DS-CPC7583-R06 www.clare.com 1
RoHS
2002/95/EC
e3
Pb
Features
Small 20-pin or 28-pin SOIC or 28-pin DFN
DFN version provides 65% PCB area reduction over
4th generation EMRs
Monolithic IC reliability
Low, matched, RON
Eliminates the need for zero-cross switching
Flexible switch timing for transition from ringing
mode to talk mode.
Clean, bounce-free switching
SLIC tertiary protection via integrated current
limiting, voltage clamping and thermal shutdown
5 V operation with power consumption < 10.5 mW
Intelligent battery monitor
Logic-level inputs, no external drive circuitry required
SOIC versions pin-compatible with Legerity
7583/8583 family
Applications
Central office (CO)
Digital Loop Carrier (DLC)
PBX Systems
Digitally Added Main Line (DAML)
Hybrid Fiber Coax (HFC)
Fiber in the Loop (FITL)
Pair Gain System
Channel Banks
Description
The CPC7583 is a monolithic 10-pole line card access
switch in a 20- or 28-pin SOIC or a 28-pin DFN
package. It provides the necessary functions to
replace three 2-Form-C electromechanical relays on
analog line cards and combined voice and data line
cards found in central office, access, and PBX
equipment. The device contains solid state switches
for tip and ring line break, ringing injection/ringing
return, and test access. The CPC7583 requires only a
+5 V supply and offers break-before-make or
make-before-break switch operation.
Ordering Information
CPC7583 x x xx
B - 28-pin SOIC delivered 29/Tube, 1000/Reel
M - 28-pin DFN delivered 33/Tube, 1000/Reel
Z - 20-pin SOIC delivered 40/Tube, 1000/Reel
A - With Protection SCR
B - Without Protection SCR
C - With Extra Logic State and With Protection SCR
D - With Extra Logic State and Without Protection SCR
TR - Add for Tape & Reel Version
CPC7583 part numbers are specified as shown here:
CPC7583
TLINE
RLINE
TBAT
VDD
RBAT
DGND
VBAT
FGND
VREF
INTESTIN
INRINGING
INTESTOUT
TSD
LATCH
7
10 8 5
22
6
12
13
14
28
124
2019
23
17
16
15
18
L
A
T
C
H
Switch
Control
Logic
SCR
and
Tr i p
Circuit
+5 Vdc
SLIC
Secondary
Protection
X
X
X
X
X
X
XX
XSW5
SW7
SW6
SW2
SW4 SW10
SW8
TTESTIN (T )
CHANTEST
TTESTOUT (T )
DROPTEST
RTESTOUT (R )
DROPTEST
RTESTIN (R )
CHANTEST
TRING
SW3 SW9
SW1
300 (min.)Ω
RINGING
VBAT
X
Tip
Ring
NOTE: Pin assignments are for the 28 pin package.
Not for New Designs CPC7583
Line Card Access Switch
CPC7583
2www.clare.com R06
1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Pinout Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 General Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Switch Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.1 Break Switches, SW1 and SW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.2 Ringing Return Switch, SW3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.3 Ringing Switch, SW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.4 TESTOUT Switches, SW5 and SW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.5 Ringing Test Return Switch, SW7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.6 Ringing Test Switch, SW8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.7 TESTIn Switches, SW9 and SW10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Additional Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Protection Circuitry Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 Truth Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9.1 Truth Table for CPC7583xA and CPC7583xB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9.2 Truth Table for CPC7583xC and CPC7583xD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Switch Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Make-Before-Break Operation (Ringing to Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Break-Before-Make Operation (Ringing to Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Alternate Break-Before-Make Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Data Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 TSD Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Ringing Switch Zero-Cross Current Turn Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Battery Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9.1 Diode Bridge/SCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9.2 Current Limiting function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Temperature Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.11 External Protection Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Manufacturing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Mechanical Dimensions and PCB Land Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 CPC7583Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 CPC7583B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 CPC7583M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Tape and Reel Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 CPC7583Z (20-Pin SOIC) - Tape and Reel Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 CPC7583B (28-Pin SOIC) - Tape and Reel Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 CPC7583M (28-Pin DFN) - Tape and Reel Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Moisture Reflow Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Washing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
CPC7583
R06 www.clare.com 3
1. Specifications
1.1 Package Pinout 1.2 Pinout Description
CPC7583B &
CPC7583M
TBAT
FGND
DGND
TTESTin
IN TESTin
R
TTESTout
INTESTout
RTESTout
TLINE
TRINGING
VDD
T
NC
NC
NC
NC
NC
NC
NC
NC
NC
SD
VBAT
RBAT
TESTin
RLINE
RRINGING
LATCH
INRINGING
27
26
25
24
23
22
21
20
19
18
17
16
15
28
1
3
4
5
6
7
8
2
9
10
11
12
13
14
CPC7583Z
INTESTIN
RTESTIN
INTESTOUT
RTESTOUT
VBAT
RBAT
RLINE
RRINGING
LATCH
INRINGING
20
19
18
17
16
15
14
13
12
11
1
2
3
4
5
6
7
8
9
10
TBAT
FGND
DGND
TTESTIN
TLINE
VDD
TSD
NC
TTESTOUT
T
RINGING
20
Pin
28
Pin Name Description
11 FGND Fault ground.
2 NC No connection.
3 NC No connection.
4 NC No connection.
25 TTESTin Tip lead of the TESTin bus.
36 TBAT Tip lead of the SLIC.
47 TLINE Tip lead of the line side.
58
TRINGING Ringing generator return.
9 NC Not connected.
610TTESTout Tip lead of the TESTout bus.
7 11 NC No connection.
812 VDD +5 V supply.
913 TSD Temperature shutdown pin.
10 14 DGND Digital ground.
11 15 INTESTout Logic control input.
12 16 INRINGING Logic control input.
13 17 INTESTin Logic control input.
14 18 LATCH Data latch enable control input.
15 19 RTESTout Ring lead of the TESTout bus.
16 20 RRINGING Ringing generator source.
21 NC No connection.
17 22 RLINE Ring lead of the line side.
18 23 RBAT Ring lead of the SLIC.
19 24 RTESTin Ring lead of the TESTin bus.
25 NC No connection.
26 NC No connection.
27 NC No connection.
20 28 VBAT Battery supply.
CPC7583
4www.clare.com R06
1.3 Absolute Maximum Ratings
Absolute maximum electrical ratings are at 25°C
Absolute maximum ratings are stress ratings. Stresses in
excess of these ratings can cause permanent damage to
the device. Functional operation of the device at conditions
beyond those indicated in the operational sections of this
data sheet is not implied.
1.4 ESD Rating
1.5 General Conditions
Unless otherwise specified, minimum and maximum
values are production testing requirements.
Typical values are characteristic of the device at 25°C
and are the result of engineering evaluations. They are
provided for informational purposes only and are not
part of the manufacturing testing requirements.
Specifications cover the operating temperature range
TA = -40°C to +85°C. Also, unless otherwise specified
all testing is performed with VDD = +5Vdc, logic low
input voltage is 0Vdc and logic high input voltage is
+5Vdc.
Parameter Minimum Maximum Unit
Operating temperature -40 +110 °C
Storage temperature -40 +150 °C
Operating relative humidity 5 95 %
+5 V power supply (VDD)-0.3 7 V
Battery Supply - -85 V
DGND to FGND
separation -5 +5 V
Logic input voltage -0.3 VDD +0.3 V
Logic input to switch output
isolation -320V
Switch open contact
isolation (SW1, SW2, SW3,
SW5, SW6, SW7, SW9,
SW10)
-320V
Switch open contact
isolation (SW4) -465V
Switch open contact
isolation (SW8) -235V
ESD Rating (Human Body Model)
1000 V
CPC7583
R06 www.clare.com 5
1.6 Switch Specifications
1.6.1 Break Switches, SW1 and SW2
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C VSW (differential) = -320 V to gnd
VSW (differential) = +260 V to -60 V
ISW -
0.1
1μA+85° C
VSW (differential) = -330 V to gnd
VSW (differential) = +270 V to -60 V 0.3
-40° C
VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C ISW(on) = ±10 mA, ±40 mA,
RBAT and TBAT = -2 V RON
-
14.5 -
Ω
+85° C 20.5 28
-40° C 10.5 -
RON match Per on-resistance test condition of SW1
& SW2 ΔRON 0.15 0.8
DC current limit
+25° C
VSW (on) = ±10 V
ISW
- 225 -mA+85° C 80 150
-40° C - 400 425
Dynamic current limit
(t 0.5 μs)
Break switches on, ringing switches off,
apply ±1 kV 10x1000 μs pulse, with
appropriate protection in place.
-2.5- A
Logic input to switch output isolation
+25° C VSW (TLINE, RLINE) = ±320 V, logic
inputs = gnd
ISW
-0.1
1μA+85° C VSW (TLINE, RLINE) = ±330 V, logic
inputs = gnd -0.3
-40° C VSW (TLINE, RLINE) = ±310 V, logic
inputs = gnd -0.1
dv/dt sensitivity - - - 200 - V/μs
CPC7583
6www.clare.com R06
1.6.2 Ringing Return Switch, SW3
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C VSW (differential) = -320 V to gnd
VSW (differential) = +260 V to -60 V
ISW -
0.1
1μA+85° C VSW (differential) = -330 V to gnd
VSW (differential) = +270 V to -60 V 0.3
-40° C VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C
ISW(on) = ±0 mA, ±10 mA RON -
60 -
Ω+85° C 85 110
-40° C 45 -
DC current limit
+25° C
VSW (on) = ± 10 V
ISW
- 120
-
mA+85° C 70 85
-40° C
-
210
Dynamic current limit
(t 0.5 μs)
Break switches off, ringing switches on,
apply ±1 kV 10x1000 μs pulse, with
appropriate protection in place.
2.5 A
Logic input to switch output isolation
+25° C VSW (TRING, TLINE) = ±320 V, logic
inputs = gnd
ISW -
0.1
1μA+85° C VSW (TRING, TLINE) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (TRING, TLINE) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - - 200 - V/μs
CPC7583
R06 www.clare.com 7
1.6.3 Ringing Switch, SW4
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -255 V to +210 V
VSW (differential) = +255 V to -210 V
ISW
-
0.05 1
μA+85° C
VSW (differential) = -270 V to +210 V
VSW (differential) = +270 V to -210 V 0.1 1
-40° C
VSW (differential) = -245 V to +210 V
VSW (differential) = +245 V to -210 V 0.05 1
On Voltage ISW (on) = ± 1 mA -1.53V
Ringing generator
current to ground during
ringing
Inputs set for ringing mode IRINGING 0.1 0.25 mA
On steady-state current* Inputs set for ringing mode ISW - 150 mA
Surge current* - - - 2 A
Release current - IRINGING 450 - μA
RON ISW (on) = ±70 mA, ±80 mA RON 10 15 Ω
Logic input to switch output isolation
+25° C VSW (RRING, RLINE) = ±320 V, logic
inputs = gnd
ISW -
0.1
1μA+85° C VSW (RRING, RLINE) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (RRING, RLINE) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/μs
*Secondary protection and ringing source current limiting must prevent exceeding this parameter.
CPC7583
8www.clare.com R06
1.6.4 TESTOUT Switches, SW5 and SW6
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -320 V to gnd
VSW (differential) = +260 V to -60 V
ISW -
0.1
1μA+85° C
VSW (differential) = -330 V to gnd
VSW (differential) = +260 V to -60 V 0.3
-40° C
VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C
ISW(on) = ±10 mA, ±40 mA RON -
35 -
Ω+85° C 50 70
-40° C 26 -
DC current limit
+25° C
VSW (on) = ±10 V
ISW
- 140 -
mA+85° C 80 100 -
-40° C - 210 250
Dynamic current limit
(t 0.5 μs)
Break switches in on state, ringing
switches off, apply ±1 kV at
10x1000 μs pulse, with appropriate
secondary protection in place.
-2.5- A
Logic input to switch output isolation
+25° C VSW (TTESTout, TLINE, RTESTout, RLINE)
= ±320 V, logic inputs = gnd
ISW -0.11μA
+85° C VSW (TTESTout, TLINE, RTESTout, RLINE)
= ±330 V, logic inputs = gnd ISW -0.31μA
-40° C VSW (TTESTout, TLINE, RTESTout, RLINE)
= ±310 V, logic inputs = gnd
ISW -0.11μA
dv/dt sensitivity - - 200 - V/μs
CPC7583
R06 www.clare.com 9
1.6.5 Ringing Test Return Switch, SW7
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -320 V to gnd
VSW (differential) = +260 to -60 V
ISW -
0.1
1μA+85° C
VSW (differential) = -330 V to gnd
VSW (differential) = +270 V to -60 V 0.3
-40° C
VSW (differential) = -310 V to gnd
VSW (differential) = +250 V to -60 V 0.1
RON
+25° C
ISW(on) = ±10 mA, ±40 mA RON -
60 -
Ω+85° C 85 100
-40° C 45 -
DC current limit
+25° C
VSW (on) = ±10 V ISW 70
120
-mA+85° C 80
-40° C 210
Logic input to switch output isolation
+25° C VSW (TRING, TTESTin) = ±320 V, logic
inputs = gnd
ISW -
0.1
1μA+85° C VSW (TRING, TTESTin) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (TRING, TTESTin) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/μs
CPC7583
10 www.clare.com R06
1.6.6 Ringing Test Switch, SW8
1.6.7 TESTIn Switches, SW9 and SW10
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -60 V to +175 V ISW
-
0.05
1μA+85° C 0.1
-40° C 0.05
On Voltage ISW(ON) = ±1 mA - 0.75 1.5 V
RON ISW(ON) = ±70 mA, ±80 mA RON 35 - Ω
Release Current - - 450 - μA
Logic input to switch output isolation
+25° C VSW (RRING, RTESTin) = ±320 V, logic
inputs = gnd
ISW -
0.1
1μA+85° C VSW (RRING, RTESTin) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (RRING, RTESTin) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/μs
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Off-state leakage current
+25° C
VSW (differential) = -320 V to gnd
VSW (differential) = -60 V to +260 V
ISW -
0.1
1μA+85° C VSW (differential) = -330 V to gnd
VSW (differential) = -60 V to +270 V 0.3
-40° C VSW (differential) = -310 V to gnd
VSW (differential) = -60 V to +250 V 0.1
RON
+25° C
ISW(on) = ±10 mA, ±40 mA RON -
35 -
Ω+85° C 50 70
-40° C 26 -
DC current limit
+25° C
VSW (on) = ±10 V ISW
- 160 -
mA+85° C 80 110 -
-40° C - 210 250
Logic input to switch output isolation
+25° C VSW (TTESTin, RTESTin) = ±320 V, logic
inputs = gnd
ISW -
0.1
1μA+85° C VSW (TTESTin, RTESTin) = ±330 V, logic
inputs = gnd 0.3
-40° C VSW (TTESTin, RTESTin) = ±310 V, logic
inputs = gnd 0.1
dv/dt sensitivity - - 200 - V/μs
CPC7583
R06 www.clare.com 11
1.7 Additional Electrical Characteristics
Parameter Test Conditions Symbol Minimum Typical Maximum Unit
Digital Inputs
Input low voltage - VIL --1.5
V
Input high voltage - VIH 3.5 - -
Input leakage current
(high) VDD = 5.5 V, VBAT = -75 V, VIH = 5 V IIH -0.11
μA
Input leakage current
(low) VDD = 5.5 V, VBAT = -75 V, VIL = 0 V IIL -0.11
Voltage Requirements
VDD -VDD 4.5 5.0 5.5 V
VBAT
1 -VBAT -19 - -72 V
1VBAT is used only for internal protection circuitry. If VBAT goes more positive than -10 V, the device will enter the all-off state and will remain in the all-off state until
the battery goes more negative than -15 V
Power Requirements
Power consumption in
talk and all-off states
VDD = 5 V, VBAT = -48 V, measure IDD
and IBAT
P-3.57.5
mW
Power consumption in
any other state
VDD = 5 V, VBAT = -48 V, measure IDD
and IBAT
P 5.0 10.5
VDD current in talk and
all-off states VDD = 5 V, VBAT = -48 V
IDD -0.71.5
mA
VDD current in any other
state IDD -1.01.9
VBAT current in any state VDD = 5V, VBAT = -48 V IBAT -410μA
Temperature Shutdown Requirements (temperature shutdown flag is active low)
Shutdown activation
temperature Not production tested - limits are
guaranteed by design and Quality
Control sampling audits.
TSD_on 110 125 150 °C
Shutdown circuit
hysteresis TSD_off 10 - 25 °C
CPC7583
12 www.clare.com R06
1.8 Protection Circuitry Electrical Specifications
1.9 Truth Tables
1.9.1 Truth Table for CPC7583xA and CPC7583xB
Parameter Conditions Symbol Minimum Typical Maximum Unit
Parameters Related to the Diodes in the Diode Bridge
Voltage drop at
continuous current
(50/60 Hz)
Apply ± dc current limit of break
switches
Forward
Vol t a g e -2.83.5
V
Voltage drop at surge
current
Apply ± dynamic current limit of break
switches
Forward
Vol t a g e -5-
Parameters Related to the Protection SCR (CPC7583xA and CPC7583xC)
Surge current - - - * A
Trigger current
+25° C ITRIG
-
200 -
mA
+85° C ITRIG 120 -
Hold current
+25° C IHOLD 265 -
+85° C IHOLD 100 170 -
Gate trigger voltage IGATE = ITRIGGER
§VTBAT or
VRBAT
VBAT -4 -VBAT -2 V
Reverse leakage current VBAT = -48 V IVBAT
-
-1.0μA
On-state voltage 0.5 A, t = 0.5 μsV
TBAT or
VRBAT
-3 - V
2.0 A, t = 0.5 μs-5-V
*Passes GR1089 and ITU-T K.20 with appropriate secondary protection in place.
§VBAT must be capable of sourcing ITRIGGER for the internal SCR to activate.
State INRINGING INTESTIN INTESTOUT Latch TSD
TESTIN
Switches
Break
Switches
Ringing
Test
Switches
Ringing
Switches
TESTOUT
Switches
Talk000
0
1 or
Floating 1
Off On Off Off Off
TESTout 0 0 1 Off Off Off Off On
TESTin010 On Off Off Off Off
Simultaneous
TESTin and
TESTout
011 On Off Off Off On
Ringing 1 0 0 Off Off Off On Off
Ringing
Generator
Te s t
110 OffOff
On Off Off
Latched X X X 1 Unchanged Unchanged Unchanged Unchanged Unchanged
All Off
1 0 1 0 Off Off Off Off Off
1 1 1 0 Off Off Off Off Off
XXXX
0 2Off Off Off Off Off
1If TSD is tied high, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism functions normally.
2Forcing TSD to ground overrides the logic input pins and forces an all off state.
CPC7583
R06 www.clare.com 13
1.9.2 Truth Table for CPC7583xC and CPC7583xD
State INRINGING INTESTIN INTESTOUT Latch TSD
TESTIN
Switches
Break
Switches
Ringing
Test
Switches
Ringing
Switches
TESTOUT
Switches
Talk000
01 or
Floating 1
Off On Off Off Off
TESTout 0 0 1 Off Off Off Off On
TESTin010 On Off Off Off Off
Simultaneous
TESTin and
TESTout
011 On Off Off Off On
Ringing 1 0 0 Off Off Off On Off
Ringing
Generator
Te s t
110 OffOff
On Off Off
Simultaneous
TESTout and
Ringing
Generator
Te s t
111 OffOff
On Off On
Latched X X X 1 Unchanged Unchanged Unchanged Unchanged Unchanged
All Off
1 0 1 0 Off Off Off Off Off
XXXX
0 2Off Off Off Off Off
1If TSD is tied high, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism functions normally.
2Forcing TSD to ground overrides the logic input pins and forces an all off state.
CPC7583
14 www.clare.com R06
2. Functional Description
2.1 Introduction
The CPC7583 has the following states:
Talk. Loop break switches SW1, and SW2 closed, all
other switches open.
Ringing. Ringing switches SW3, SW4 closed, all
other switches open.
TESTout. Testout switches SW5, SW6 closed, all
other switches open.
Ringing generator test. SW7, SW8 closed, all
other switches open.
TESTin. Testin switches SW9 and SW10 closed.
Simultaneous TESTin and TESTout. SW9, SW10,
SW5, and SW6 closed, all other switches open.
Simultaneous test out and ringing generator
test. SW5, SW6, SW7, and SW8 closed, all other
switches open (only on the xC and xD versions).
All Off. All switches open.
See “Truth Tables” on page 12 for more information.
The CPC7583 offers break-before-make and
make-before-break switching from the ringing state to
the talk state with simple logic level input control.
Solid-state switch construction means no impulse
noise is generated when switching during ringing
cadence or ring trip, eliminating the need for external
zero-cross switching circuitry. State-control is via
logic-level input so no additional driver circuitry is
required. The linear line break switches SW1 and
SW2 have exceptionally low RON and excellent
matching characteristics. The ringing switch SW4 has
a minimum open contact breakdown voltage of 465 V.
This is sufficiently high, with proper protection, to
prevent breakdown in the presence of a transient fault
condition (i.e., passing the transient on to the ringing
generator).
Integrated into the CPC7583 is an over voltage
clamping circuit, active current limiting, and a thermal
shutdown mechanism to provide protection to the
SLIC device during a fault condition. Positive and
negative surges are reduced by the current limiting
circuitry and hazardous potentials are diverted to
ground via diodes and the integrated SCR.
Power-cross potentials are also reduced by the current
limiting and thermal shutdown circuits.
To protect the CPC7583 from an overvoltage fault
condition, the use of a secondary protector is required.
The secondary protector must limit the voltage seen at
the TLINE and RLINE terminals to a level below the
maximum breakdown voltage of the switches. To
minimize the stress on the solid-state contacts, use of
a foldback or crowbar type secondary protector is
recommended. With proper selection of the secondary
protector, a line card using the CPC7583 will meet all
relevant ITU, LSSGR, TIA/EIA and IEC protection
requirements.
The CPC7583 operates from a +5 V supply only. This
gives the device extremely low idle and active power
consumption and allows use with virtually any range of
battery voltage. The battery voltage is also used by the
CPC7583 as a reference for the integrated protection
circuit. In the event of a loss of battery voltage, the
CPC7583 enters the all-off state.
2.2 Switch Logic
The CPC7583 provides, when switching from the
ringing state to the talk state, the ability to control the
release timing of the ringing switches SW3 and SW4
relative to the state of the loop break switches SW1
and SW2 using simple logic-level input. This is
referred to as a make-before-break or
break-before-make operation. When the line break
switch contacts (SW1 and SW2) are closed (or made)
before the ringing access switch contacts (SW3 and
SW4) are opened (broken), this is referred to as
make-before-break operation. Break-before-make
operation occurs when the ringing access contacts
(SW3 and SW4) are opened (broken) before the line
break switch contacts (SW1 and SW2) are closed
(made). With the CPC7583, the make-before-break
and break-before-make operations can easily be
selected by applying the proper sequence of logic
inputs to INTESTout, INRINGING, and INTESTin.
The logic sequences for either mode of operation are
given in “Make-Before-Break Operation (Ringing to Talk
Transition)” on page 15 and “Break-Before-Make Operation
(Ringing to Talk Transition)” on page 15. Logic states and
explanations are given in “Truth Tables” on page 12.
Break-before-make operation can also be achieved
using the TSD pin as an input. In “Break-Before-Make
Operation (Ringing to Talk Transition)” on page 15, lines 2
and 3, it is possible to induce the switches to the all-off
state by grounding TSD instead of applying input to the
logic pins. This has the effect of overriding the logic
inputs and forcing the device to the all-off state. For
CPC7583
R06 www.clare.com 15
20 Hz ringing hold this input state for 25 ms. During
this hold period, toggle the inputs from the ringing
state to the talk state. After the 25 ms, release TSD to
return switch control to the input pins INTESTout,
INRINGING, INTESTin and the latch control pin.
2.2.1 Make-Before-Break Operation (Ringing to Talk Transition)
2.2.2 Break-Before-Make Operation (Ringing to Talk Transition)
2.3 Alternate Break-Before-Make Operation
Note that break-before-make operation can also be
achieved using TSD as an input. In lines 2 and 3 of the
table “Break-Before-Make Operation (Ringing to Talk
Transition)” on page 15, instead of using the logic input
pins to force the all-off state, force TSD to ground. This
overrides the logic inputs and also forces the all off
state. Hold this state for one-half of the ringing cycle.
During this TSD forced all-off state, change the inputs
from the power ringing state (INRING = 1, INTESTIN = 0,
INTESTOUT = 0) to the talk state (INRING = 0,
INTESTIN = 0, INTESTOUT = 0). After the hold period,
release TSD to return switch control to the input pins
which will set the talk state.
2.4 Data Latch
The CPC7583 has an integrated data latch. The latch
operation is controlled by logic-level input at the
LATCH pin. The data input of the latch are the input
pins, while the output of the data latch is an internal
node used for state control. When the LATCH control
pin is at logic 0, the data latch is transparent and data
control signals flow directly through to state control. A
change in input will be reflected by a change in switch
state. When the LATCH control pin is at logic 1, the
data latch is active and a change in input control will
not affect switch state. The switches will remain in the
position they were in when the LATCH changed from
State INRINGING INTESTIN INTESTOUT Latch TSD Timing
Break
Switches
1 and 2
Ring
Return
Switch 3
Ring
Access
Switch 4
All Other
Test
Switches
Ringing 1 0 0
0
Floating - Off On On Off
Make-
before-
break
0 0 0 Floating
SW4 waiting for next
zero-current crossing to turn
off. Maximum time is one-half
of ringing. In this transition
state, current that is limited to
the dc break switch current
limit value will be sourced
from the ring node of the
SLIC.
On Off On Off
Talk 0 0 0 Floating Zero-cross current has
occurred On Off Off Off
State INRINGING INTESTIN INTESTOUT Latch TSD Timing
Break
Switches
1 and 2
Ring
Return
Switch 3
Ring
Access
Switch 4
All Other
Test
Switches
Ringing 1 0 0
0
Floating - Off On On Off
All off 1 0 1 Floating
Hold this state for one-half of
ringing cycle. SW4 waiting for
zero current to turn off.
Off Off On Off
All off 1 0 1 Floating Zero current has occurred.
SW4 has opened Off Off Off Off
Talk 0 0 0 Floating Close break switches On Off Off Off
CPC7583
16 www.clare.com R06
logic 0 to logic 1 and will not respond to changes in
input as long as the latch is at logic 1. The TSD input is
not tied to the data latch. Therefore, TSD is not
affected by the LATCH input and the TSD input will
override state control.
2.5 TSD Behavior
Setting TSD to +5V allows switch control using the
logic inputs. This setting, however, also disables the
thermal shutdown circuit and is therefore not
recommended. When using logic control via the input
pins, TSD should be allowed to float. As a result, the
two recommended states when using TSD as a control
are 0, which forces the device to an all-off state, or
float, which allows logic inputs to remain active. This
requires the use of an open-collector type buffer.
2.6 Ringing Switch Zero-Cross Current Turn Off
After the application of a logic input to turn SW4 off,
the ringing switch is designed to delay the change in
state until the next zero-crossing. Once on, the switch
requires a zero-current cross to turn off, and therefore
should not be used to switch a pure DC signal. The
switch will remain in the on state no matter the logic
input until the next zero crossing. These switching
characteristics will reduce and possibly eliminate
overall system impulse noise normally associated with
ringing switches. See Clare application note AN-144,
Impulse Noise Benefits of Line Card Access Switches for
more information. The attributes of ringing switch SW4
may make it possible to eliminate the need for a
zero-cross switching scheme. A minimum impedance
of 300 Ω in series with the ringing generator is
recommended.
2.7 Power Supplies
Both a +5 V supply and battery voltage are connected
to the CPC7583. Switch state control is powered
exclusively by the +5 V supply. As a result, the
CPC7583 exhibits extremely low power consumption
during both active and idle states.
The battery voltage is not used for switch control but
rather as a supply for the integrated secondary
protection circuitry. The integrated SCR is designed to
trigger when the voltage at TBAT or RBAT drops 2 to
4 V below the applied voltage on the VBAT pin. This
trigger prevents a fault induced overvoltage event at
the TBAT or RBAT nodes.
2.8 Battery Voltage Monitor
The CPC7583 also uses the VBAT voltage to monitor
battery voltage. If battery voltage is lost, the CPC7583
immediately enters the all-off state. It remains in this
state until the battery voltage is restored. The device
also enters the all-off state if the system battery
voltage goes more positive than –10 V, and remains in
the all-off state until the battery voltage goes more
negative than –15 V. This battery monitor feature
draws a small current from the battery (less than 1 μA
typical) and will add slightly to the device’s overall
power dissipation.
2.9 Protection
2.9.1 Diode Bridge/SCR
The CPC7583 uses a combination of current limited
break switches, a diode bridge/SCR clamping circuit,
and a thermal shutdown mechanism to protect the
SLIC device or other associated circuitry from damage
during line transient events such as lightning. During a
positive transient condition, the fault current is
conducted through the diode bridge to ground via
FGND. Voltage is clamped to a diode drop above
ground. During a negative transient of 2V to 4V more
negative than the voltage source at VBAT
, the SCR
conducts and faults are shunted to FGND via the SCR
or the diode bridge.
In order for the SCR to crowbar or foldback, the on
voltage (see “Protection Circuitry Electrical
Specifications” on page 12) of the SCR must be less
negative than the VBAT voltage. If the VBAT voltage is
less negative than the SCR on voltage, or if the VBAT
supply is unable to source the trigger current, the SCR
will not crowbar.
For power induction or power-cross fault conditions,
the positive cycle of the transient is clamped to a diode
drop above ground and the fault current directed to
ground. The negative cycle of the transient will cause
the SCR to conduct when the voltage exceeds the
VBAT reference voltage by two to four volts, steering
the fault current to ground.
CPC7583
R06 www.clare.com 17
2.9.2 Current Limiting function
If a lightning strike transient occurs when the device is
in the talk state, the current is passed along the line to
the integrated protection circuitry and restricted by the
dynamic current limit response of the active switches.
During the talk state when a 1000V 10x1000 μS pulse
(GR-1089-CORE lightning) is applied to the line
though a properly clamped external protector, the
current into TLINE or RLINE will be a pulse with a typical
magnitude of 2.5 A and a duration of less than 0.5 μs.
If a power-cross fault occurs with the device in the talk
state, the current is passed though break switches
SW1 and SW2 on to the integrated protection circuit
and is limited by the dynamic DC current limit
response of the two break switches. The DC current
limit, specified over temperature, is between 80 mA
and 425 mA, and the circuitry has a negative
temperature coefficient. As a result, if the device is
subjected to extended heating due to power cross
fault, the measured current at TLINE or RLINE will
decrease as the device temperature increases. If the
device temperature rises sufficiently, the temperature
shutdown mechanism will activate and the device will
enter the all-off state.
2.10 Temperature Shutdown
The thermal shutdown mechanism will activate when
the device temperature reaches a minimum of 110° C,
placing the device in the all-off state regardless of
logic input. During thermal shutdown mode, the
voltage out of the TSD pin will read 0 V. Normal output
of TSD is VDD.
If presented with a short duration transient such as a
lightning event, the thermal shutdown feature will
typically not activate. But in an extended power-cross
transient, the device temperature will rise and the
thermal shutdown will activate forcing the switches to
the all-off state. At this point the current measured into
TLINE or RLINE will drop to zero. Once the device
enters thermal shutdown it will remain in the all-off
state until the temperature of the device drops below
the deactivation level of the thermal shutdown circuit.
This will permit the device to return to normal
operation. If the transient has not passed, current will
flow up to the value allowed by the dynamic DC
current limiting of the switches and heating will begin
again, reactivating the thermal shutdown mechanism.
This cycle of entering and exiting the thermal
shutdown mode will continue as long as the fault
condition persists. If the magnitude of the fault
condition is great enough, the external secondary
protector could activate and shunt all current to
ground.
2.11 External Protection Elements
The CPC7583 requires only over-voltage secondary
protection on the loop side of the device. The
integrated protection feature described above negates
the need for additional protection on the SLIC side.
The secondary protector must limit voltage transients
to levels that do not exceed the breakdown voltage or
input-output isolation barrier of the CPC7583. A
foldback or crowbar type protector is recommended to
minimize stresses on the CPC7583.
Consult Clare’s application note, AN-100, “Designing
Surge and Power Fault Protection Circuits for Solid
State Subscriber Line Interfaces” for equations related
to the specifications of external secondary protectors,
fused resistors and PTCs.
CPC7583
18 www.clare.com R06
3. Manufacturing Information
3.1 Mechanical Dimensions and PCB Land Patterns
3.1.1 CPC7583Z
3.1.2 CPC7583B
20-Lead SOIC PackageRecommended PCB Land Pattern
Dimensions
mm MIN / mm MAX
(inches MIN / inches MAX)
7.40 / 7.60
(0.291 / 0.299)
10.00 / 10.65
(0.394 / 0.419)
12.60 / 13.00
(0.496 / 0.512)
1.27 TYP
(0.050 TYP) 0.33 / 0.51
(0.013/ 0.020)
0.508 / 0.762
(0.020 / 0.030) 2.35 / 2.65
(0.093 / 0.104)
0.10 / 0.30
(0.004 / 0.012)
0.40 / 1.27
(0.016 / 0.050)
0.23 / 0.32
(0.009 / 0.013)
0.25 / 0.75 x 45º
(0.010 / 0.029 x 45º)
0º - 8º
9.30
(0.366)
2.05
(0.081)
0.60
(0.024)
1.27
(0.05)
Pin 1
28-Lead SOIC PackageRecommended PCB Land Pattern
Dimensions
mm MIN / mm MAX
(inches MIN / inches MAX)
7.391 / 7.595
(0.291 / 0.299)
10.109 / 10.516
(0.398 / 0.414)
17.983 / 18.085
(0.708 / 0.712)
Pin 1
1.27 TYP
(0.050 TYP)
0.366 / 0.467
(0.014/ 0.018)
2.235 / 2.438
(0.088 / 0.096)
2.438 / 2.642
(0.096 / 0.104)
0.660 ± 0.102
(0.026 ± 0.004)
0.254 / 0.737 x 45º
(0.010 / 0.029 x 45º)
0.2311 / 0.3175
(0.0091 / 0.0125)
0.508 / 1.016
(0.020 / 0.040)
9.50
(0.374)
1.27
(0.05)
1.80
(0.071)
0.60
(0.024)
CPC7583
R06 www.clare.com 19
3.1.3 CPC7583M
NOTE: Because the metallic pad on the bottom of the
DFN package is connected to the substrate of the die,
Clare recommends that no printed circuit board traces
cross this area to avoid potential shorting issues.
28-Lead DFN PackageRecommended PCB Land Pattern
Dimensions
mm
(inches)
7.0
(0.276)
11.0
(0.433)
7.5±0.05
(0.296±0.002)
5.0±0.05
(0.197±0.002)
0.75
(0.030)
0.33 +0.07,-0.05
(0.013 +0.003, -0.002)
0.55±0.10
(0.022±0.004)
Bottom side
metallic pad
Pin 1
0.90±0.10
(0.036 ±0.004)
0.02 +0.03, -0.02
(0.001 +0.0012, -0.001)
Seating Plane
0.20
(0.008)
Pin 1
6.70
(0.264)
0.75
(0.03)
0.35
(0.016)
1.05
(0.045)
CPC7583
20 www.clare.com R06
3.2 Tape and Reel Specifications
3.2.1 CPC7583Z (20-Pin SOIC) - Tape and Reel Dimensions
3.2.2 CPC7583B (28-Pin SOIC) - Tape and Reel Dimensions
3.2.3 CPC7583M (28-Pin DFN) - Tape and Reel Dimensions
Top Cover
Tape Thickness
0.102 MAX
(0.004 MAX)
330.2 DIA.
(13.00 DIA)
Embossed Carrier
Embossment
K0=3.20 0.15
(0.13 0.01)
+
+
K1=2.60 0.15
(0.10 0.01)
+
+
P=12.00
(0.47)
A0=10.75 0.15
(0.42 0.01)
+
+
B0=13.40 0.15
(0.53 0.01)
+
+
W=24.00 0.3
(0.94 0.01)
+
+
Dimensions
mm
(inches)
A
0
=10.75
(0.42)
B
0
=18.50
(0.73)
W=24.00±0.3
(0.94±0.01)
K
1
=2.60
(0.10)
K
0
=3.20
(0.13)
P=12.00
(0.47)
Top Cover
Tape Thickness
0.102 MAX
(0.004 MAX)
330.2 DIA.
(13.00 DIA)
Embossed Carrier
Embossment Dimensions
mm
(inches)
Top Cover
Tape Thickness
0.102 MAX
(0.004 MAX)
330.2 DIA.
(13.00 DIA)
Embossed Carrier
Embossment
K0=1.35
(0.05)
P=12.00
(0.47)
A0=7.35
(0.29)
B0=11.35
(0.45)
W=24.00 0.3
(0.94 0.01)
+
+
Dimensions
mm
(inches)
CPC7583
R06 www.clare.com 21
3.3 Soldering
3.3.1 Moisture Reflow Sensitivity
Clare has characterized the moisture reflow sensitivity
for this product using IPC/JEDEC standard
J-STD-020. Moisture uptake from atmospheric
humidity occurs by diffusion. During the solder reflow
process, in which the component is attached to the
PCB, the whole body of the component is exposed to
high process temperatures. The combination of
moisture uptake and high reflow soldering
temperatures may lead to moisture induced
delamination and cracking of the component. To
prevent this, this component must be handled in
accordance with IPC/JEDEC standard J-STD-033 per
the labeled moisture sensitivity level (MSL), level 1 for
the SOIC package, and level 3 for the DFN package.
3.3.2 Reflow Profile
For proper assembly, this component must be
processed in accordance with the current revision of
IPC/JEDEC standard J-STD-020. Failure to follow the
recommended guidelines may cause permanent
damage to the device resulting in impaired
performance and/or a reduced lifetime expectancy.
3.4 Washing
Clare does not recommend ultrasonic cleaning of this
part.
RoHS
2002/95/EC
e3
Pb