© 2005 IXYS All rights reserved
Symbol Test Conditions Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ. max.
VGE(th) IC= 250 µA, VCE = VGE 2.5 5.0 V
ICES VCE = VCES TJ = 25°C 200 µA
VGE = 0 V TJ = 125°C3mA
IGES VCE = 0 V, VGE = ±20 V ±100 nA
VCE(sat) IC= 24 A, VGE = 15 V TJ = 25°C 2.7 V
TJ = 125°C 1.8 V
Symbol Test Conditions Maximum Ratings
VCES TJ= 25°C to 150°C 600 V
VCGR TJ= 25°C to 150°C; RGE = 1 M600 V
VGES Continuous ±20 V
VGEM Transient ±30 V
IC25 TC= 25°C (limited by leads) 70 A
IC110 TC= 110°C30A
ICM TC= 25°C, 1 ms 150 A
SSOA VGE = 15 V, TVJ = 125°C, RG = 10 ICM = 60 A
(RBSOA) Clamped inductive load @ 600 V
PCTC= 25°C 190 W
TJ-55 ... +150 °C
TJM 150 °C
Tstg -55 ... +150 °C
Maximum lead temperature for soldering 300 °C
1.6 mm (0.062 in.) from case for 10 s
Plastic body for 10s 250 °C
MdMounting torque (TO-247) 1.13/10Nm/lb.in.
Weight TO-247 6 g
TO-268 4 g
DS99169A(01/05)
Features
zVery high frequency IGBT
zSquare RBSOA
zHigh current handling capability
zMOS Gate turn-on
- drive simplicity
Applications
zPFC circuits
zUninterruptible power supplies (UPS)
zSwitched-mode and resonant-mode
power supplies
zAC motor speed control
zDC servo and robot drives
zDC choppers
Advantages
zHigh power density
zVery fast switching speed for high
frequency aaplications
zHigh power surface mountable
package
VCES = 600 V
IC25 = 70 A
VCE(sat) = 2.7 V
tfi typ = 32 ns
HiPerFASTTM IGBT
with Diode
C2-Class High Speed IGBTs
IXGH 30N60C2D1
IXGT 30N60C2D1
G = Gate, C = Collector,
E = Emitter, TAB = Collector
C (TAB)
GCE
TO-247 AD (IXGH)
TO-268 (IXGT)
GEC (TAB)
http://store.iiic.cc/
IXGH 30N60C2D1
IXGT 30N60C2D1
Symbol Test Conditions Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ. max.
gfs IC= 24 A; VCE = 10 V, 18 28 S
Pulse test, t 300 µs, duty cycle 2 %
Cies 1430 pF
Coes VCE = 25 V, VGE = 0 V, f = 1 MHz 140 pF
Cres 40 pF
Qg70 nC
Qge IC = 24 A, VGE = 15 V, VCE = 300 V 10 nC
Qgc 23 nC
td(on) 13 ns
tri 15 ns
td(off) 70 140 ns
tfi 60 ns
Eoff 0.19 0.30 mJ
td(on) 13 ns
tri 17 ns
Eon 0.22 mJ
td(off) 120 ns
tfi 130 ns
Eoff 0.59 mJ
RthJC 0.65 K/W
RthCK (TO-247) 0.25 K/W
Inductive load, TJ = 25°°
°°
°C
IC = 24 A, VGE = 15 V
VCE = 400 V, RG = 5
Inductive load, TJ = 125°°
°°
°C
IC = 24 A, VGE = 15 V
VCE = 400 V, RG = 5
TO-247 AD Outline
Dim. Millimeter Inches
Min. Max. Min. Max.
A 4.7 5.3 .185 .209
A12.2 2.54 .087 .102
A22.2 2.6 .059 .098
b 1.0 1.4 .040 .055
b11.65 2.13 .065 .084
b22.87 3.12 .113 .123
C .4 .8 .016 .031
D 20.80 21.46 .819 .845
E 15.75 16.26 .610 .640
e 5.20 5.72 0.205 0.225
L 19.81 20.32 .780 .800
L1 4.50 .177
P 3.55 3.65 .140 .144
Q 5.89 6.40 0.232 0.252
R 4.32 5.49 .170 .216
S 6.15 BSC 242 BSC
e
P
Reverse Diode (FRED) Characteristic Values
(TJ = 25°C, unless otherwise specified)
Symbol Test Conditions min. typ. max.
VFIF= 30 A, VGE = 0 V, Pulse test TJ =150°C 1.6 V
t 300 µs, duty cycle d 2 % 2.5 V
IRM IF= 30 A, VGE = 0 V, -diF/dt =100 A/µs, TJ = 100°C4A
trr VR= 100 V TJ = 100°C 100 ns
IF= 1 A; -di/dt = 100 A/µs; VR = 30 V 25 ns
RthJC 0.9 K/W
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered by 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585
one or moreof the following U.S. patents: 4,850,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405B2 6,759,692
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6771478 B2
TO-268 Outline
http://store.iiic.cc/
© 2005 IXYS All rights reserved
Fig. 2. Extended Output Characteristics
@ 25 deg. C
0
30
60
90
120
150
180
210
240
270
0 2 4 6 8 10 12 14 16 18
V
C E
- Volts
I
C
- Amperes
V
GE
= 15V
5V
7V
9V
11V
13V
Fig. 3. Output Characteristics
@ 125 Deg. C
0
5
10
15
20
25
30
35
40
45
50
0.511.522.533.5
V
CE
- Volts
I
C
- Amperes
V
GE
= 15V
13V
11V
5V
7V
9V
Fig. 1. Output Characteristics
@ 25 Deg. C
0
5
10
15
20
25
30
35
40
45
50
0.511.522.533.5
V
C E
- Volts
I
C
- Amperes
V
GE
= 15V
13V
11V
7V
5V
9V
Fig. 4. Dependence of V
CE(
sat
)
on
Te mpe r ature
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
25 50 75 100 125 150
T
J
- Degrees Centigrade
V
C E (
sat
)
- Normalize
d
I
C
= 24A
I
C
= 12A
V
GE
= 15V
I
C
= 48A
Fig. 5. Collector-to-Emitter Voltage
vs. Ga te-to-Emitter voltage
2
2.5
3
3.5
4
4.5
567891011121314151617
V
G E
- Volts
V
C E
- Volts
T
J
= 25ºC
I
C
= 48A
24A
12A
Fig. 6. Input A d mittance
0
20
40
60
80
100
120
140
160
180
200
34567 89101112
V
G E
- Volts
I
C
- Amperes
T
J
= 25ºC
12C
IXGH 30N60C2D1
IXGT 30N60C2D1
http://store.iiic.cc/
IXGH 30N60C2D1
IXGT 30N60C2D1
Fig. 7. Tra nsconductance
0
5
10
15
20
25
30
35
0 20 40 60 80 100 120 140 160 180 200
I
C
- Amperes
g
f s
- Siemens
T
J
= 25ºC
125ºC
Fig. 8. Dependence of Turn-Off
Energy on R
G
0
200
400
600
800
1000
1200
1400
1600
1800
2000
5 101520253035404550
R
G
- Ohms
E
off
- microJoules
I
C
= 12
A
T
J
= 125ºC
V
GE
= 15V
V
CE
= 400V
I
C
= 24A
I
C
= 48A
Fig. 9. Depend enc e o f Turn-Off
Energy
on I
C
0
200
400
600
800
1000
1200
1400
10 15 20 25 30 35 40 45 50
I
C
- Amperes
E
off
- microJoules
R
G
= 5
V
GE
= 15V
V
CE
= 400V
T
J
= 125ºC
T
J
= 25ºC
Fig. 10. Depend ence of Turn -Off
Energy on Temperature
0
200
400
600
800
1000
1200
1400
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
E
off
- microJoules
I
C
= 48A
R
G
= 5
V
GE
= 15V
V
CE
= 400V
I
C
= 24A
I
C
= 12A
Fig. 11. Dependenc e of Turn-Off
Switching Time on R
G
100
150
200
250
300
350
400
450
5 101520253035404550
R
G
- Ohms
Switching Time - nanosecond
I
C
= 24A
t
d(off)
t
fi
-
- - - - -
T
J
= 125ºC
V
GE
= 15V
V
CE
= 400V
I
C
= 12A
I
C
= 48
A
Fig. 12. Dependence of Turn-Off
S witching Time
on I
C
40
60
80
100
120
140
160
180
200
10 15 20 25 30 35 40 45 50
I
C
- Amperes
Switching Time - nanosecond
t
d(off)
t
fi
- - - - - -
R
G
= 5
V
GE
= 15V
V
CE
= 400V
T
J
= 125ºC
T
J
= 25ºC
http://store.iiic.cc/
© 2005 IXYS All rights reserved
Fig. 14. Gate Charge
0
3
6
9
12
15
0 10203040506070
Q
G
- nanoCoulombs
V
G E
- Volts
V
CE
= 300V
I
C
= 24A
I
G
= 10mA
Fig. 15. Capacitance
10
100
1000
10000
0 5 10 15 20 25 30 35 40
V
C E
- Volts
Capacitance - p F
C
ies
C
oes
C
res
f = 1 MHz
Fig. 13. Dependence of Turn-Off
Switching Time on Temperature
40
60
80
100
120
140
160
180
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
Switching Time - nanosecond
I
C
= 12A
24A
48A
t
d(off)
t
fi
-
- - - - -
R
G
= 5
V
GE
= 15V
V
CE
= 400V
I
C
= 48A
24A
12A
Fig. 16. Maximum Transient Thermal Resistance
0.1
1.0
1 10 100 1000
Pulse Width - milliseconds
R
(th) J C
-
C/W)
0.5
IXGH 30N60C2D1
IXGT 30N60C2D1
http://store.iiic.cc/
IXGH 30N60C2D1
IXGT 30N60C2D1
200 600 10000 400 800
60
70
80
90
0.00001 0.0001 0.001 0.01 0.1 1
0.001
0.01
0.1
1
04080120160
0.0
0.5
1.0
1.5
2.0
Kf
TVJ
°C
-diF/dt
t
s
K/W
0 200 400 600 800 1000
0
5
10
15
20
0.00
0.25
0.50
0.75
1.00
VFR
diF/dt
V
200 600 10000 400 800
0
5
10
15
20
25
30
100 1000
0
200
400
600
800
1000
0123
0
10
20
30
40
50
60
IRM
Qr
IF
A
VF-diF/dt -diF/dt
A/µs
A
V
nC
A/µsA/µs
trr
ns tfr
ZthJC
A/µs
µs
DSEP 29-06
IF= 60A
IF= 30A
TVJ= 100°C TVJ= 100°C
Fig. 19. Peak reverse current IRM
Fig. 18. Reverse recovery chargeFig. 17. Forward current IF versus VF
TVJ= 100°C TVJ= 100°C
IF= 60A
IF= 30A
Qr
IRM
Fig. 20. Dynamic parameters Qr, IRM Fig. 21. Recovery time trr versus Fig. 22. Peak forward voltage VFR
IF= 60A
IF= 30A
tfr
VFR
Fig. 23. Transient thermal resistance junction to case
Constants for ZthJC calculation:
iR
thi (K/W) ti (s)
1 0.502 0.0052
2 0.193 0.0003
TVJ=25°C
TVJ=100°C
TVJ=150°C
Fig. 20. Dynamic parameters Qr, IRM
http://store.iiic.cc/