Supertex inc.
www.supertex.com
Supertex inc.
Doc. # DSFP-HV823
C082213
HV823
High Voltage EL Lamp Driver IC
Features
Processed with HVCMOS® technology
2.0 to 9.5V operating supply voltage
DC to AC conversion
180V peak-to-peak typical output voltage
Large output load capability typically 50nF
Permits the use of high-resistance elastomeric
lamp components
Adjustable output lamp frequency to control
lamp color, lamp life, and power consumption
Adjustable converter frequency to eliminate
harmonics and optimize power consumption
Enable/disable function
Low current draw under no load condition
Applications
Handheld personal computers
Electronic personal organizers
GPS units
Pagers
Cellular phones
Portable instrumentation
General Description
The Supertex HV823 is a high-voltage driver designed for driving EL
lamps of up to 50nF. EL lamps greater than 50nF can be driven for
applications not requiring high brightness. The input supply voltage
range is from 2.0V to 9.5V. The device uses a single inductor and a
minimum number of passive components. The nominal regulated output
voltage that is applied to the EL lamp is ±90V. The chip can be enabled
by connecting the resistors on the RSW-Osc pin and the REL-Osc pin
to the VDD pin, and disabled when connected to GND.
The HV823 has two internal oscillators, a switching MOSFET and a
high-voltage EL lamp driver. The frequency of the switching converter
MOSFET is set by an external resistor connected between the RSW-
Osc pin and the VDD supply pin. The EL lamp driver frequency is set
by an external resistor connected between the REL-Osc pin and the
VDD pin. An external inductor is connected between the LX pin and the
VDD pin. A 0.01µF to 0.1µF capacitor is connected between the CS pin
and the GND. The EL lamp is connected between the VA and VB pins.
The switching MOSFET charges the external inductor and discharges
it into the CS capacitor. The voltage at CS will start to increase. Once the
voltage at CS reaches a nominal value of 90V, the switching MOSFET
is turned OFF to conserve power. The output pins VA and VB are con-
gured as an H-bridge and are switched in opposite states to achieve
180V peak-to-peak across the EL lamp.
For additional information, see Application Note ANH34.
Block Diagram
C
+
_
Disable
GND
VDD
REL-Osc
VA
CS
LX
VB
RSW-Osc
Enable *
* Enable is available in die form only.
Output
Osc
Q
Q
Q
Q
VREF
Switch
Osc
2
Doc. # DSFP-HV823
C082213 Supertex inc.
www.supertex.com
HV823
Absolute Maximum Ratings
Parameter Value
Supply voltage, VDD -0.5 to +10V
Output voltage, VCS -0.5 to +120V
Power dissipation 400mW
Storage temperature -65OC to +150OC
Operating temperature -25OC to +85OC
Stresses beyond those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in
the operational sections of the specications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability. All
voltages referenced to ground.
Note: All voltages referenced to GND.
Recommended Operating Conditions
Sym Parameter Min Typ Max Unit Conditions
VDD Supply voltage 2.0 - 9.5 V ---
TAOperating temperature -25 - +85 OC ---
DC Electrical Characteristics (VIN = 3.0V, RSW = 750KΩ, REL = 2.0MΩ, TA = 25°C unless otherwise specied)
Sym Parameter Min Typ Max Unit Conditions
RDS(ON) On resistance of switching transistor - 2.0 6.0 ΩI = 100mA
VCS Output voltage VCS regulation 80 90 100 V VIN = 2.0V to 9.5V
VA - VBOutput peak-to-peak voltage 160 180 200 V VIN = 2.0V to 9.5V
IDDQ Quiescent VDD supply current, disabled - 30 100 nA RSW-OSC = Low
IDD VDD supply current
- 150 200 µA VIN = 3.0V. See Fig.1
- - 300 µA VIN = 5.0V. See Fig.2
- - 500 µA VIN = 9.0V. See Fig.3
IIN Input current including inductor current - 25 33 mA VIN = 3.0V. See Fig.1
VCS Output voltage on VCS 60 70 85 V VIN = 3.0V. See Fig.1
fEL VA - VB output drive frequency 330 380 450 Hz VIN = 3.0V. See Fig.1
fSW Inductor switching frequency 50 60 70 KHz VIN = 3.0V. See Fig.1
D Switching transistor duty cycle - 88 - % ---
Pin Conguration
1
2
3
4
8
7
6
5
VDD
RSW-Osc
CS
LX
REL-Osc
VA
VB
GND
Product Marking
Y = Last Digit of Year Sealed
WW = Week Sealed
L = Lot Number
= “Green” Packaging
YWW
HV823
LLLL
8-Lead SOIC
8-Lead SOIC
(top view)
Package may or may not include the following marks: Si or
Ordering Information
Part Number Package Packing
HV823LG-G 8-Lead SOIC 2500/Reel
Typical Thermal Resistance
Package θja
8-Lead SOIC 101OC/W
-G denotes a lead (Pb)-free / RoHS compliant package
3
Doc. # DSFP-HV823
C082213 Supertex inc.
www.supertex.com
HV823
Fig. 1: Test Circuit, VIN = 3.0V (Low input current with moderate output brightness)
VDD = VIN = 3.0V
ON = VDD
OFF = 0V
0.1µF
100V
0.1µF2
560µH1
1N4148
750kΩ
2.0MΩ
2.0kΩ
10nF
Equivalent to
3 square inch lamp.
HV823
1
7
2
3
4
8
6
5
LX GND
VB
VA
REL-Osc
VDD
RSW-Osc
CS
Typical Performance
Lamp Size VIN IIN VCS fEL Brightness
3.0in23.0V 25mA 65V 385Hz 6.5ft-lm
Notes:
1. Murata part # LQH4N561K04 (DC resistance < 14.5Ω)
2. Larger values may be required depending upon supply impedance.
Typical Performance Curves for Fig. 1 using 3.0in2 EL Lamp
1 2 3 4 5 6 7 8 9
0
5
10
15
20
25
30
40 50 60 70 80 90
0
5
10
15
20
25
30
123456789
0
2
4
6
8
10
12
1 2 3 4 5 6 7 8 9
40
50
60
70
80
90
100 250 400 550 700 850 1000
90
80
70
60
50
40
30
20
10
0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
Inductor Value (µH)
IIN, VCS, Brightness vs. Inductor Value
IIN (mA), VCS (V)
Brightness (ft-Im)
Brightness (ft-lm)
IIN (mA)
VCS (V)
IIN (mA)
Brightness (ft-Im)
IIN (mA)
VIN (V)
VIN (V)
VCS (V)
Brightness vs. VIN
I
IN
vs. V
IN
IIN vs. VCS (V)
VCS (V)
VIN (V)
V
CS
vs. V
IN
For additional information, see Application Notes AN-H33 and AN-H34.
4
Doc. # DSFP-HV823
C082213 Supertex inc.
www.supertex.com
HV823
Fig. 2: Typical 5.0V Application
VDD = VIN = 5.0V
0.01µF
100V 1.0nF
16V
560µH1
1N4148
750kΩ
2.0MΩ
3.1kΩ
20nF
ON = VDD
OFF = 0V
0.1µF2
Equivalent to
6 square inch lamp
HV823
1
7
2
3
4
8
6
5
LX GND
VB
VA
REL-Osc
VDD
RSW-Osc
CS
Typical Performance
Lamp Size VIN IIN VCS fEL Brightness
6.0in25.0V 25mA 75V 380Hz 6.5ft-lm
Notes:
1. Murata part # LQH4N561K04 (DC resistance < 14.5Ω)
2. Larger values may be required depending upon supply impedance.
Typical Performance Curves for Fig. 2 using 6.0in2 EL Lamp
90
85
80
75
70
65
54786
8.0
7.5
7.0
6.5
6.0
5.5
5 4 7 8 6
40
38
36
34
32
30 5 4 7 8 6
40
38
36
34
32
30
70 80 85 90 75
IIN (mA)
Brightness (ft-Im)
IIN (mA)
VIN (V)
VIN (V)
VCS (V)
Brightness vs. VIN
IIN vs. VIN
IIN vs. VCS (V)
VCS (V)
VIN (V)
VCS vs. VIN
For additional information, see Application Notes AN-H33 and AN-H34.
5
Doc. # DSFP-HV823
C082213 Supertex inc.
www.supertex.com
HV823
Fig. 3: Typical 9.0V Application
VDD = VIN = 9.0V
0.01µF
100V 1.0nF
16V
560µH1
1N4148
330kΩ
2.0MΩ
4.9kΩ
42nF
0.1µF2
Equivalent to
12 square inch lamp
HV823
1
7
2
3
4
8
6
5
LX GND
VB
VA
REL-Osc
VDD
RSW-Osc
CS
Typical Performance
Lamp Size VIN IIN VCS fEL Brightness
12.0in29.0V 30mA 75V 380Hz 8.5ft-lm
Notes:
1. Murata part # LQH4N561K04 (DC resistance < 14.5Ω)
2. Larger values may be required depending upon supply impedance.
Typical Performance Curves for Fig. 3 using 12.0in2 EL Lamp
85
80
75
70
65
5 4 7 8 6
8.0
7.5
7.0
6.5
6.0
5.5
5 4 7 8 6
40
38
36
34
32
30
5 4 7 8 6
40
38
36
34
32
30
70 80 85 90 75
VCS (V)
IIN (mA)
Brightness (ft-Im)
IIN (mA)
VIN (V)
VIN (V)
VIN (V)
VCS (V)
V
CS
vs. V
IN
Brightness vs. VIN
I
IN
vs. V
IN
IIN vs. VCS (V)
For additional information, see Application Notes AN-H33 and AN-H34.
6
Doc. # DSFP-HV823
C082213 Supertex inc.
www.supertex.com
HV823
Fig. 4: Enable/Disable Conguration
VIN = VDD
ON = VDD
OFF = 0V
CS
100V
4.7µF
15V
1.0nF
LX
1N4148
RSW
REL
EL Lamp
+
-
Remote Enable
HV823
1
7
2
3
4
8
6
5
LX GND
VB
VA
REL-Osc
VDD
RSW-Osc
CS
The HV823 can be easily enabled and disabled via a logic
control signal on the RSW and REL resistors as shown in Fig.
4. The control signal can be from a microprocessor. RSW
and REL are typically very high values, therefore, only 10’s
of microamperes will be drawn from the logic signal when it
is at a logic high (enable) state. When the microprocessor
signal is high the device is enabled and when the signal is
low, it is disabled.
Enable/Disable Conguration
Fig. 5: Split Supply Conguration
VIN = Battery
Voltage
VDD = Regulated
Voltage
CS
100V
0.1µF*
LX
1N4148
RSW
REL
EL Lamp
+
-
Remote Enable
ON = VDD
OFF = 0
HV823
1
7
2
3
4
8
6
5
LX GND
VB
VA
REL-Osc
VDD
RSW-Osc
CS
The HV823 can also be used for handheld devices operating
from a single cell 1.5V battery where a regulated voltage is
available. This is shown in Fig. 5. The regulated voltage can
be used to run the internal logic of the HV823. The amount of
current necessary to run the internal logic is typically 100µA
at a VDD of 3.0V. Therefore, the regulated voltage could easily
provide the current without being loaded down. The HV823
used in this conguration can also be enabled/disabled via
logic control signal on the RSW and REL resistors as shown in
Fig. 4.
Split Supply Conguration Using a Single Cell (1.5V) Battery
Fig. 5 can also be used with high battery voltages, such as
12V, as long as the input voltage, VDD, to the HV823 device
is within its specications of 2.0V to 9.5V.
Split Supply Conguration for Battery Voltages of Higher than 9.5V
Enable/Disable Table
RSW Resistor HV823
VDD Enable
0V Disable
7
Doc. # DSFP-HV823
C082213 Supertex inc.
www.supertex.com
HV823
External Component Description
External Component Selection Guide Line
Diode Fast reverse recovery diode, 1N4148 or equivalent.
CS Capacitor 0.01µF to 0.1µF, 100V capacitor to GND is used to store the energy transferred from the induc-
tor.
REL-Osc
The EL lamp frequency is controlled via an external REL resistor connected between REL-Osc
and VDD pins of the device. The lamp frequency increases as REL decreases. As the EL lamp
frequency increases, the amount of current drawn from the battery will increase and the output
voltage VCS will decrease. The color of the EL lamp is dependent upon its frequency.
A 2.0MΩ resistor would provide lamp frequency of 330 to 450Hz. Decreasing the REL-Osc by a fac-
tor of 2 will increase the lamp frequency by a factor of 2.
RSW-Osc
The switching frequency of the converter is controlled via an external resistor, RSW between the
RSW-Osc and VDD pins of the device. The switching frequency increases as RSW decreases.
With a given inductor, as the switching frequency increases, the amount of current drawn from
the battery will decrease and the output voltage, VCS, will also decrease.
CSW Capacitor
A 1.0nF capacitor is recommended on RSW-Osc to GND when a 0.01μF CS capacitor is used.
This capacitor is used to shunt any switching noise that may couple into the RSW-OSC pin.
The CSW capacitor may also be needed when driving large EL lamp due to increase in switching
noise. A CSW larger than 1.0nF is not recommended.
LX Inductor
The inductor LX is used to boost the low input voltage by inductive yback. When the internal
switch is on, the inductor is being charged. When the internal switch is off, the charge stored in
the inductor will be transferred to the high voltage capacitor CS. The energy stored in the capaci-
tor is connected to the internal H-bridge and therefore to the EL lamp. In general, smaller value
inductors, which can handle more current, are more suitable to drive larger size lamps. As the
inductor value decreases, the switching frequency of the inductor (controlled by RSW) should be
increased to avoid saturation.
560µH Murata inductors with 14.5Ω series DC resistance is typically recommended. For induc-
tors with the same inductance value but with lower series DC resistance, lower RSW value is
needed to prevent high current draw and inductor saturation.
Lamp
As the EL lamp size increases, more current will be drawn from the battery to maintain high
voltage across the EL lamp. The input power, (VIN x IIN), will also increase. If the input power is
greater than the power dissipation of the package (400mW), an external resistor in series with
one side of the lamp is recommended to help reduce the package power dissipation.
8
Doc. # DSFP-HV823
C082213
Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives
an adequate “product liability indemnification insurance agreement.” Supertex inc. does not assume responsibility for use of devices described, and limits its liability
to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and
specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)
©2013 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.
Supertex inc.
1235 Bordeaux Drive, Sunnyvale, CA 94089
Tel: 408-222-8888
www.supertex.com
(The package drawing(s) in this data sheet may not reect the most current specications. For the latest package outline
information go to http://www.supertex.com/packaging.html.)
HV823
8-Lead SOIC (Narrow Body) Package Outline (LG)
4.90x3.90mm body, 1.75mm height (max), 1.27mm pitch
1
8
Seating
Plane
Gauge
Plane
L
L1
L2
EE1
D
eb
AA2
A1
Seating
Plane
A
A
Top View
Side View
View B View B
θ1
θ
Note 1
(Index Area
D/2 x E1/2)
View A-A
h
h
Note 1
Symbol A A1 A2 b D E E1 e h L L1 L2 θ θ1
Dimension
(mm)
MIN 1.35* 0.10 1.25 0.31 4.80* 5.80* 3.80*
1.27
BSC
0.25 0.40
1.04
REF
0.25
BSC
0O5O
NOM - - - - 4.90 6.00 3.90 - - - -
MAX 1.75 0.25 1.65* 0.51 5.00* 6.20* 4.00* 0.50 1.27 8O15O
JEDEC Registration MS-012, Variation AA, Issue E, Sept. 2005.
* This dimension is not specied in the JEDEC drawing.
Drawings are not to scale.
Supertex Doc. #: DSPD-8SOLGTG, Version I041309.
Note:
1. This chamfer feature is optional. A Pin 1 identier must be located in the index area indicated. The Pin 1 identier can be: a molded mark/identier;
an embedded metal marker; or a printed indicator.