8-Bit Serial Input Constant-Current Latched LED Driver
A6277
9
Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com
The load current per bit (IO) is set by the external resistor
(REXT) as shown in the figure below.
Package Power Dissipation (PD). The maximum allow-
able package power dissipation is determined as
PD(max) = (150 - TA)/RQJA.
The actual package power dissipation is
PD(act) = dc(VCE • IO • 8) + (VDD • IDD).
When the load supply voltage is greater than 3 V to 5 V,
considering the package power dissipating limits of these
devices, or if PD(act) > PD(max), an external voltage
reducer (VDROP) should be used.
Load Supply Voltage (VLED). These devices are de-
signed to operate with driver voltage drops (VCE) of 0.4 V
to 0.7 V with LED forward voltages (VF) of 1.2 V to
4.0 V. If higher voltages are dropped across the driver,
package power dissipation will be increased significantly.
To minimize package power dissipation, it is recom-
mended to use the lowest possible load supply voltage or
to set any series dropping voltage (VDROP) as
VDROP = VLED - VF - VCE
with VDROP = Io • RDROP for a single driver, or a Zener
diode (VZ), or a series string of diodes (approximately
0.7 V per diode) for a group of drivers. If the available
voltage source will cause unacceptable dissipation and
series resistors or diode(s) are undesirable, a regulator
such as the Sanken Series SAI or Series SI can be used to
provide supply voltages as low as 3.3 V.
For reference, typical LED forward voltages are:
White 3.5 – 4.0 V
Blue 3.0 – 4.0 V
Green 1.8 – 2.2 V
Yellow 2.0 – 2.1 V
Amber 1.9 – 2.65 V
Red 1.6 – 2.25 V
Infrared 1.2 – 1.5 V
Pattern Layout. This device has separate logic-ground
and power-ground terminals. If ground pattern layout
contains large common-mode resistance, and the voltage
between the system ground and the LATCH ENABLE or
CLOCK terminals exceeds 2.5 V (because of switching
noise), these devices may not operate correctly.
Dwg. EP-064
VLED
VDROP
VF
VCE
Applications Information
300 500 700 1 k 2 k
CURRENT-CONTROL RESISTANCE, R
EXT
IN OHMS
100
0100
Dwg. GP-061-1
OUTPUT CURRENT IN mA/BIT
5 k
200 3 k
20
40
60
80
V
CE
= 0.7 V
120
140