Atmel ATWILC1500A [PRELIMINARY DATASHEET]
Atmel-42353A-WINC1500-SmartConnect-Datasheet_092014
12
Control functions which have real-time requirements are implemented using hardwired control logic modules.
These logic modules offer real-time response while maintaining configurability via the processor. Examples of
hardwired control logic modules are the channel access control module (implements EDCA/HCCA, Beacon TX
control, interframe spacing, etc.), protocol timer module (responsible for the Network Access Vector, back-off
timing, timing synchronization function, and slot management), MPDU handling module, aggregation/de-
aggregation module, block-ack controller (implements the protocol requirements for burst block
communication), and TX/RX control FSMs (coordinate data movement between PHY-MAC interface, cipher
engine, and the DMA interface to the TX/RX FIFOs).
The MAC functions implemented solely in software on the microprocessor have the following characteristics:
Functions with high memory requirements or complex data structures. Examples are association table
management and power save queuing.
Functions with low computational load or without critical real-time requirements. Examples are
authentication and association.
Functions which need flexibility and upgradeability. Examples are beacon frame processing and QoS
scheduling.
8.2 PHY
8.2.1 Features
The Atmel WINC1500 IEEE802.11 PHY supports the following functions:
Single antenna 1x1 stream in 20MHz channels
Supports IEEE 802.11b DSSS-CCK modulation: 1, 2, 5.5, 11Mbps
Supports IEEE 802.11g OFDM modulation: 6, 9, 12,18, 24, 36, 48, 54Mbps
Supports IEEE 802.11n HT modulations MCS0-7, 20MHz, 800 and 400ns guard interval: 6.5, 7.2, 13.0,
14.4, 19.5, 21.7, 26.0, 28.9, 39.0, 43.3, 52.0, 57.8, 58.5, 65.0, 72.2Mbps
IEEE 802.11n mixed mode operation
Per packet TX power control
Advanced channel estimation/equalization, automatic gain control, CCA, carrier/symbol recovery, and
frame detection
8.2.2 Description
The Atmel WINC1500 PHY is designed to achieve reliable and power-efficient physical layer communication
specified by IEEE 802.11 b/g/n in single stream mode with 20MHz bandwidth. Advanced algorithms have been
employed to achieve maximum throughput in a real world communication environment with impairments and
interference. The PHY implements all the required functions such as FFT, filtering, FEC (Viterbi decoder),
frequency and timing acquisition and tracking, channel estimation and equalization, carrier sensing and clear
channel assessment, as well as the automatic gain control.