)
10
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
FBGA PIN DESCRIPTIONS (continued)
x18 x32/x36 SYMBOL TYPE DESCRIPTION
9A 9A ADV# Input Synchronous Address Advance: This active LOW input is used to
advance the internal burst counter, controlling burst access after the
external address is loaded. A HIGH on ADV# effectively causes wait
states to be generated (no address advance). To ensure use of
correct address during a WRITE cycle, ADV# must be HIGH at the
rising edge of the first clock after an ADSP# cycle is initiated.
9B 9B ADSP# Input Synchronous Address Status Processor: This active LOW input
interrupts any ongoing burst, causing a new external address to be
registered. A READ is performed using the new address,
independent of the byte write enables and ADSC#, but dependent
upon CE#, CE2 and CE2#. ADSP# is ignored if CE# is HIGH. Power-
down state is entered if CE2 is LOW or CE2# is HIGH.
8A 8A ADSC# Input Synchronous Address Status Controller: This active LOW input
interrupts any ongoing burst, causing a new external address to be
registered. A READ or WRITE is performed using the new address if
CE# is LOW. ADSC# is also used to place the chip into power-down
state when CE# is HIGH.
1R 1R MODE Input Mode: This input selects the burst sequence. A LOW on this
(LB0#) input selects linear burst. NC or HIGH on this input selects
interleaved burst. Do not alter input state while device is
operating.
5R 5R TMS Input IEEE 1149.1 Test Inputs: JEDEC-standard 2.5V I/O levels. These pins
5P 5P TDI may be left not connected if the JTAG function is not used in the
7R 7R TCK circuit.
(a) 10J, 10K, (a) 10J, 10K, DQa Input/ SRAM Data I/Os: For the x18 version, Byte a is associated with DQa
10L, 10M, 11D, 10L, 10M, 11J, Output pins; Byte b is associated with DQb pins. For the x32 and x36
11E, 11F, 11G 11K, 11L, 11M versions, Byte a is associated with DQa pins; Byte b is associated
(b) 1J, 1K, (b) 10D, 10E, DQb with DQb pins; Byte c is associated with DQc pins; Byte d is
1L, 1M, 2D, 10F, 10G, 11D, associated with DQd pins. Input data must meet setup and hold
2E, 2F, 2G 11E, 11F, 11G times around the rising edge of CLK.
(c) 1D, 1E, DQc
1F, 1G, 2D,
2E, 2F, 2G
(d) 1J, 1K, 1L, DQd
1M, 2J, 2K,
2L, 2M
11C 11N NF/DQPa NF/ No Function/Parity Data I/Os: On the x32 version, these are no
1N 11C NF/DQPb I/O function (NF). On the x18 version, Byte a parity is DQPa; Byte b
1C NF/DQPc parity is DQPb. On the x36 version, Byte a parity is DQPa; Byte
1N NF/DQPd b parity is DQPb; Byte c parity is DQPc; Byte d parity is DQPd.
No function pins are internally connected to the die and have the
capacitance of an input pin. It is allowable to leave these pins
unconnected or driven by signals.
(continued on next page)
11
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
FBGA PIN DESCRIPTIONS (continued)
x18 x32/x36 SYMBOL TYPE DESCRIPTION
4D, 4E, 4F, 4D, 4E, 4F, V
DD
Supply Power Supply: See DC Electrical Characteristics and Operating
4G, 4H, 4J, 4G, 4H, 4J, Conditions for range.
4K, 4L, 4M, 4K, 4L, 4M,
8D, 8E, 8F, 8D, 8E, 8F,
8G, 8H, 8J, 8G, 8H, 8J,
8K, 8L, 8M 8K, 8L, 8M
3C, 3D, 3E, 3C, 3D, 3E, V
DD
Q Supply Isolated Output Buffer Supply: See DC Electrical Characteristics and
3F, 3G, 3J, 3F, 3G, 3J, Operating Conditions for range.
3K, 3L, 3M, 3K, 3L, 3M,
3N, 9C, 9D, 3N, 9C, 9D,
9E, 9F, 9G, 9E, 9F, 9G,
9J, 9K, 9L, 9J, 9K, 9L,
9M, 9N 9M, 9N
1H, 2H, 4C, 4N, 1H, 2H, 4C, 4N, V
SS
Supply Ground: GND.
5C, 5D, 5E 5F, 5C, 5D, 5E 5F,
5G, 5H, 5J, 5K, 5G, 5H, 5J, 5K,
5L, 5M, 6C,
6D, 5L, 5M, 6C,
6D,
6E,
6F, 6G, 6H, 6E,
6F, 6G, 6H,
6J, 6K, 6L, 6M, 6J, 6K, 6L, 6M,
7C, 7D, 7E, 7F, 7C, 7D, 7E, 7F,
7G, 7H, 7J, 7G, 7H, 7J,
7K, 7L, 7M, 7K, 7L, 7M,
7N, 8C, 8N 7N, 8C, 8N
7P 7P TDO Output IEEE 1149.1 Test Outputs: JEDEC-standard 2.5V I/O level.
1A, 1B, 1C, 1A, 1B, 1P, NC No Connect: These signals are not internally connected and
1D, 1E, 1F, 2C, 2N, may be connected to ground to improve package heat
1G, 1P, 2C, 2P, 2R, 3H, dissipation.
2J, 2K, 2L, 5N, 9H, 10C,
2M, 2N, 2P, 10H, 10N,
2R, 3H, 4B, 11A, 11B
5A, 5N, 9H,
10C, 10D,
10E, 10F,
10G, 10H,
10N, 11B,
11J, 11K,
11L, 11M,
11N
12
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
PIN LAYOUT (TOP VIEW)
119-PIN BGA
x18 x32/x36
NOTE: 1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
1
V
DD
Q
NC
NC
DQc
DQc
V
DD
Q
DQc
DQc
V
DD
Q
DQd
DQd
V
DD
Q
DQd
DQd
NC
NC
V
DD
Q
SA
SA
SA
NF/DQPc
1
DQc
DQc
DQc
DQc
V
DD
DQd
DQd
DQd
DQd
NF/DQPd
1
SA
NC
TMS
SA
SA
SA
VSS
VSS
VSS
BWc#
VSS
NC
VSS
BWd#
VSS
VSS
VSS
MODE (LBO#)
SA
TDI
ADSP#
ADSC#
V
DD
NC
CE#
OE#
ADV#
GW#
V
DD
CLK
NC
BWE#
SA1
SA0
V
DD
SA
TCK
SA
SA
SA
V
SS
V
SS
V
SS
BWb#
V
SS
NC
V
SS
BWa#
V
SS
V
SS
V
SS
V
DD
SA
TCO
SA
SA
SA
NF/DQPb
1
DQb
DQb
DQb
DQb
V
DD
DQa
DQa
DQa
DQa
NF/DQPa
1
SA
NC
NC
V
DD
Q
NC
NC
DQb
DQb
V
DD
Q
DQb
DQb
V
DD
Q
DQa
DQa
V
DD
Q
DQa
DQa
NC
ZZ
V
DD
Q
TOP VIEW
234567
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
1
V
DD
Q
NC
NC
DQb
NC
V
DD
Q
NC
DQb
V
DD
Q
NC
DQb
V
DD
Q
DQb
NC
NC
NC
V
DD
Q
SA
SA
SA
NC
DQb
NC
DQb
NC
V
DD
DQb
NC
DQb
NC
DQPb
SA
SA
TMS
SA
SA
SA
V
SS
V
SS
V
SS
BWb#
V
SS
NC
V
SS
V
SS
V
SS
V
SS
V
SS
MODE (LBO#)
SA
TDI
ADSP#
ADSC#
V
DD
NC
CE#
OE#
ADV#
GW#
V
DD
CLK
NC
BWE#
SA1
SA0
V
DD
NC
TCK
SA
SA
SA
V
SS
V
SS
V
SS
V
SS
V
SS
NC
V
SS
BWa#
V
SS
V
SS
V
SS
V
DD
SA
TDO
SA
SA
SA
DQPa
NC
DQa
NC
DQa
V
DD
NC
DQa
NC
DQa
NC
SA
SA
NC
V
DD
Q
NC
NC
NC
DQa
V
DD
Q
DQa
NC
V
DD
Q
DQa
NC
V
DD
Q
NC
DQa
NC
ZZ
V
DD
Q
TOP VIEW
234567
13
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
BGA PIN DESCRIPTIONS
x18 x32/x36 SYMBOL TYPE DESCRIPTION
4P 4P SA0 Input Synchronous Address Inputs: These inputs are registered and must
4N 4N SA1 meet the setup and hold times around the rising edge of CLK.
2A, 3A, 5A, 2A, 3A, 5A, SA
6A, 2B, 3B, 6A, 2B, 3B,
5B, 6B, 2C, 5B, 6B, 2C,
3C, 5C, 6C, 3C, 5C, 6C,
2R, 6R, 2T, 2R, 6R, 3T,
3T, 5T, 6T 4T, 5T
5L 5L BWa# Input Synchronous Byte Write Enables: These active LOW inputs allow
3G 5G BWb# individual bytes to be written and must meet the setup and hold
3G BWc# times around the rising edge of CLK. A byte write enable is LOW
3L BWd# for a WRITE cycle and HIGH for a READ cycle. For the x18 version,
BWa# controls DQ pins and DQPa; BWb# controls DQb pins and
DQPb. For the x32 and x36 versions, BWa# controls DQa pins and
DQPa; BWb# controls DQb pins and DQPb; BWc# controls DQc pins
and DQPc; BWd# controls DQd pins and DQPd.
4M 4M BWE# Input Byte Write Enable: This active LOW input permits BYTE WRITE
operations and must meet the setup and hold times around the
rising edge of CLK.
4H 4H GW# Input Global Write: This active LOW input allows a full 18-, 32-, or 36-bit
WRITE to occur independent of the BWE# and BWx# lines and must
meet the setup and hold times around the rising edge of CLK.
4K 4K CLK Input Clock: This signal registers the address, data, chip enable, byte write
enables and burst control inputs on its rising edge. All synchronous
inputs must meet setup and hold times around the clocks rising
edge.
4E 4E CE# Input Synchronous Chip Enable: This active LOW input is used to enable
the device and conditions the internal use of ADSP#. CE# is sampled
only when a new external address is loaded.
7T 7T ZZ Input Snooze Enable: This active HIGH, asynchronous input causes the
device to enter a low-power standby mode in which all data in the
memory array is retained. When ZZ is active, all other inputs are
ignored.
4F 4F OE# Input Output Enable: This
active LOW, asynchronous input enables the
(G#) data I/O output drivers. G# is the JEDEC-standard term for OE#.
4G 4G ADV# Input Synchronous Address Advance: This active LOW input is used to
advance the internal burst counter, controlling burst access after the
external address is loaded. A HIGH on ADV# effectively causes wait
states to be generated (no address advance). To ensure use of
correct address during a WRITE cycle, ADV# must be HIGH at the
rising edge of the first clock after an ADSP# cycle is initiated.
2U 2U TMS Input IEEE 1149.1 test inputs: JEDEC-standard 2.5V I/O levels. These pins
3U 3U TDI may be left Not Connected if the JTAG function is not used in the
4U 4U TCK circuit.
(continued on next page)
14
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
BGA PIN DESCRIPTIONS (continued)
x18 x32/x36 SYMBOL TYPE DESCRIPTION
4A 4A ADSP# Input Synchronous Address Status Processor: This active LOW input
interrupts any ongoing burst, causing a new external address to be
registered. A READ is performed using the new address,
independent of the byte write enables and ADSC#, but dependent
upon CE#, CE2, and CE2#. ADSP# is ignored if CE# is HIGH. Power-
down state is entered if CE2 is LOW or CE2# is HIGH.
4B 4B ADSC# Input Synchronous Address Status Controller: This active LOW input
interrupts any ongoing burst, causing a new external address to be
registered. A READ or WRITE is performed using the new address if
CE# is LOW. ADSC# is also used to place the chip into power-down
state when CE# is HIGH.
3R 3R MODE Input Mode: This input selects the burst sequence. A LOW on this input
(LB0#) selects linear burst. NC or HIGH on this input selects interleaved
burst. Do not alter input state while device is operating.
5U 5U TDO Output IEEE 1149.1 test outputs: JEDEC-standard 2.5V I/O level.
6D 6P NF/DQPa NC/ No Function/Parity Data I/Os: On the x32 version, these are no
2P 6D NF/DQPb I/O function (NF). On the x18 version, Byte a parity is DQPa; Byte b
2D NF/DQPc parity is DQPb. On the x36 version, Byte a parity is DQPa; Byte
2P NF/DQPd b parity is DQPb; Byte c parity is DQPc; Byte d parity is DQPd.
No function pins are internally connected to the die and have the
capacitance of an input pin. It is allowable to leave these pins
unconnected or driven by signals.
2J, 4C, 4J, 2J, 4C, 4J, V
DD
Supply Power Supply:
See DC Electrical Characteristics and Operating
4R, 6J 4R, 6J Conditions for range.
1A, 1F, 1J, 1A, 1F, 1J, V
DD
Q Supply Isolated Output Buffer Supply: See DC Electrical Characteristics and
1M, 1U, 7A, 1M, 1U, 7A, Operating Conditions for range.
7F, 7J, 7M, 7F, 7J, 7M,
7U 7U
3D, 3E, 3F, 3D, 3E, 3F, V
SS
Supply Ground:
GND.
3H, 3K, 3L, 3H, 3K, 3M,
3M, 3N, 3P, 3N, 3P, 5D,
5D, 5E, 5F, 5E, 5F, 5H,
5G, 5H, 5K, 5K, 5M, 5N,
5M, 5N, 5P, 5R 5P, 5R
1B, 1C, 1E, 1B, 1C, 1R, NC No Connect: These signals are not internally connected and may be
1G, 1K, 1P, 1T, 2T, 3J, connected to ground to improve package heat dissipation.
1R, 1T, 2D, 4D, 4L, 5J,
2F, 2H, 2L, 6T, 6U, 7B,
2N, 3J, 4D, 7C, 7R
4L, 4T, 5J,
6E, 6G, 6K,
6M, 6P, 6U,
7B, 7C, 7D,
7H, 7L, 7N,
7R
15
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
INTERLEAVED BURST ADDRESS TABLE (MODE = NC OR HIGH)
FIRST ADDRESS (EXTERNAL) SECOND ADDRESS (INTERNAL) THIRD ADDRESS (INTERNAL) FOURTH ADDRESS (INTERNAL)
X...X00 X...X01 X...X10 X...X11
X...X01 X...X00 X...X11 X...X10
X...X10 X...X11 X...X00 X...X01
X...X11 X...X10 X...X01 X...X00
LINEAR BURST ADDRESS TABLE (MODE = LOW)
FIRST ADDRESS (EXTERNAL) SECOND ADDRESS (INTERNAL) THIRD ADDRESS (INTERNAL) FOURTH ADDRESS (INTERNAL)
X...X00 X...X01 X...X10 X...X11
X...X01 X...X10 X...X11 X...X00
X...X10 X...X11 X...X00 X...X01
X...X11 X...X00 X...X01 X...X10
PARTIAL TRUTH TABLE FOR WRITE COMMANDS (x18)
FUNCTION GW# BWE# BWa# BWb#
READ H H X X
READ H L H H
WRITE Byte aHLLH
WRITE Byte bHLHL
WRITE All Bytes H L L L
WRITE All Bytes L X X X
PARTIAL TRUTH TABLE FOR WRITE COMMANDS (x32/x36)
FUNCTION GW# BWE# BWa# BWb# BWc# BWd#
READ H H X X X X
READ H L H H H H
WRITE Byte aHL LHHH
WRITE All Bytes H L L L L L
WRITE All Bytes L X X X X X
NOTE: Using BWE# and BWa# through BWd#, any one or more bytes may be written.
16
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
TRUTH TABLE
(Notes 1-8)
ADDRESS
OPERATION USED CE# CE2# CE2 ZZ ADSP# ADSC# ADV# WRITE# OE# CLK DQ
DESELECT Cycle, Power-Down None H X X L X L X X X L-H High-Z
DESELECT Cycle, Power-Down None L X L L L X X X X L-H High-Z
DESELECT Cycle, Power-Down None L H X L L X X X X L-H High-Z
DESELECT Cycle, Power-Down None L X L L H L X X X L-H High-Z
DESELECT Cycle, Power-Down None L H X L H L X X X L-H High-Z
SNOOZE MODE, Power-Down None X X X H XXXXX XHigh-Z
READ Cycle, Begin Burst External L L H L L X X X L L-H Q
READ Cycle, Begin Burst External L L H L L X X X H L-H High-Z
WRITE Cycle, Begin Burst External L L H L H L X L X L-H D
READ Cycle, Begin Burst External L L H L H L X H L L-H Q
READ Cycle, Begin Burst External L L H L H L X H H L-H High-Z
READ Cycle, Continue Burst Next X X X L H H L H L L-H Q
READ Cycle, Continue Burst Next X X X L H H L H H L-H High-Z
READ Cycle, Continue Burst Next H X X L X H L H L L-H Q
READ Cycle, Continue Burst Next H X X L X H L H H L-H High-Z
WRITE Cycle, Continue Burst Next X X X L H H L L X L-H D
WRITE Cycle, Continue Burst Next H X X L X H L L X L-H D
READ Cycle, Suspend Burst Current X X X L HHHHLL-HQ
READ Cycle, Suspend Burst Current X X X L HHHHHL-HHigh-Z
READ Cycle, Suspend Burst Current H X X L X H H H L L-H Q
READ Cycle, Suspend Burst Current H X X L X H H H H L-H High-Z
WRITE Cycle, Suspend Burst Current X X X L H H H L X L-H D
WRITE Cycle, Suspend Burst Current H X X L X H H L X L-H D
NOTE: 1. X means Dont Care. # means active LOW. H means logic HIGH. L means logic LOW.
2. For WRITE#, L means any one or more byte write enable signals (BWa#, BWb#, BWc#, or BWd#) and BWE# are LOW or
GW# is LOW. WRITE# = H for all BWx#, BWE#, GW# HIGH.
3. BWa# enables WRITEs to DQa pins, DQPa. BWb# enables WRITEs to DQb and DQPb. BWc# enables WRITEs to DQc and
DQPc. BWd# enables WRITEs to DQd and DQPd. DQPa and DQPb are only available on the x18 and x36 versions. DQPc
and DQPd are only available on the x36 version.
4. All inputs except OE# and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
5. Wait states are inserted by suspending burst.
6. For a WRITE operation following a READ operation, OE# must be HIGH before the input data setup time and held
HIGH throughout the input data hold time.
7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
8. ADSP# LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more
byte write enable signals and BWE# LOW or GW# LOW for the subsequent L-H edge of CLK. Refer to WRITE timing
diagram for clarification.
17
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
3.3V VDD, 3.3V I/O DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS
(0ºC TA +70ºC; VDD = +3.3V ±0.165V; VDDQ = +3.3V ±0.165V unless otherwise noted)
DESCRIPTION CONDITIONS SYMBOL MIN MAX UNITS NOTES
Input High (Logic 1) Voltage VIH 2.0 VDD + 0.3 V 1, 2
Input Low (Logic 0) Voltage VIL -0.3 0.8 V 1, 2
Input Leakage Current 0V VIN VDD ILI-1.0 1.0 µA 3
Output Leakage Current Output(s) disabled, ILO-1.0 1.0 µA
0V VIN VDD
Output High Voltage IOH = -4.0mA VOH 2.4 V 1, 4
Output Low Voltage IOL = 8.0mA VOL 0.4 V 1, 4
Supply Voltage VDD 3.135 3.465 V 1
Isolated Output Buffer Supply VDDQ 3.135 3.465 V 1, 5
3.3V VDD, ABSOLUTE MAXIMUM
RATINGS*
Voltage on VDD Supply
Relative to VSS ...................................... -0.5V to +4.6V
Voltage on VDDQ Supply
Relative to VSS ...................................... -0.5V to +4.6V
VIN (DQx) ........................................... -0.5V to VDDQ + 0.5V
VIN (inputs) ........................................... -0.5V to VDD + 0.5V
Storage Temperature (TQFP) .................. -55ºC to +150ºC
Storage Temperature (FBGA) .................. -55ºC to +125ºC
Junction Temperature** ........................................ +150ºC
Short Circuit Output Current ................................. 100mA
2.5V VDD, ABSOLUTE MAXIMUM
RATINGS*
Voltage on VDD Supply
Relative to VSS ...................................... -0.3V to +3.6V
Voltage on VDDQ Supply
Relative to VSS ...................................... -0.3V to +3.6V
VIN (DQx) ........................................... -0.3V to VDDQ + 0.3V
VIN (inputs) ........................................... -0.3V to VDD + 0.3V
Storage Temperature (TQFP) .................. -55ºC to +150ºC
Storage Temperature (FBGA) .................. -55ºC to +125ºC
Junction Temperature** ........................................ +150ºC
Short Circuit Output Current ................................. 100mA
*Stresses greater than those listed under “Absolute Maxi-
mum Ratings” may cause permanent damage to the de-
vice. This is a stress rating only, and functional operation
of the device at these or any other conditions above those
indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating con-
ditions for extended periods may affect reliability.
**Maximum junction temperature depends upon pack-
age type, cycle time, loading, ambient temperature, and
airflow. See Micron Technical Note TN-05-14 for more
information.
NOTE: 1. All voltages referenced to VSS (GND).
2. For 3.3V VDD:
Overshoot: VIH +4.6V for t tKC/2 for I 20mA
Undershoot: VIL -0.7V for t tKC/2 for I 20mA
Power-up: VIH +3.6V and VDD 3.135V for t 200ms
For 2.5V VDD:
Overshoot: VIH +3.6V for t tKC/2 for I 20mA
Undershoot: VIL -0.5V for t tKC/2 for I 20mA
Power-up: VIH +2.65V and VDD 2.375V for t 200ms
3. MODE has an internal pull-up, and input leakage = ±10µA.
4. The load used for VOH, VOL testing is shown in Figure 2 for 3.3V I/O. AC load current is higher than the stated DC
values. AC I/O curves are available upon request.
5. VDDQ should never exceed VDD. VDD and VDDQ can be connected together.
18
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
3.3V VDD, 2.5V I/O DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS
(0ºC TA +70ºC; VDD = +3.3V ±0.165V; VDDQ = +2.5V ±0.125V unless otherwise noted)
DESCRIPTION CONDITIONS SYMBOL MIN MAX UNITS NOTES
Input High (Logic 1) Voltage Data bus (DQx) VIHQ 1.7 VDDQ + 0.3 V 1, 2
Inputs VIH 1.7 VDD + 0.3 V 1, 2
Input Low (Logic 0) Voltage VIL -0.3 0.7 V 1, 2
Input Leakage Current 0V VIN VDD ILI-1.0 1.0 µA 3
Output Leakage Current Output(s) disabled, ILO-1.0 1.0 µA
0V VIN VDDQ (DQx)
Output High Voltage IOH = -2.0mA VOH 1.7 V 1, 4
IOH = -1.0mA VOH 2.0 V 1, 4
Output Low Voltage IOL = 2.0mA VOL 0.7 V 1, 4
IOL = 1.0mA VOL 0.4 V 1, 4
Supply Voltage VDD 3.135 3.465 V 1
Isolated Output Buffer Supply VDDQ 2.375 2.625 V 1
2.5V VDD, 2.5V I/O DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS
(0ºC TA +70ºC; VDD = +2.5V ±0.125V; VDDQ = +2.5V ±0.125V unless otherwise noted)
DESCRIPTION CONDITIONS SYMBOL MIN MAX UNITS NOTES
Input High (Logic 1) Voltage Data bus (DQx) VIHQ 1.7 VDDQ + 0.3 V 1, 2
Inputs VIH 1.7 VDD + 0.3 V 1, 2
Input Low (Logic 0) Voltage VIL -0.3 0.7 V 1, 2
Input Leakage Current 0V VIN VDD ILI-1.0 1.0 µA 3
Output Leakage Current Output(s) disabled, ILO-1.0 1.0 µA
0V VIN VDDQ (DQx)
Output High Voltage IOH = -2.0mA VOH 1.7 V 1, 4
IOH = -1.0mA VOH 2.0 V 1, 4
Output Low Voltage IOL = 2.0mA VOL 0.7 V 1, 4
IOL = 1.0mA VOL 0.4 V 1, 4
Supply Voltage VDD 2.375 2.625 V 1
Isolated Output Buffer Supply VDDQ 2.375 2.625 V 1
NOTE: 1. All voltages referenced to VSS (GND).
2. For 3.3V VDD:
Overshoot: VIH +4.6V for t tKC/2 for I 20mA
Undershoot: VIL -0.7V for t tKC/2 for I 20mA
Power-up: VIH +3.6V and VDD 3.135V for t 200ms
For 2.5V VDD:
Overshoot: VIH +3.6V for t tKC/2 for I 20mA
Undershoot: VIL -0.5V for t tKC/2 for I 20mA
Power-up: VIH +2.65V and VDD 2.375V for t 200ms
3. MODE has an internal pull-up, and input leakage = ±10µA.
4. The load used for VOH, VOL testing is shown in Figure 4 for 2.5V I/O. AC load current is higher than the stated DC
values. AC I/O curves are available upon request.
19
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
FBGA CAPACITANCE
DESCRIPTION CONDITIONS SYMBOL TYP MAX UNITS NOTES
Address/Control Input Capacitance CI2.5 3.5 pF 1
Output Capacitance (Q) TA = 25ºC; f = 1 MHz CO45pF1
Clock Capacitance CCK 2.5 3.5 pF 1
TQFP CAPACITANCE
DESCRIPTION CONDITIONS SYMBOL TYP MAX UNITS NOTES
Control Input Capacitance TA = 25ºC; f = 1 MHz; CI34pF1
Input/Output Capacitance (DQ) VDD = 3.3V CO45pF1
Address Capacitance CA3 3.5 pF 1
Clock Capacitance CCK 3 3.5 pF 1
NOTE: 1. This parameter is sampled.
BGA CAPACITANCE
DESCRIPTION CONDITIONS SYMBOL TYP MAX UNITS NOTES
Address/Control Input Capacitance CI47pF1
Input/Output Capacitance (DQ) TA = 25°C; f = 1 MHz CO4.5 5.5 pF 1
Address Capacitance CA47pF1
Clock Capacitance CCK 4.2 5.5 pF 1
20
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
TQFP THERMAL RESISTANCE
DESCRIPTION CONDITIONS SYMBOL TYP UNITS NOTES
Thermal Resistance Test conditions follow standard test methods θJA 46 ºC/W 1
(Junction to Ambient) and procedures for measuring thermal
Thermal Resistance impedance, per EIA/JESD51. θJC 2.8 ºC/W 1
(Junction to Top of Case)
NOTE: 1. This parameter is sampled.
FBGA THERMAL RESISTANCE
DESCRIPTION CONDITIONS SYMBOL TYP UNITS NOTES
Junction to Ambient Test conditions follow standard test methods θJA 40 ºC/W 1
(Airflow of 1m/s) and procedures for measuring thermal
Junction to Case (Top) impedance, per EIA/JESD51. θJC 9ºC/W 1
Junction to Pins θJB 17 ºC/W 1
(Bottom)
BGA THERMAL RESISTANCE
DESCRIPTION CONDITIONS SYMBOL TYP UNITS NOTES
Junction to Ambient Test conditions follow standard test methods θJA 40 °C/W 1
(Airflow of 1m/s) and procedures for measuring thermal
Junction to Case (Top) impedance, per EIA/JESD51. θJC 9°C/W 1
Junction to Pins θJB 17 °C/W 1
(Bottom)
21
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
NOTE: 1. If VDD = +3.3V, then VDDQ = +3.3V or +2.5V. If VDD = +2.5V, then VDDQ = +2.5V.
Voltage tolerances: +3.3V ±0.165 or +2.5V ±0.125V for all values of VDD and VDDQ.
2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and
greater output loading.
3. Device deselected means device is in power-down mode as defined in the truth table. Device selected means
device is active (not in power-down mode).
4. Typical values are measured at 3.3V, 25ºC, and 15ns cycle time.
3.3V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (512K x 32/36)
(Note 1 unless otherwise noted) (0ºC TA +70ºC)
DESCRIPTION CONDITIONS SYMBOL TYP -7.5 -8.5 -10 UNITS NOTES
Power Supply Device selected; All inputs VIL
Current: or VIH; Cycle time tKC (MIN); IDD TBD 585 525 375 mA 2, 3, 4
Operating VDD = MAX; Outputs open
Power Supply Device selected; VDD = MAX;
Current: Idle ADSC#, ADSP#, ADV#, GW#, BWx# IDD1TBD 195 175 125 mA 2, 3, 4
VIH; All inputs VSS + 0.2 or VDD - 0.2;
Cycle time tKC (MIN); Outputs open
CMOS Standby Device deselected; VDD = MAX;
All inputs VSS + 0.2 or VDD - 0.2; ISB2TBD 30 30 30 mA 3, 4
All inputs static; CLK frequency = 0
TTL Standby Device deselected; VDD = MAX;
All inputs VIL or VIH;ISB3TBD 100 100 100 mA 3, 4
All inputs static; CLK frequency = 0
Clock Running Device deselected; VDD = MAX;
ADSC#, ADSP#, ADV#, GW#, BWx# ISB4TBD 195 175 125 mA 3, 4
VIH; All inputs VSS + 0.2 or VDD - 0.2;
Cycle time tKC (MIN)
MAX
2.5V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (512K x 32/36)
(Note 1 unless otherwise noted) (0ºC TA +70ºC)
DESCRIPTION CONDITIONS SYMBOL TYP -7.5 -8.5 -10 UNITS NOTES
Power Supply Device selected; All inputs VIL
Current: or VIH; Cycle time tKC (MIN); IDD TBD 445 400 290 mA 2, 3, 4
Operating VDD = MAX; Outputs open
Power Supply Device selected; VDD = MAX;
Current: Idle ADSC#, ADSP#, ADV#, GW#, BWx# IDD1TBD 150 135 95 mA 2, 3, 4
VIH; All inputs VSS + 0.2 or VDD - 0.2;
Cycle time tKC (MIN); Outputs open
CMOS Standby Device deselected; VDD = MAX;
All inputs VSS + 0.2 or VDD - 0.2; ISB2TBD 25 25 25 mA 3, 4
All inputs static; CLK frequency = 0
TTL Standby Device deselected; VDD = MAX;
All inputs VIL or VIH;ISB3TBD 80 80 80 mA 3, 4
All inputs static; CLK frequency = 0
Clock Running Device deselected; VDD = MAX;
ADSC#, ADSP#, ADV#, GW#, BWx# ISB4TBD 150 135 95 mA 3, 4
VIH; All inputs VSS + 0.2 or VDD - 0.2;
Cycle time tKC (MIN)
MAX
22
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
NOTE: 1. If VDD = +3.3V, then VDDQ = +3.3V or +2.5V. If VDD = +2.5V, then VDDQ = +2.5V.
Voltage tolerances: +3.3V ±0.165 or +2.5V ±0.125V for all values of VDD and VDDQ.
2. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and
greater output loading.
3. Device deselected means device is in power-down mode as defined in the truth table. Device selected means
device is active (not in power-down mode).
4. Typical values are measured at 3.3V, 25ºC, and 15ns cycle time.
3.3V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (1 MEG x 18)
(Note 1 unless otherwise noted) (0ºC TA +70ºC)
DESCRIPTION CONDITIONS SYMBOL TYP -7.5 -8.5 -10 UNITS NOTES
Power Supply Device selected; All inputs VIL
Current: or VIH; Cycle time tKC (MIN); IDD TBD 440 400 290 mA 2, 3, 4
Operating VDD = MAX; Outputs open
Power Supply Device selected; VDD = MAX;
Current: Idle ADSC#, ADSP#, ADV#, GW#, BWx# IDD1TBD 150 135 95 mA 2, 3, 4
VIH; All inputs VSS + 0.2 or VDD - 0.2;
Cycle time tKC (MIN); Outputs open
CMOS Standby Device deselected; VDD = MAX;
All inputs VSS + 0.2 or VDD - 0.2; ISB2TBD 25 25 25 mA 3, 4
All inputs static; CLK frequency = 0
TTL Standby Device deselected; VDD = MAX;
All inputs VIL or VIH;ISB3TBD 75 75 75 mA 3, 4
All inputs static; CLK frequency = 0
Clock Running Device deselected; VDD = MAX;
ADSC#, ADSP#, ADV#, GW#, BWx# ISB4TBD 150 135 95 mA 3, 4
VIH; All inputs VSS + 0.2 or VDD - 0.2;
Cycle time tKC (MIN)
MAX
2.5V VDD, IDD OPERATING CONDITIONS AND MAXIMUM LIMITS (1 MEG x 18)
(Note 1 unless otherwise noted) (0ºC TA +70ºC)
DESCRIPTION CONDITIONS SYMBOL TYP -7.5 -8.5 -10 UNITS NOTES
Power Supply Device selected; All inputs VIL
Current: or VIH; Cycle time tKC (MIN); IDD TBD 335 305 220 mA 2, 3, 4
Operating VDD = MAX; Outputs open
Power Supply Device selected; VDD = MAX;
Current: Idle ADSC#, ADSP#, ADV#, GW#, BWx# IDD1TBD 115 105 75 mA 2, 3, 4
VIH; All inputs VSS + 0.2 or VDD - 0.2;
Cycle time tKC (MIN); Outputs open
CMOS Standby Device deselected; VDD = MAX;
All inputs VSS + 0.2 or VDD - 0.2; ISB2TBD 20 20 20 mA 3, 4
All inputs static; CLK frequency = 0
TTL Standby Device deselected; VDD = MAX;
All inputs VIL or VIH;ISB3TBD 60 60 60 mA 3, 4
All inputs static; CLK frequency = 0
Clock Running Device deselected; VDD = MAX;
ADSC#, ADSP#, ADV#, GW#, BWx# ISB4TBD 115 105 75 mA 3, 4
VIH; All inputs VSS + 0.2 or VDD - 0.2;
Cycle time tKC (MIN)
MAX
23
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
NOTE: 1. Test conditions as specified with the output loading shown in Figure 1 for 3.3V I/O (VDDQ = +3.3V ±0.165V) and Figure
3 for 2.5V I/O (VDDQ = +2.5V ±0.125V) unless otherwise noted.
2. Measured as HIGH above VIH and LOW below VIL.
3. This parameter is measured with the output loading shown in Figure 2 for 3.3V I/O and Figure 4 for 2.5V I/O.
4. This parameter is sampled.
5. Transition is measured ±500mV from steady state voltage.
6. Refer to Technical Note TN-58-09, Synchronous SRAM Bus Contention Design Considerations, for a more thorough
discussion on these parameters.
7. OE# is a Dont Care when a byte write enable is sampled LOW.
8. A READ cycle is defined by byte write enables all HIGH or ADSP# LOW for the required setup and hold times. A WRITE
cycle is defined by at least one byte write enable LOW and ADSP# HIGH for the required setup and hold times.
9. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK
when either ADSP# or ADSC# is LOW and chip enabled. All other synchronous inputs must meet the setup and hold
times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at
each rising edge of CLK when either ADSP# or ADSC# is LOW to remain enabled.
10. If VDD = +3.3V, then VDDQ = +3.3V or +2.5V. If VDD = +2.5V, then VDDQ = +2.5V.
Voltage tolerances: +3.3V ±0.165 or +2.5V ±0.125V for all values of VDD and VDDQ.
AC ELECTRICAL CHARACTERISTICS AND RECOMMENDED OPERATING CONDITIONS
(Notes 1, 10 unless otherwise noted)(0ºC TA +70ºC)
-7.5 -8.5 -10
DESCRIPTION SYMBOL MIN MAX MIN MAX MIN MAX UNITS NOTES
Clock
Clock cycle time tKC 8.8 10.0 15 ns
Clock frequency fKF 113 100 66 MHz
Clock HIGH time tKH 2.5 3.0 4.0 ns 2
Clock LOW time tKL 2.5 3.0 4.0 ns 2
Output Times
Clock to output valid tKQ 7.5 8.5 10.0 ns
Clock to output invalid tKQX 1.5 2.5 2.5 ns 3
Clock to output in Low-Z tKQLZ 1.5 2.5 2.5 ns 3, 4, 5, 6
Clock to output in High-Z tKQHZ 4.2 5.0 5.0 ns 3, 4, 5, 6
OE# to output valid tOEQ 4.2 5.0 5.0 ns 7
OE# to output in Low-Z tOELZ 0 0 0 ns 3, 4, 5, 6
OE# to output in High-Z tOEHZ 4.2 5.0 5.0 ns 3, 4, 5, 6
Setup Times
Address tAS 1.5 1.8 2.0 ns 8, 9
Address status (ADSC#, ADSP#) tADSS 1.5 1.8 2.0 ns 8, 9
Address advance (ADV#) tAAS 1.5 1.8 2.0 ns 8, 9
Byte write enables tWS 1.5 1.8 2.0 ns 8, 9
(BWa#-BWd#, GW#, BWE#)
Data-in tDS 1.5 1.8 2.0 ns 8, 9
Chip enable (CE#) tCES 1.5 1.8 2.0 ns 8, 9
Hold Times
Address tAH 0.5 0.5 0.5 ns 8, 9
Address status (ADSC#, ADSP#) tADSH 0.5 0.5 0.5 ns 8, 9
Address advance (ADV#) tAAH 0.5 0.5 0.5 ns 8, 9
Byte write enables tWH 0.5 0.5 0.5 ns 8, 9
(BWa#-BWd#, GW#, BWE#)
Data-in tDH 0.5 0.5 0.5 ns 8, 9
Chip enable (CE#) tCEH 0.5 0.5 0.5 ns 8, 9
24
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
Figure 1
Q
50
V = 1.5V
Z = 50
O
T
Q
351
317
5pF
+3.3V
Figure 2
LOAD DERATING CURVES
Micron 1 Meg x 18, 512K x 32, and 512K x 36 SyncBurst
SRAM timing is dependent upon the capacitive loading
on the outputs.
Consult the factory for copies of I/O current versus
voltage curves.
3.3V VDD, 3.3V I/O AC TEST CONDITIONS
Input pulse levels ................... VIH = (VDD/2.2) + 1.5V
.................... VIL = (VDD/2.2) - 1.5V
Input rise and fall times ...................................... 1ns
Input timing reference levels ....................... VDD/2.2
Output reference levels ............................. VDDQ/2.2
Output load .............................. See Figures 1 and 2
Q
50
V = 1.25V
Z = 50
O
T
Figure 3
Q
225
225
5pF
+2.5V
Figure 4
3.3V VDD, 2.5V I/O AC TEST CONDITIONS
Input pulse levels ............... VIH = (VDD/2.64) + 1.25V
................ VIL = (VDD/2.64) - 1.25V
Input rise and fall times ...................................... 1ns
Input timing reference levels ..................... VDD/2.64
Output reference levels ................................ VDDQ/2
Output load .............................. See Figures 3 and 4
2.5V VDD, 2.5V I/O AC TEST CONDITIONS
Input pulse levels .................... VIH = (VDD/2) + 1.25V
..................... VIL = (VDD/2) - 1.25V
Input rise and fall times ...................................... 1ns
Input timing reference levels .......................... VDD/2
Output reference levels ................................... VDD/2
Output load .............................. See Figures 3 and 4
3.3V I/O Output Load Equivalents
2.5V I/O Output Load Equivalents
25
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
SNOOZE MODE
SNOOZE MODE is a low-current, “power-down” mode
in which the device is deselected and current is reduced to
ISB2Z. The duration of SNOOZE MODE is dictated by the
length of time ZZ is in a HIGH state. After the device enters
SNOOZE MODE, all inputs except ZZ become gated in-
puts and are ignored.
ZZ is an asynchronous, active HIGH input that causes
the device to enter SNOOZE MODE. When ZZ becomes a
logic HIGH, ISB2Z is guaranteed after the setup time tZZ is
met. Any READ or WRITE operation pending when the
device enters SNOOZE MODE is not guaranteed to com-
plete successfully. Therefore, SNOOZE MODE must not
be initiated until valid pending operations are completed.
SNOOZE MODE ELECTRICAL CHARACTERISTICS
DESCRIPTION CONDITIONS SYMBOL MIN MAX UNITS NOTES
Current during SNOOZE MODE ZZ VIH ISB2Z 10 mA
ZZ active to input ignored tZZ tKC ns 1
ZZ inactive to input sampled tRZZ tKC ns 1
ZZ active to snooze current tZZI tKC ns 1
ZZ inactive to exit snooze current tRZZI 0 ns 1
NOTE: 1. This parameter is sampled.
SNOOZE MODE WAVEFORM
tZZ
I
SUPPLY
CLK
ZZ
I
SB2
ALL INPUTS*
* Except ZZ DONT CARE
tZZI
tRZZ
tRZZI
26
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
READ TIMING3
tKC
tKL
CLK
ADSP#
tADSH
tADSS
ADDRESS
tKH
OE#
ADSC#
CE#
(NOTE 2)
tAH
tAS
A1
tCEH
tCES
QHigh-Z
tKQLZ
tKQX
tKQ
ADV#
tOEHZ
tKQ
Single READ BURST
READ
tOEQ tOELZ tKQHZ
Burst wraps around
to its initial state.
tAAH
tAAS
tWH
tWS
tADSH
tADSS
Q(A2) Q(A2 + 1) Q(A2 + 2)
Q(A1) Q(A2) Q(A2 + 1) Q(A2 + 2)Q(A2 + 3)
A2
(NOTE 1)
ADV# suspends burst.
Deselect Cycle
(Note 4)
BWE#, GW#,
BWa#-BWd#
DONT CARE UNDEFINED
NOTE: 1. Q(A2) refers to output from address A2. Q(A2 + 1) refers to output from the next internal burst address following A2.
2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When
CE# is HIGH, CE2# is HIGH and CE2 is LOW.
3. Timing is shown assuming that the device was not enabled before entering into this sequence.
4. Outputs are disabled tKQHZ after deselect.
-7.5 -8.5 -10
SYM MIN MAX MIN MAX MIN MAX UNITS
tAS 1.5 1.8 2.0 ns
tADSS 1.5 1.8 2.0 ns
tAAS 1.5 1.8 2.0 ns
tWS 1.5 1.8 2.0 ns
tCES 1.5 1.8 2.0 ns
tAH 0.5 0.5 0.5 ns
tADSH 0.5 0.5 0.5 ns
tAAH 0.5 0.5 0.5 ns
tWH 0.5 0.5 0.5 ns
tCEH 0.5 0.5 0.5 ns
READ TIMING PARAMETERS
-7.5 -8.5 -10
SYM MIN MAX MIN MAX MIN MAX UNITS
tKC 8.8 10.0 15 ns
fKF 113 100 66 MHz
tKH 2.5 3.0 4.0 ns
tKL 2.5 3.0 4.0 ns
tKQ 7.5 8.5 10.0 ns
tKQX 1.5 2.5 2.5 ns
tKQLZ 1.5 2.5 2.5 ns
tKQHZ 4.2 5.0 5.0 ns
tOEQ 4.2 5.0 5.0 ns
tOELZ 0 0 0 ns
tOEHZ 4.2 5.0 5.0 ns
27
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
WRITE TIMING
NOTE: 1. D(A2) refers to output from address A2. D(A2 + 1) refers to output from the next internal burst address following A2.
2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When
CE# is HIGH, CE2# is HIGH and CE2 is LOW.
3. OE# must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/
output data contention for the time period prior to the byte write enable inputs being sampled.
4. ADV# must be HIGH to permit a WRITE to the loaded address.
5. Full-width WRITE can be initiated by GW# LOW; or GW# HIGH and BWE#, BWa# and BWb# LOW for x18 device; or
GW# HIGH and BWE#, BWa#-BWd# LOW for x32 and x36 devices.
-7.5 -8.5 -10
SYM MIN MAX MIN MAX MIN MAX UNITS
tDS 1.5 1.8 2.0 ns
tCES 1.5 1.8 2.0 ns
tAH 0.5 0.5 0.5 ns
tADSH 0.5 0.5 0.5 ns
tAAH 0.5 0.5 0.5 ns
tWH 0.5 0.5 0.5 ns
tDH 0.5 0.5 0.5 ns
tCEH 0.5 0.5 0.5 ns
WRITE TIMING PARAMETERS
-7.5 -8.5 -10
SYM MIN MAX MIN MAX MIN MAX UNITS
tKC 8.8 10.0 15 ns
fKF 113 100 66 MHz
tKH 2.5 3.0 4.0 ns
tKL 2.5 3.0 4.0 ns
tOEHZ 4.2 5.0 5.0 ns
tAS 1.5 1.8 2.0 ns
tADSS 1.5 1.8 2.0 ns
tAAS 1.5 1.8 2.0 ns
tWS 1.5 1.8 2.0 ns
tKC
tKL
CLK
ADSP#
tADSH
tADSS
ADDRESS
tKH
OE#
ADSC#
CE#
(NOTE 2)
tAH
tAS
A1
tCEH
tCES
Q
High-Z
ADV#
BURST READ BURST WRITE
D(A2) D(A2 + 1) D(A2 + 1)
D(A1) D(A3) D(A3 + 1) D(A3 + 2)D(A2 + 3)
A2 A3
D
Extended BURST WRITE
D(A2 + 2)
Single WRITE
tADSH
tADSS
tADSH
tADSS
tOEHZ
tAAH
tAAS
tWH
tWS
tDH
tDS
(NOTE 3)
(NOTE 1)
(NOTE 4)
GW#
tWH
tWS
(NOTE 5)
BYTE WRITE signals are
ignored when ADSP# is LOW.
ADSC# extends burst.
ADV# suspends burst.
BWE#,
BWa#-BWd#
DONT CARE
28
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
tWS 1.5 1.8 2.0 ns
tDS 1.5 1.8 2.0 ns
tCES 1.5 1.8 2.0 ns
tAH 0.5 0.5 0.5 ns
tADSH 0.5 0.5 0.5 ns
tWH 0.5 0.5 0.5 ns
tDH 0.5 0.5 0.5 ns
tCEH 0.5 0.5 0.5 ns
READ/WRITE TIMING3
NOTE: 1. Q(A4) refers to output from address A4. Q(A4 + 1) refers to output from the next internal burst address following A4.
2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When
CE# is HIGH, CE2# is HIGH and CE2 is LOW.
3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP#, ADSC#, or ADV# cycle is performed.
4. GW# is HIGH.
5. Back-to-back READs may be controlled by either ADSP# or ADSC#.
READ/WRITE TIMING PARAMETERS
-7.5 -8.5 -10
SYM MIN MAX MIN MAX MIN MAX UNITS
tKC 8.8 10.0 15 ns
fKF 113 100 66 MHz
tKH 2.5 3.0 4.0 ns
tKL 2.5 3.0 4.0 ns
tKQ 7.5 8.5 10.0 ns
tOELZ 0 0 0 ns
tOEHZ 4.2 5.0 5.0 ns
tAS 1.5 1.8 2.0 ns
tADSS 1.5 1.8 2.0 ns
-7.5 -8.5 -10
SYM MIN MAX MIN MAX MIN MAX UNITS
tKC
tKL
CLK
ADSP#
tADSH
tADSS
ADDRESS
tKH
OE#
ADSC#
CE#
(NOTE 2)
tAH
tAS
A2
tCEH
tCES
Q
ADV#
Single WRITE
D(A3)
A3 A4
D
BURST READBack-to-Back READs
(NOTE 5)
High-Z
Q(A2) Q(A4) Q(A4+1) Q(A4+2) Q(A4+3)
tWH
tWS
tOEHZ
tDH
tDS
tKQ
tOELZ
(NOTE 1)
A1 A5 A6
D(A5) D(A6)
Q(A1)
Back-to-Back
WRITEs
BWE#,
BWa#-BWd#
(NOTE 4)
DONT CARE UNDEFINED
29
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
IEEE 1149.1 SERIAL BOUNDARY SCAN
(JTAG)
The SRAM incorporates a serial boundary scan test
access port (TAP). This port operates in accordance with
IEEE Standard 1149.1-1990 but does not have the set of
functions required for full 1149.1 compliance. These func-
tions from the IEEE specification are excluded because
their inclusion places an added delay in the critical speed
path of the SRAM. Note that the TAP controller functions
in a manner that does not conflict with the operation of
other devices using 1149.1 fully compliant TAPs. The TAP
operates using JEDEC-standard 2.5V I/O logic levels.
The SRAM contains a TAP controller, instruction
register, boundary scan register, bypass register, and ID
register.
DISABLING THE JTAG FEATURE
These pins can be left floating (unconnected), if the
JTAG function is not to be implemented. Upon power-up,
the device will come up in a reset state which will not
interfere with the operation of the device.
TEST ACCESS PORT (TAP)
TEST CLOCK (TCK)
The test clock is used only with the TAP controller. All
inputs are captured on the rising edge of TCK. All outputs
are driven from the falling edge of TCK.
TEST MODE SELECT (TMS)
The TMS input is used to give commands to the TAP
controller and is sampled on the rising edge of TCK. It is
allowable to leave this pin unconnected if the TAP is not
used. The pin is pulled up internally, resulting in a logic
HIGH level.
TEST DATA-IN (TDI)
The TDI pin is used to serially input information into
the registers and can be connected to the input of any of
the registers. The register between TDI and TDO is chosen
by the instruction that is loaded into the TAP instruction
register. For information on loading the instruction regis-
ter, see Figure 5. TDI is internally pulled up and can be
unconnected if the TAP is unused in an application. TDI is
connected to the most significant bit (MSB) of any regis-
ter. (See Figure 6.)
Figure 5
TAP Controller State Diagram
NOTE: The 0/1 next to each state represents the value of TMS at the rising edge of TCK.
TEST-LOGIC
RESET
RUN-TEST/
IDLE
SELECT
DR-SCAN
SELECT
IR-SCAN
CAPTURE-DR
SHIFT-DR
CAPTURE-IR
SHIFT-IR
EXIT1-DR
PAUSE-DR
EXIT1-IR
PAUSE-IR
EXIT2-DR
UPDATE-DR
EXIT2-IR
UPDATE-IR
1
1
1
0
1 1
0 0
1 1
1
0
0
0
0 0
0
0
0 0
1
0
1
1
0
1
0
1
1
1
1 0
30
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 – Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
TEST DATA-OUT (TDO)
The TDO output pin is used to serially clock data-out
from the registers. The output is active depending upon
the current state of the TAP state machine. (See Figure 5.)
The output changes on the falling edge of TCK. TDO is
connected to the least significant bit (LSB) of any register.
(See Figure 6.)
PERFORMING A TAP RESET
A RESET is performed by forcing TMS HIGH (VDD) for
five rising edges of TCK. This RESET does not affect the
operation of the SRAM and may be performed while the
SRAM is operating.
At power-up, the TAP is reset internally to ensure that
TDO comes up in a High-Z state.
TAP REGISTERS
Registers are connected between the TDI and TDO
pins and allow data to be scanned into and out of the
SRAM test circuitry. Only one register can be selected at a
time through the instruction register. Data is serially
loaded into the TDI pin on the rising edge of TCK. Data is
output on the TDO pin on the falling edge of TCK.
INSTRUCTION REGISTER
Three-bit instructions can be serially loaded into the
instruction register. This register is loaded when it is placed
between the TDI and TDO pins as shown in Figure 5. Upon
power-up, the instruction register is loaded with the
IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as
described in the previous section.
When the TAP controller is in the Capture-IR state, the
two least significant bits are loaded with a binary “01”
pattern to allow for fault isolation of the board-level serial
test data path.
BYPASS REGISTER
To save time when serially shifting data through regis-
ters, it is sometimes advantageous to skip certain chips.
The bypass register is a single-bit register that can be
placed between the TDI and TDO pins. This allows data to
be shifted through the SRAM with minimal delay. The
bypass register is set LOW (VSS) when the BYPASS instruc-
tion is executed.
BOUNDARY SCAN REGISTER
The boundary scan register is connected to all the
input and bidirectional pins on the SRAM. The x36 con-
figuration has a 71-bit-long register, 67-bit-long regis-
ter, and the x18 configuration has a 52-bit-long regis-
ter.
The boundary scan register is loaded with the contents
of the RAM I/O ring when the TAP controller is in the
Capture-DR state and is then placed between the TDI and
TDO pins when the controller is moved to the Shift-DR
state. The EXTEST, SAMPLE/PRELOAD and SAMPLE Z
instructions can be used to capture the contents of the
I/O ring.
The Boundary Scan Order tables show the order in
which the bits are connected. Each bit corresponds to one
of the bumps on the SRAM package. The MSB of the
register is connected to TDI, and the LSB is connected to
TDO.
Bypass Register
0
Instruction Register
012
Identification Register
012293031 ...
Boundary Scan Register*
012..x ...
Selection
Circuitry
Selection
Circuitry
TCK
TMS
TAP CONTROLLER
TDI TDO
*x = 52 for the x18 configuration, x = 67 for the x32 configuration,
x = 71 for the x36 configuration.
Figure 6
TAP Controller Block Diagram
31
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
IDENTIFICATION (ID) REGISTER
The ID register is loaded with a vendor-specific, 32-bit
code during the Capture-DR state when the IDCODE com-
mand is loaded in the instruction register. The IDCODE is
hardwired into the SRAM and can be shifted out when the
TAP controller is in the Shift-DR state. The ID register has
a vendor code and other information described in the
Identification Register Definitions table.
TAP INSTRUCTION SET
OVERVIEW
Eight different instructions are possible with the three-
bit instruction register. All combinations are listed in the
Instruction Codes table. Three of these instructions are
listed as RESERVED and should not be used. The other
five instructions are described in detail below.
The TAP controller used in this SRAM is not fully com-
pliant to the 1149.1 convention because some of the man-
datory 1149.1 instructions are not fully implemented. The
TAP controller cannot be used to load address, data or
control signals into the SRAM and cannot preload the I/O
buffers. The SRAM does not implement the 1149.1 com-
mands EXTEST or INTEST or the PRELOAD portion of
SAMPLE/PRELOAD; rather, it performs a capture of the
I/O ring when these instructions are executed.
Instructions are loaded into the TAP controller during
the Shift-IR state when the instruction register is placed
between TDI and TDO. During this state, instructions are
shifted through the instruction register through the TDI
and TDO pins. To execute the instruction once it is shifted
in, the TAP controller needs to be moved into the Update-
IR state.
EXTEST
EXTEST is a mandatory 1149.1 instruction which is to
be executed whenever the instruction register is loaded
with all 0s. EXTEST is not implemented in this SRAM TAP
controller, and therefore this device is not compliant to
1149.1.
The TAP controller does recognize an all-0 instruction.
When an EXTEST instruction is loaded into the instruc-
tion register, the SRAM responds as if a SAMPLE/PRELOAD
instruction has been loaded. There is one difference be-
tween the two instructions. Unlike the SAMPLE/PRELOAD
instruction, EXTEST places the SRAM outputs in a High-Z
state.
IDCODE
The IDCODE instruction causes a vendor-specific, 32-
bit code to be loaded into the instruction register. It also
places the instruction register between the TDI and TDO
pins and allows the IDCODE to be shifted out of the device
when the TAP controller enters the Shift-DR state. The
IDCODE instruction is loaded into the instruction register
upon power-up or whenever the TAP controller is given a
test logic reset state.
SAMPLE Z
The SAMPLE Z instruction causes the boundary scan
register to be connected between the TDI and TDO pins
when the TAP controller is in a Shift-DR state. It also
places all SRAM outputs into a High-Z state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1 mandatory instruction.
The PRELOAD portion of this instruction is not imple-
mented, so the device TAP controller is not fully 1149.1-
compliant.
When the SAMPLE/PRELOAD instruction is loaded
into the instruction register and the TAP controller is in
the Capture-DR state, a snapshot of data on the inputs and
bidirectional pins is captured in the boundary scan regis-
ter.
The user must be aware that the TAP controller clock
can only operate at a frequency up to 10 MHz, while the
SRAM clock operates more than an order of magnitude
faster. Because there is a large difference in the clock
frequencies, it is possible that during the Capture-DR
state, an input or output will undergo a transition. The
TAP may then try to capture a signal while in transition
(metastable state). This will not harm the device, but there
is no guarantee as to the value that will be captured.
Repeatable results may not be possible.
To guarantee that the boundary scan register will cap-
ture the correct value of a signal, the SRAM signal must be
stabilized long enough to meet the TAP controller’s cap-
ture setup plus hold time (tCS plus tCH). The SRAM clock
input might not be captured correctly if there is no way in
a design to stop (or slow) the clock during a SAMPLE/
PRELOAD instruction. If this is an issue, it is still possible
to capture all other signals and simply ignore the value of
the CK and CK# captured in the boundary scan register.
Once the data is captured, it is possible to shift out the
data by putting the TAP into the Shift-DR state. This places
the boundary scan register between the TDI and TDO
pins.
Note that since the PRELOAD part of the command is
not implemented, putting the TAP to the Update-DR state
while performing a SAMPLE/PRELOAD instruction will
have the same effect as the Pause-DR command.
32
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
BYPASS
When the BYPASS instruction is loaded in the instruc-
tion register and the TAP is placed in a Shift-DR state, the
bypass register is placed between TDI and TDO. The ad-
vantage of the BYPASS instruction is that it shortens the
boundary scan path when multiple devices are connected
together on a board.
RESERVED
These instruction are not implemented but are re-
served for future use. Do not use these instructions.
tTLTH
Test Clock
(TCK)
123456
Test Mode Select
(TMS)
tTHTL
Test Data-Out
(TDO)
tTHTH
Test Data-In
(TDI)
tTHMX
tMVTH
tTHDX
tDVTH
tTLOX
tTLOV
DONT CARE UNDEFINED
TAP TIMING
TAP AC ELECTRICAL CHARACTERISTICS
(Notes 1, 2) (+20ºC TJ +100ºC; +2.4V VDD +2.6V)
DESCRIPTION SYMBOL MIN MAX UNITS
Clock
Clock cycle time tTHTH 100 ns
Clock frequency fTF 10 MHz
Clock HIGH time tTHTL 40 ns
Clock LOW time tTLTH 40 ns
Output Times
TCK LOW to TDO unknown tTLOX 0 ns
TCK LOW to TDO valid tTLOV 20 ns
TDI valid to TCK HIGH tDVTH 10 ns
TCK HIGH to TDI invalid tTHDX 10 ns
Setup Times
TMS setup tMVTH 10 ns
Capture setup tCS 10 ns
Hold Times
TMS hold tTHMX 10 ns
Capture hold tCH 10 ns
NOTE: 1. tCS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register.
2. Test conditions are specified using the load in Figure 7.
33
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
TAP AC TEST CONDITIONS
Input pulse levels ....................................... VSS to 2.5V
Input rise and fall times ......................................... 1ns
Input timing reference levels ............................. 1.25V
Output reference levels ..................................... 1.25V
Test load termination supply voltage ............... 1.25V
TDO
1.25V
20pF
Z = 50
O
50
Figure 7
TAP AC Output Load Equivalent
3.3V VDD, TAP DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS
(+20ºC TJ +110ºC; +2.4V VDD +2.6V unless otherwise noted)
DESCRIPTION CONDITIONS SYMBOL MIN MAX UNITS NOTES
Input High (Logic 1) Voltage VIH 2.0 VDD + 0.3 V 1, 2
Input Low (Logic 0) Voltage VIL -0.3 0.8 V 1, 2
Input Leakage Current 0V VIN VDD ILI-5.0 5.0 µA
Output Leakage Current Output(s) disabled, ILO-5.0 5.0 µA
0V VIN VDDQ (DQx)
Output Low Voltage IOLC = 100µA VOL10.7 V 1
Output Low Voltage IOLT = 2mA VOL20.8 V 1
Output High Voltage IOHC = -100µA VOH12.9 V 1
Output High Voltage IOHT = -2mA VOH22.0 V 1
NOTE: 1. All voltages referenced to VSS (GND).
2. Overshoot: VIH (AC) VDD + 1.5V for t tKHKH/2
Undershoot: VIL (AC) -0.5V for t tKHKH/2
Power-up: VIH +2.6V and VDD 2.4V and VDDQ 1.4V for t 200ms
During normal operation, VDDQ must not exceed VDD. Control input signals (such as LD#, R/W#, etc.) may not have
pulse widths less than tKHKL (MIN) or operate at frequencies exceeding fKF (MAX).
2.5V VDD, TAP DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS
(+20ºC TJ +110ºC; +2.4V VDD +2.6V unless otherwise noted)
DESCRIPTION CONDITIONS SYMBOL MIN MAX UNITS NOTES
Input High (Logic 1) Voltage VIH 1.7 VDD + 0.3 V 1, 2
Input Low (Logic 0) Voltage VIL -0.3 0.7 V 1, 2
Input Leakage Current 0V VIN VDD ILI-5.0 5.0 µA
Output Leakage Current Output(s) disabled, ILO-5.0 5.0 µA
0V VIN VDDQ (DQx)
Output Low Voltage IOLC = 100µA VOL10.2 V 1
Output Low Voltage IOLT = 2mA VOL20.7 V 1
Output High Voltage IOHC = -100µA VOH12.1 V 1
Output High Voltage IOHT = -2mA VOH21.7 V 1
34
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
IDENTIFICATION REGISTER DEFINITIONS
INSTRUCTION FIELD 512K x 18 DESCRIPTION
REVISION NUMBER xxxx Reserved for version number.
(31:28)
DEVICE DEPTH 00111 Defines depth of 512K or 1Mb words.
(27:23)
DEVICE WIDTH 00011 Defines width of x18, x32, or x36 bits.
(22:18)
MICRON DEVICE ID xxxxxx Reserved for future use.
(17:12)
MICRON JEDEC ID 00000101100 Allows unique identification of SRAM vendor.
CODE (11:1)
ID Register Presence 1 Indicates the presence of an ID register.
Indicator (0)
INSTRUCTION CODES
INSTRUCTION CODE DESCRIPTION
EXTEST 000 Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.
IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI
and TDO. This operation does not affect SRAM operations.
SAMPLE Z 010 Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Forces all SRAM output drivers to a High-Z state.
RESERVED 011 Do Not Use: This instruction is reserved for future use.
SAMPLE/PRELOAD 100 Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Does not affect SRAM operation. This instruction does not implement 1149.1
preload function and is therefore not 1149.1-compliant.
RESERVED 101 Do Not Use: This instruction is reserved for future use.
RESERVED 110 Do Not Use: This instruction is reserved for future use.
BYPASS 111 Places the bypass register between TDI and TDO. This operation does not affect
SRAM operations.
SCAN REGISTER SIZES
REGISTER NAME BIT SIZE
Instruction 3
Bypass 1
ID 32
Boundary Scan x18: 52 x32: 67 x36: 71
35
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
165-PIN FBGA BOUNDARY SCAN ORDER (x18)
28 GWE# 7B
29 CLK 6B
30 CE2# 6A
31 BWa# 5B
32 BWb# 4A
33 CE2 3B
34 CE# 3A
35 SA 2A
36 SA 2B
37 DQb 2D
38 DQb 2E
39 DQb 2F
40 DQb 2G
41 VSS 1H
42 DQb 1J
43 DQb 1K
44 DQb 1L
45 DQb 1M
46 DQPb 1N
47 MODE (LBO#) 1R
48 SA 3P
49 SA 3R
50 SA 4P
51 SA 4R
52 SA1 6P
53 SA0 6R
FBGA BIT# SIGNAL NAME PIN IDFBGA BIT# SIGNAL NAME PIN ID
1SA 6N
2SA 11P
3SA 8P
4SA 9R
5SA 9P
6SA 10R
7SA 10P
8SA 11R
9SA 8R
10 DQa 10M
11 DQa 10L
12 DQa 10K
13 DQa 10J
14 ZZ 11H
15 DQa 11G
16 DQa 11F
17 DQa 11E
18 DQa 11D
19 DQPa 11C
20 SA 11A
21 SA 10B
22 SA 10A
23 ADV# 9A
24 ADSP# 9B
25 ADSC# 8A
26 OE# (G#) 8B
27 BWE# 7A
36
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
165-PIN FBGA BOUNDARY SCAN ORDER (x32)
35 CLK 6B
36 CE2# 6A
37 BWa# 5B
38 BWb# 5A
39 BWc# 4A
40 BWd# 4B
41 CE2 3B
42 CE# 3A
43 SA 2A
44 SA 2B
45 DQc 1D
46 DQc 1E
47 DQc 1F
48 DQc 1G
49 DQc 2D
50 DQc 2E
51 DQc 2F
52 DQc 2G
53 VSS 1H
54 DQd 1J
55 DQd 1K
56 DQd 1L
57 DQd 1M
58 DQd 2J
59 DQd 2K
60 DQd 2L
61 DQd 2M
62 MODE (LBO#) 1R
63 SA 3P
64 SA 3R
65 SA 4P
66 SA 4R
67 SA1 6P
68 SA0 6R
FBGA BIT# SIGNAL NAME PIN IDFBGA BIT# SIGNAL NAME PIN ID
1SA 6N
2SA 11P
3SA 8P
4SA 9R
5SA 9P
6SA 10R
7SA 10P
8SA 11R
9SA 8R
10 DQa 11M
11 DQa 11L
12 DQa 11K
13 DQa 11J
14 DQa 10M
15 DQa 10L
16 DQa 10K
17 DQa 10J
18 ZZ 11H
19 DQb 11G
20 DQb 11F
21 DQb 11E
22 DQb 11D
23 DQb 10G
24 DQb 10F
25 DQb 10E
26 DQb 10D
27 SA 10B
28 SA 10A
29 ADV# 9A
30 ADSP# 9B
31 ADSC# 8A
32 OE# (G#) 8B
33 BWE# 7A
34 GW# 7B
37
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
165-PIN FBGA BOUNDARY SCAN ORDER (x36)
37 CLK 6B
38 CE2# 6A
39 BWa# 5B
40 BWb# 5A
41 BWc# 4A
42 BWd# 4B
43 CE2 3B
44 CE# 3A
45 SA 2A
46 SA 2B
47 NF/DQPc 1C
48 DQc 1D
49 DQc 1E
50 DQc 1F
51 DQc 1G
52 DQc 2D
53 DQc 2E
54 DQc 2F
55 DQc 2G
56 VSS 1H
57 DQd 1J
58 DQd 1K
59 DQd 1L
60 DQd 1M
61 DQd 2J
62 DQd 2K
63 DQd 2L
64 DQd 2M
65 NF/DQPd 1N
66 MODE (LBO#) 1R
67 SA 3P
68 SA 3R
69 SA 4P
70 SA 4R
71 SA1 6P
72 SA0 6R
FBGA BIT# SIGNAL NAME PIN IDFBGA BIT# SIGNAL NAME PIN ID
1SA 6N
2SA 11P
3SA 8P
4SA 9R
5SA 9P
6SA 10R
7SA 10P
8SA 11R
9SA 8R
10 NF/DQPa 11N
11 DQa 11M
12 DQa 11L
13 DQa 11K
14 DQa 11J
15 DQa 10M
16 DQa 10L
17 DQa 10K
18 DQa 10J
19 ZZ 11H
20 DQb 11G
21 DQb 11F
22 DQb 11E
23 DQb 11D
24 DQb 10G
25 DQb 10F
26 DQb 10E
27 DQb 10D
28 NF/DQPb 11C
29 SA 10B
30 SA 10A
31 ADV# 9A
32 ADSP# 9B
33 ADSC# 8A
34 OE# (G#) 8B
35 BWE# 7A
36 GW# 7B
38
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
119-PIN PBGA BOUNDARY SCAN ORDER (x18)
27 CLK 4K
28 SA 6B
29 BWa# 5L
30 BWb# 3G
31 SA 2B
32 CE# 4E
33 SA 3A
34 SA 2A
35 DQb 1D
36 DQb 2E
37 DQb 2G
38 DQb 1H
39 VSS 5R
40 DQb 2K
41 DQPb 1L
42 DQb 2M
43 DQb 1N
44 DQPb 2P
45 MODE (LBO#) 3R
46 SA 2C
47 SA 3C
48 SA 2R
49 SA 3T
50 SA1 4N
51 SA0 4P
BGA BIT# SIGNAL NAME PIN IDBGA BIT# SIGNAL NAME PIN ID
1SA 2T
2SA 6R
3SA 5T
4SA 3B
5SA 5B
6SA 5C
7SA 6C
8DQa 7P
9DQa 6N
10 DQa 6L
11 DQa 7K
12 ZZ 7T
13 DQa 6H
14 DQa 7G
15 DQa 6F
16 DQa 7E
17 DQPa 6D
18 SA 6T
19 SA 6A
20 SA 5A
21 ADV# 4G
22 ADSP 4A
23 ADSC# 4B
24 OE# (G#) 4F
25 BWE# 4M
26 GW# 4H
39
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
119-PIN PBGA BOUNDARY SCAN ORDER (x32)
34 SA 6B
35 BWa# 5L
36 BWb# 5G
37 BWc# 3G
38 BWd# 3L
39 SA 2B
40 CE# 4E
41 SA 3A
42 SA 2A
43 DQc 1E
44 DQc 2F
45 DQc 1G
46 DQc 2H
47 DQc 1D
48 DQc 2E
49 DQc 2G
50 DQc 1H
51 VSS 5R
52 DQd 2K
53 DQd 1L
54 DQd 2M
55 DQd 1N
56 DQd 1P
57 DQd 1K
58 DQd 2L
59 DQd 2N
60 MODE (LBO#) 3R
61 SA 2C
62 SA 3C
63 SA 2R
64 SA 3T
65 SA1 4N
66 SA0 4P
BGA BIT# SIGNAL NAME PIN IDBGA BIT# SIGNAL NAME PIN ID
1SA 4T
2SA 6R
3SA 5T
4SA 3B
5SA 5B
6SA 5C
7SA 6C
8DQa 7N
9DQa 6M
10 DQa 7L
11 DQa 6K
12 DQa 7P
13 DQa 6N
14 DQa 6L
15 DQa 7K
16 ZZ 7T
17 DQb 6H
18 DQb 7G
19 DQb 6F
20 DQb 7E
21 DQb 6E
22 DQb 7H
23 DQb 7D
24 DQb 6G
25 SA 6A
26 SA 5A
27 ADV# 4G
28 ADSP# 4A
29 ADSC# 4B
30 OE# (G#) 4F
31 BWE# 4M
32 GW# 4H
33 CLK 4K
40
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
119-PIN PBGA BOUNDARY SCAN ORDER (x36)
36 SA 6B
37 BWa# 5L
38 BWb# 5G
39 BWc# 3G
40 BWd# 3L
41 SA 2B
42 CE# 4E
43 SA 3A
44 SA 2A
45 NF/DQPc 2D
46 DQc 1E
47 DQc 2F
48 DQc 1G
49 DQc 2H
50 DQc 1D
51 DQc 2E
52 DQc 2G
53 DQc 1H
54 VSS 5R
55 DQd 2K
56 DQd 1L
57 DQd 2M
58 DQd 1N
59 DQd 1P
60 DQd 1K
61 DQd 2L
62 DQd 2N
63 NF/DQPd 2P
64 MODE (LBO#) 3R
65 SA 2C
66 SA 3C
67 SA 2R
68 SA 3T
69 SA1 4N
70 SA0 4P
BGA BIT# SIGNAL NAME PIN IDBGA BIT# SIGNAL NAME PIN ID
1SA 4T
2SA 6R
3SA 5T
4SA 3B
5SA 5B
6SA 5C
7SA 6C
8 NF/DQPa 6P
9DQa 7N
10 DQa 6M
11 DQa 7L
12 DQa 6K
13 DQa 7P
14 DQa 6N
15 DQa 6L
16 DQa 7K
17 ZZ 7T
18 DQb 6H
19 DQb 7G
20 DQb 6F
21 DQb 7E
22 DQb 6E
23 DQb 7H
24 DQb 7D
25 DQb 6G
26 NF/DQPb 6D
27 SA 6A
28 SA 5A
29 ADV# 4G
30 ADSP# 4A
31 ADSC# 4B
32 OE# (G#) 4F
33 BWE# 4M
34 GW# 4H
35 CLK 4K
41
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 – Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
100-PIN PLASTIC TQFP (JEDEC LQFP)
14.00 ±0.10
1.40 ±0.05
16.00 ±0.20
0.10 +0.10
-0.05
0.15 +0.03
-0.02
22.10 +0.10
-0.20
0.32 +0.06
-0.10
20.10 ±0.10
0.65 TYP
0.62
1.60 MAX
DETAIL A
SEE DETAIL A
0.60 ±0.15
0.60 ±0.151.00 TYP
GAGE PLANE
0.10
0.10
PIN #1 ID
NOTE: 1. All dimensions in millimeters MAX or typical where noted.
MIN
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.
42
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
Ø
7.62
20.32
19.94 ±0.10
11.94 ±0.10
1.27 (TYP)
1.27 (TYP)
0.60 ±0.10
2.40 MAX
0.90 ±0.10
14.00 ±0.10
22.00 ±0.20
A1 CORNER
A1 CORNER
(dimension applies to a
noncollapsed solder ball)
Substrate material:
BT resin laminate
0.15
SEATING PLANE
0.75 ±0.15
NOTE: 1. All dimensions in millimeters MAX or typical where noted.
MIN
2. Solder ball land pad is 0.6mm.
119-PIN BGA
43
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
165-PIN FBGA
NOTE: 1. All dimensions in millimeters MAX or typical where noted.
MIN
10.00
14.00
15.00 ±0.10
1.00
TYP
1.00
TYP
5.00 ±0.05
13.00 ±0.10
PIN A1 ID
PIN A1 ID
BALL A1
MOLD COMPOUND: EPOXY NOVOLAC
SUBSTRATE: PLASTIC LAMINATE
6.50 ±0.05
7.00 ±0.05
7.50 ±0.05
1.20 MAX
SOLDER BALL MATERIAL: EUTECTIC 63% Sn, 37% Pb
SOLDER BALL PAD: Ø .33mm
SOLDER BALL DIAMETER REFERS
TO POST REFLOW CONDITION. THE
PRE-REFLOW DIAMETER IS Ø 0.40
SEATING PLANE
0.85 ±0.075
0.12 C
C
165X Ø 0.45
BALL A11
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron is a registered trademark and the Micron logo and M logo are trademarks of Micron Technology, Inc.
SyncBurst is a trademark and Micron is a registered trademark of Micron Technology, Inc.
Pentium is a registered trademark of Intel Corporation.
44
18Mb: 1 Meg x 18, 512K x 32/36 Flow-Through SyncBurst SRAM Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT58L1MY18F_C.p65 Rev. C, Pub. 9/01 ©2001, Micron Technology, Inc.
18Mb: 1 MEG x 18, 512K x 32/36
FLOW-THROUGH SYNCBURST SRAM
ADVANCE
REVISION HISTORY
Rev. C, Pub. 9/01, ADVANCE ................................................................................................................................ Sept/01
Removed Industrial Temperature references
Changed IDD tables by splitting x18 and x32/36 configuration
Changed NC references to NF
Removed note “Not Recommended for New Design” from 119-pin FBGA
Changed boundary scan order, 165-pin FBGA, x18 and x32/36
8P (SA) moved to bit #9 from bit #3
Increased IDD table values
Rev. 2/01, ADVANCE ...................................................................................................................................................... Feb/24/01
Added Industrial Temperature references
Rev. 1/01, ADVANCE ....................................................................................................................................................... Jan/10/01
Added 165-pin FBGA 5ta6 Scan Order
Added 119-pin PBGA package and references
Rev. 8/00, ADVANCE ...................................................................................................................................................... Aug/22/00
Removed FBGA Part Marking Guide
Rev. 7/00, ADVANCE ........................................................................................................................................................ Aug/8/00
Changed FBGA capacitance values
•CI; TYP 2.5 pF from 4 pF; MAX 3.5 pF from 5 pF
•CO; TYP 4 pF from 6 pF; MAX 5 pF from 7 pF
•CCK; TYP 2.5 pF from 5 pF; MAX 3.5 pF from 6 pF
Rev. 7/00, ADVANCE ..................................................................................................................................................... July/24/00
Removed Industrial Temperature referencesJuly/24/00
Rev. 7/00, ADVANCE ..................................................................................................................................................... Jun/28/00
Added 165-pin FBGA package
Added FBGA part marking references
Removed 119-pin PBGA and references
Added note: “IT available for -8.5 and -10 speed grades”
Rev. 4/00, ADVANCE ...................................................................................................................................................... Apr/13/00
Change pin 14 to NC from VDD
Added note: ZZ has internal pull-down
Rev. 3/00, ADVANCE ........................................................................................................................................................ Apr/6/00
Updated Boundary Scan Order
Rev. 1/00, ADVANCE ....................................................................................................................................................... Jan/18/00
Added ADVANCE status
Rev. 11/99, ADVANCE ................................................................................................................................................... Nov/11/99
MT58L1MY18F
Added BGA JTAG functionality