FN9346 Rev.1.00 Page 1 of 58
Mar 15, 2019
FN9346
Rev.1.00
Mar 15, 2019
RAA210850
Pin-Configurable 50A DC/DC Power Module with PMBus Interface
DATASHEET
The RAA210850 is a pin-strap configurable 50A
step-down PMBus-compliant DC/DC power supply
module that integrates a digital PWM controller,
synchronous MOSFETs, power inductor, and passive
components. Only input and output capacitors are needed
to finish the design. Because of its thermally enhanced
HDA packaging technology, the module can deliver up to
50A of continuous output current without the need for
airflow or additional heat sinking. The RAA210850
simplifies configuration and control of Renesas digital
power technology while offering an upgrade path to full
PMBus configuration through the pin-compatible
ISL8272M.
The RAA210850 operates with the ChargeMode™
control architecture, which responds to a transient load
within a single switching cycle. The RAA210850 can be
easily programmed with pin-strap resistors to set the
output voltage, switching frequency, input UVLO,
soft-start/stop, and device addresses. PMBus can be used
to monitor voltages, currents, temperatures, and fault
status. The RAA210850 is supported by
PowerNavigator™ software, a Graphical User Interface
(GUI), that can configure modules for desired solutions.
The RAA210850 is available in a low profile, compact,
(18mmx23mmx7.5mm) fully encapsulated, thermally
enhanced HDA package, suitable for automated
assembly by standard surface mount equipment.
Related Literature
For a full list of related documents, visit our website:
RAA210850 product page
Features
Wide input voltage range: 4.5V to 14V
Up to 96% efficiency
Programmable output voltage
0.6V to 5V output voltage settings
±1.2% VOUT accuracy over line, load, and
temperature
PMBus compliant communication interface
Pin-strap mode for standard settings
•V
OUT, switching frequency, input UVLO,
soft-start/stop, and external synchronization
Real-time telemetry for VIN, VOUT, IOUT,
temperature, duty cycle, and switching frequency
Complete overvoltage, undervoltage, current and
temperature protections with fault logging
PowerNavigator supported
Thermally enhanced HDA package
Applications
Server, telecom, storage, and datacom
Industrial/ATE and networking equipment
General purpose power for ASIC, FPGA, DSP, and
memory
Figure 1. 50A Application Circuit Figure 2. A Small Package for High Power Density
VIN
VDD
VR55
VR5
VR
VOUT
SGND PGND
VR6
VDRV
SCL
SDA
SALRT
VMON
VCC
VDRV1
VSENP
VSENN
VIN
CIN
RAA210850
VOUT
PMBus
Interface
COUT
100k
2x10µF
10µF 10µF

EN
ENABLE
6.65k

Note:
1. Figure 1 represents a
typical implementation of the RAA210850. Renesas
recommends tying the enable pin (EN) to SGND for
23mm
18mm
7.5mm
FN9346 Rev.1.00 Page 2 of 58
Mar 15, 2019
RAA210850
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Typical Application Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3. Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Efficiency Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Transient Response Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Derating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 SMBus Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Soft-Start/Stop Delay and Ramp Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Input Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Power-Good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Switching Frequency and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 Loop Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8 SMBus Module Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.9 Output Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.10 Output Prebias Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.11 Output Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.12 Thermal Overload Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.13 Phase Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.14 Monitoring with SMBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.15 Snapshot Parameter Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5. Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Thermal Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 PCB Layout Pattern Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Thermal Vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FN9346 Rev.1.00 Page 3 of 58
Mar 15, 2019
RAA210850
6. PMBus Command Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1 PMBus Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 PMBus Use Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7. PMBus Commands Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.1 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2 Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
FN9346 Rev.1.00 Page 4 of 58
Mar 15, 2019
RAA210850 1. Overview
1. Overview
1.1 Typical Application Module
Figure 3. Typical Application Circuit - Single Module
9,1
9''
95
95
95
9287
6*1'
3*1'
95
9'59
6&/
6'$
6$/57
9021
9&&
9'59
96(13
96(11
9,1
9&&
5$$
9287
9$
)
) )
6$
96(7B&56
(1
96(7B),1(
6689/2
$6&5
9$8;RU9&&
9WR9
6<1&
&)*
6:'
6:
6:'
6:
9
)
)
%XON
[)
&HUDPLF
[)
&HUDPLF
[)
326&$3
6&/
3LQ6WUDS5HVLVWRUV
(1
6'$
6$/57
&&&
&&
&&
)
&&
555
5
5
55555 5
3* 3*
N N N
N
N

5
5
Notes:
2. R2 and R3 are not required if the PMBus host already has I2C pull-up resistors.
3. R6 through R11 can be selected according to the tables for the pin-strap resistor
setting in this document.
4. V25, VR, and VR55 do not need external capacitors. V25 can be no connection.
Note 2
Note 3
Note 2
FN9346 Rev.1.00 Page 5 of 58
Mar 15, 2019
RAA210850 1. Overview
Table 1. RAA210850 Design Guide Matrix and Output Voltage Response
VIN
(V)
VOUT
(V)
COUT
(Bulk)
(µF)
COUT
(Ceramic)
(µF)
ASCR
Residual
(Note 6)
ASCR Gain
(Note 6)
P-P Deviation
(mV)
Recovery Time
(µs)
Load Step
(A) (Note 7)
Frequency
(kHz)
12 0.7 5x470 12 x100 90 280 64.39 12.8 0 - 25 364
12 0.7 4x470 8 x100 90 600 61.25 10.23 0 – 25 615
5 0.7 5x470 12 x100 90 280 62.36 12.26 0 – 25 364
5 0.7 4x470 8 x100 90 500 61.32 7.47 0 – 25 640
12 0.8 5x470 10 x100 90 250 72.59 14.7 0 – 25 364
12 0.8 3x470 10 x100 100 450 70.76 9.83 0 – 25 615
5 0.8 5x470 10 x100 90 250 65.88 11.86 0 – 25 364
5 0.8 3x470 10 x100 90 450 65.29 8.66 0 – 25 615
12 0.9 4x470 12 x100 90 230 80 12.8 0 – 25 364
12 0.9 3x470 8 x100 90 320 81.85 10.58 0 – 25 615
5 0.9 4x470 12 x100 90 230 73.84 12.26 0 – 25 364
5 0.9 3x470 8 x100 90 320 78.73 9.06 0 – 25 615
12 1 3x470 10 x100 90 250 91.65 10.8 0 – 25 421
12 1 2x470 9 x100 100 320 92.06 11.38 0 – 25 615
5 1 3x470 10 x100 90 220 84.2 12.65 0 – 25 421
5 1 2x470 9 x100 100 320 85.83 11.46 0 – 25 727
12 1.2 2x470 11 x100 100 240 107.16 10.41 0 – 25 471
12 1.2 2x470 8 x100 90 320 103.49 8.22 0 – 25 727
5 1.2 2x470 11 x100 100 240 98.35 15 0 – 25 471
5 1.2 2x470 8 x100 90 320 99.77 8.62 0 – 25 727
12 1.5 2x470 6 x100 90 160 137.69 10.4 0 – 25 471
12 1.5 1x470 8 x100 100 240 131.45 9.71 0 – 25 727
5 1.5 2x470 6 x100 90 160 133.77 17 0 – 25 471
5 1.5 1x470 8 x100 100 240 140.51 12.61 0 – 25 727
12 1.8 1x470 12 x100 100 160 151.12 12.61 0 – 25 471
12 1.8 1x470 6 x100 100 200 159.72 9.46 0 – 25 727
5 1.8 1x470 12 x100 100 160 150.77 22.98 0 – 25 471
5 1.8 1x470 6 x100 100 200 159.62 17.39 0 – 25 727
12 2.5 1x470 9 x100 100 160 174.37 9.81 0 – 25 533
5 2.5 1x470 9 x100 100 160 168.41 29.37 0 – 25 533
12 3.3 1x470 7 x100 90 120 218.11 8.62 0 – 25 533
12 5 1x470 9 x100 90 120 224.44 5.03 0 – 2 571
Notes:
5. 1 x 470µF input bulk (EEE1EA471P) and 6x22µF input ceramic (CRM32ER71C226KE18L) capacitors are used to evaluate all
test conditions above. The CIN bulk capacitor is optional only for energy buffer from the long input power supply cable.
6. ASCR gain and residual are selected to ensure phase margin higher than 60° and gain margin higher than 8dB at room
temperature.
7. Output voltage response is tested with 0 to 50% load step and slew rate at 15A/µs.
FN9346 Rev.1.00 Page 6 of 58
Mar 15, 2019
RAA210850 1. Overview
Table 2. Recommended Input/Output Capacitors
Vendors Value Part Number
Murata, Input Ceramic 47µF, 16V, 1210 GRM32ER61C476ME15L
Murata, Input Ceramic 22µF, 25V, 1210 GRM32ER61E226KE15L
Murata, Input Ceramic 22µF, 16V, 1210 GRM32ER71C226KE18L
Murata, Output Ceramic 100µF, 6.3V, 1206 GRM31CR60J107ME39L
TDK, Output Ceramic 100µF, 6.3V, 1206 C3216X5R0J107M160AB
Panasonic, Output Bulk 470µF, 4V, 2917 4TPE470MCL
Panasonic, Output Bulk 470µF, 6.3V, 2917 6TPF470MAH
Panasonic, Input Bulk 470µF, 25V EEE1EA471P
FN9346 Rev.1.00 Page 7 of 58
Mar 15, 2019
RAA210850 1. Overview
1.2 Internal Block Diagram
Figure 4. Internal Block Diagram
'LJLWDO&RQWUROOHU
3*1'
6*1'
96(7B&56
6&/
6$/57
6$
(1
3*
6<1&
6*1'
3:0
30%XV,&
,QWHUIDFH
6'$
$'&
&6$
96$
6XSHUYLVRU
,QWHUQDO7HPS
6HQVRU
3URWHFWLRQ
2&8&
'3:0
3//
6<1&
287
3RZHU0DQDJHPHQW
66 2989 ,17(5/($9(
190
9''
61$36+27
2787
9287
+
/RJLF
9,1
3*1'
9,1
9'59
95
96(13
&)*
9021
$'&
95
9
/'2V
95
9''
)LOWHU
9287
+
/RJLF
9,1
3*1'
&6$
&KDUJH0RGH70
&RQWURO
$'&
3:0
95
9'59
9'59
9'59
9'59
9&&
6689/2
$6&5
96(7B),1(
9'59
6:'
6:
6:'
6:
96(11
/'2
$'&
:
:
FN9346 Rev.1.00 Page 8 of 58
Mar 15, 2019
RAA210850 1. Overview
1.3 Ordering Information
Part Number
(Notes 9, 10)
Part
Marking
Temp Range
(°c)
Tape and Reel
(Units) (Note 8)
Package
(RoHS Compliant)
Pkg.
Dwg. #
RAA2108502GLG#AG0 RAA2108502 -40 to +85 - 58 Ld 18x23 HDA Y58.18x23
RAA2108502GLG#HG0 RAA2108502 -40 to +85 100 58 Ld 18x23 HDA Y58.18x23
RTKA2108502H00000BU Single-Module Evaluation Board
Notes:
8. Refer to TB347 for details about reel specifications.
9. These Pb-free plastic packaged products are RoHS compliant by EU exemption 7C-I and 7A. They employ special Pb-free
material sets; molding compounds/die attach materials and NiPdAu plate-e4 termination finish, which is compatible with both
SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or
exceed the Pb-free requirements of IPC/JEDEC J STD-020.
10. For Moisture Sensitivity Level (MSL), refer to the RAA210850 device. For more information about MSL, refer to TB363.
Table 3. Key Differences between Family of Parts
Part Number Description VIN Range (V) VOUT Range (V) IOUT (A)
RAA210850 50A DC/DC single channel power module 4.5 - 14 0.6 - 5 50
RAA210833 33A DC/DC single channel power module 4.5 - 14 0.6 - 5 33
RAA210825 25A DC/DC single channel power module 4.5 - 14 0.6 - 5 25
RAA210870 70A DC/DC single channel power module 4.5 - 14 0.6 - 2.5 70
RAA210925 25A/25A DC/DC dual channel power module 4.5 - 14 0.6 - 5 25/25
Table 4. Comparison of Simple Digital and Full Digital Parts
ISL8272M RAA210850
VIN (V) 4.5 - 14 4.5 - 14
VOUT (V) 0.6 - 5 0.6 - 5
IOUT (Max) (A) 50 50
fSW (kHz) 296 - 1067 296 - 1067
Digital PMBus Programmablility for
Configuration of Modules
All PMBus commands. NVM access to
store module configuration
Configuration of modules supported by
pin-strap resistors. Digital programmability
supports configuration changes during
run-time operation with a subset of PMBus
commands. No NVM access to store module
configuration
Power Navigator Support Yes Yes
SYNC Capability Yes Yes
Current Sharing Multi-Modules Yes N o
DDC Pin (Inter-Device Communication) Yes N o
Note: For a full comparison of all the RAA210XXX and ISL827XM product offerings, please visit the simple-digital module family
page.
FN9346 Rev.1.00 Page 9 of 58
Mar 15, 2019
RAA210850 1. Overview
1.4 Pin Configuration
58 Ld HDA
Top View
1.5 Pin Descriptions
Pin Label Type Description
PAD1, 2 VOUT PWR Power supply output voltage. Output voltage from 0.6V to 5V. Tie these two pads together to
achieve a single output. For higher output voltage, refer to the derating curves starting on
page 17 to set the maximum output current from these pads.
PAD3, 4, 5, 7,
10, 12, 13, 15
PGND PWR Power ground. Refer to Layout Guidelines” on page 29 for the PGND pad connections and I/O
capacitor placement.
PAD6 SGND PWR Signal ground. Refer to Layout Guidelines” on page 29 for the SGND pad connections.
PAD8, 9, 11 VIN PWR Input power supply voltage to power the module. The input voltage range is 4.5V to 14V.
PAD14, 16 SW1, SW2 PWR Switching node pads. The SW pads dissipate heat and provide good thermal performance. Refer
to Layout Guidelines” on page 29 for the SW pad connections.
C6 VSET_CRS I Output voltage selection pin. Used to set the VOUT set point. Use VSET_FINE for fine-tuning.
C7 VSET_FINE I Output voltage fine-tuning. Provides increased VOUT resolution based on the programmed
VSET_CRS value.
$
%
&
'
(
)
*
+
-
.
/
0
1
3
5
7
8
9
:
<
$$
$%
$&

3$' 3$'
3$'
3$' 3$' 3$' 3$'
3$'
3$'
3$'
3$'
3$'
3$'
3$'
3$'
3$'
9287 9287
3*1' 3*1'
3*1'
3*1'
3*1' 3*1'
6*1'
3*1' 3*1'
6: 6:
9,1 9,1
9,1
95
9'59
9'59
6:'
3*1' 9'59
3*1'
6:'
95
9&&
96(13
96(11
7(67
7(67
7(67
6689/2
3*
96(7B&56
7(67
96(7B),1(
&)* 6$
6$/57 6'$
6&/
9021
6<1&
7(67
(1
7(67
7(67
9
$6&5
6*1'
9''
95
6*1'
95
9'59
3*1'
FN9346 Rev.1.00 Page 10 of 58
Mar 15, 2019
RAA210850 1. Overview
C8 CFG I Clock source configuration pin. If the clock source is set to be internal, the internal frequency is
set according to the SYNC pin resistor settings. If the clock source is set to external, the internal
frequency is set according to the CFG pin resistor. Refer to Switching Frequency and PLL” on
page 22 for more information.
C9 VMON I Driver voltage monitoring. Use this pin to monitor VDRV through an external 16:1 resistor divider.
C10 SA I Serial address selection pin. Assigns a unique address for each individual device and enables
certain management features.
C11 SALRT O Serial alert. Connect to an external host if desired. SALRT is asserted low upon a fault event and
deasserted when the fault is cleared. A pull-up resistor is required.
C12 SDA I/O Serial data. Connect to an external host and/or to other Digital-DC™ devices. A pull-up resistor
is required.
C13 SCL I/O Serial clock. Connect to an external host and/or to other Digital-DC devices. A pull-up resistor is
required.
D4 SS/ UVLO I Soft-start/stop and undervoltage lockout selection pin. Sets the turn on/off delay and ramp time
and the input UVLO threshold levels.
D5 PG O Power-good output. The power-good is configured as an open-drain output.
D13 SYNC I/O Clock synchronization input. Sets the frequency of the internal switch clock, or synchronizes to
an external clock.
E14 EN I Enable pin. Logic high to enable the module output.
C5, D14, E4,
E15, F4, F15,
G4
TEST - Test pins. Do not connect these pins.
G14 ASCR I ChargeMode™ control ASCR parameters selection pin. Sets ASCR gain and residual values.
G15 V25 PWR Internal 2.5V reference that powers internal circuitry. No external capacitor is required for this
pin.
H3 VSENN I Differential output voltage sense feedback. Connect to the negative output regulation point.
H4 VSENP I Differential output voltage sense feedback. Connect to the positive output regulation point.
H16, J16,
K16, M14
SGND PWR Signal grounds. Use multiple vias to connect the SGND pins to the internal SGND layer.
K14 VDD PWR Input supply voltage for the controller. Connect the VDD pad to the VIN supply.
L2 VR PWR Internal LDO bias pin. Tie VR directly to VR55 with a short loop trace.
L3, P11 SWD1,
SWD2
PWR Switching node driving pins. Directly connect to the SW1 and SW2 pads with short loop wires.
L14 VR5 PWR Internal 5V reference that powers internal circuitry. Place a 10µF decoupling capacitor for this
pin.
M1 VCC PWR Internal LDO output. Connect VCC to VDRV for internal LDO driving.
M5, M17, N5 PGND PWR Power grounds. Use multiple vias to connect the PGND pins to the internal PGND layer.
M10 VR55 PWR Internal 5.5V bias voltage for internal LDO use only. Tie VR55 directly to the VR pin.
M13 VR6 PWR Internal 6V reference used to power internal circuitry. Place a 10µF decoupling capacitor for this
pin.
N6, N16 VDRV PWR Power supply for internal FET drivers. Connect a 10μF bypass capacitor to each of these pins.
These pins can be driven by the internal LDO through VCC pin or by the external power supply
directly. Keep the driving voltage between 4.5V and 5.5V. For 5V input applications, use an
external supply or connect this pin to VIN.
R8, R17 VDRV1 I Bias pin of the internal FET drivers. Always tie to VDRV.
Pin Label Type Description
FN9346 Rev.1.00 Page 11 of 58
Mar 15, 2019
RAA210850 2. Specifications
2. Specifications
2.1 Absolute Maximum Ratings
2.2 Thermal Information
2.3 Recommended Operating Conditions
Parameter Minimum Maximum Unit
Input Supply Voltage, VIN Pin -0.3 +17 V
Input Supply Voltage for Controller, VDD Pin -0.3 +17 V
MOSFET Switch Node Voltage, SW1/2, SWD1/2 -0.3 +17 V
MOSFET Driver Supply Voltage, VDRV, VDRV1 Pin -0.3 +6.0 V
Output Voltage, VOUT pin -0.3 +6.0 V
Internal Reference Supply Voltage, VR6 Pin -0.3 +6.6 V
Internal Reference Supply Voltage, VR, VR5, VR55 Pin -0.3 +6.5 V
Internal Reference Supply Voltage, V25 Pin -0.3 +3 V
Logic I/O Voltage for EN, CFG, PG, ASCR, VSET_FINE, SA, SCL, SDA,
SALRT, SYNC, SS/UVLO, VMON, VSET_CRS
-0.3 +6.0 V
Analog Input Voltages
VSENP -0.3 +6.0 V
VSENN -0.3 +0.3 V
ESD Rating Value Unit
Human Body Model (Tested per JS-001-2017) 2 kV
Machine Model (Tested per JESD22-A115C) 200 V
Charged Device Model (Tested per JS-002-2014) 750 V
Latch-Up (Tested per JESD78E; Class 2, Level A) 100 mA
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can
adversely impact product reliability and result in failures not covered by warranty.
Thermal Resistance (Typical) JA (°C/W) JC (°C/W)
58 Ld HDA Package (Notes 11, 12)5.3 1.1
Notes:
11. JA is measured in free air with the module mounted on an 8-layer evaluation board 4.7x4.8inch in size with 2oz Cu on all layers
and multiple via interconnects as specified in the RTKA2108502H00000BU evaluation board user guide.
12. For JC, the “case temp” location is the center of the package underside.
Parameter Minimum Maximum Unit
Maximum Junction Temperature (Plastic Package) +125 °C
Storage Temperature Range -55 +150 °C
Pb-Free Reflow Profile See Figure 29 on page 31
Parameter Minimum Maximum Unit
Input Supply Voltage Range, VIN 4.5 14 V
Input Supply Voltage Range for Controller, VDD 4.5 14 V
Output Voltage Range, VOUT 0.6 5 V
FN9346 Rev.1.00 Page 12 of 58
Mar 15, 2019
RAA210850 2. Specifications
2.4 Electrical Specifications
Output Current Range, IOUT(DC) (Note 15)050A
Operating Junction Temperature Range, TJ-40 +125 °C
VIN = VDD= 12V, fSW = 533kHz, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C. Boldface limits apply
across the operating temperature range, -40°C to +85°C.
Parameter Symbol Test Conditions
Min
(Note 13)Typ
Max
(Note 13) Unit
Input And Supply Characteristics
Input Supply Current for Controller IDD VIN = VDD = 12V, VOUT = 0V,
module not enabled
40 50 mA
6V Internal Reference Supply
Voltage
VR6 5.5 6.1 6.6 V
5V Internal Reference Supply VR5 IVR5 <5mA 4.5 5.2 5.5 V
2.5V Internal Reference Supply V25 2.25 2.5 2.75 V
Internal LDO Output Voltage Vcc 5.3 V
Internal LDO Output Current IVCC VIN = VDD = 12V, VCC
connected to VDRV, module
enabled
50 mA
Input Supply Voltage for Controller
Read Back Resolution
VDD_READ_RES ±20 mV
Input Supply Voltage for Controller
Read Back Total Error (Note 16)
VDD_READ_ERR PMBus Read ±2 %FS
Output Characteristics
Output Voltage Adjustment Range VOUT_RANGE VIN > VOUT + 1.8V 0.54 5.5 V
Output Voltage Set-Point Range VOUT_RES Configured using PMBus ±0.025 %
Output Voltage Set-Point Accuracy
(Note 14, 16)
VOUT_ACCY Includes line, load, and
temperature
(-20°C ≤ TA ≤ +85°C)
-1.2 1.2 %FS
Output Voltage Read Back
Resolution
VOUT_READ_RES ±0.15 %FS
Output Voltage Read Back Total
Error (Note 16)
VOUT_READ_ERR PMBus read -2 2 %FS
Output Current Read Back
Resolution
IOUT_READ_RES 0.2 A
Output Current Range (Note 15)I
OUT_RANGE 50 A
Output Current Read back Total
Error
IOUT_READ_ERR PMBus read at max load.
VOUT = 1.5V
±3 A
Soft-Start and Sequencing
Delay Time From Enable to VOUT
Rise
tON_DELAY Configured using pin-strap
resistors or PMBus
2 300 ms
tON_DELAY Accuracy tON_DELAY_ACCY ±2 ms
Output Voltage Ramp-Up Time tON_RISE Configured using pin-strap
resistors or PMBus
0.5 120 ms
Output Voltage Ramp-Up Time
Accuracy
tON_RISE_ACCY ±250 µs
Parameter Minimum Maximum Unit
FN9346 Rev.1.00 Page 13 of 58
Mar 15, 2019
RAA210850 2. Specifications
Delay Time From Disable to VOUT
Fall
tOFF_DELAY Configured using pin-strap
resistors or PMBus
2 300 ms
tOFF_DELAY Accuracy tOFF_DELAY_ACCY ±2 ms
Output Voltage Fall Time tOFF_FALL Configured using pin-strap
resistors or PMBus
0.5 120 ms
Output Voltage Fall Time Accuracy tON_FALL_ACCY ±250 µs
Power-Good
Power-Good Delay VPG_DELAY 3ms
Temperature Sense
Temperature Sense Range TSENSE_RANGE Configurable using PMBus -50 150 C
Internal Temperature Sensor
Accuracy
INT_TEMPACCY Tested at +100°C -5 5 C
Fault Protection
VDD Undervoltage Threshold
Range
VDD_UVLO_RANGE Measured internally 4.18 16 V
VDD Undervoltage Threshold
Accuracy (Note 16)
VDD_UVLO_ACCY ±2 %FS
VDD Undervoltage Response Time VDD_UVLO_DELAY 10 µs
VOUT Overvoltage Threshold
Range
VOUT_OV_RANGE Factory default 1.15VOUT V
Configured using PMBus 1.05VOUT VOUT_MAX V
VOUT Undervoltage Threshold
Range
VOUT_UV_RANGE Factory default 0.85VOUT V
Configured using PMBus 0 0.95VOUT V
VOUT OV/UV Threshold Accuracy
(Note 14)
VOUT_OV/UV_ACCY -2 2 %
VOUT OV/UV Response Time VOUT_OV/UV_DELAY 10 µs
Output Current Limit Set-Point
Accuracy (Note 16)
ILIMIT_ACCY Tested at
IOUT_OC_FAULT_LIMIT = 50A
±10 % FS
Output Current Fault Response
Time (Note 17)
ILIMIT_DELAY Factory default 3 tSW
Over-Temperature Protection
Threshold
(Controller Junction Temperature)
TJUNCTION Factory default 115 C
Configured using PMBus -40 125 C
Thermal Protection Hysteresis TJUNCTION_HYS 15 C
VIN = VDD= 12V, fSW = 533kHz, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C. Boldface limits apply
across the operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 13)Typ
Max
(Note 13) Unit
FN9346 Rev.1.00 Page 14 of 58
Mar 15, 2019
RAA210850 2. Specifications
Oscillator and Switching Characteristics
Switching Frequency Range fSW_RANGE 296 1067 kHz
Switching Frequency Set-Point
Accuracy
fSW_ACCY -5 5 %
Minimum Pulse Width Required
from External SYNC Clock
EXT_SYNCPW Measured at 50% amplitude 150 ns
Drift Tolerance for External SYNC
Clock
EXT_SYNCDRIFT External SYNC Clock equal to
500kHz is not supported
-10 10 %
Logic Input/Output Characteristics
Bias Current at the Logic Input Pins ILOGIC_BIAS EN, CFG, PG, SA, SCL, SDA,
SALRT, SYNC, UVLO, VMON,
VSET_CRS
-100 100 nA
Logic Input Low Threshold Voltage VLOGIC_IN_LOW 0.8 V
Logic Input High Threshold Voltage VLOGIC_IN_HIGH 2.0 V
Logic Output Low Threshold
Voltage
VLOGIC_OUT_LOW 2mA sinking 0.5 V
Logic Output High Threshold
Voltage
VLOGIC_OUT_HIGH 2mA sourcing 2.25 V
PMBus Interface Timing Characteristic
PMBus Operating Frequency fSMB 100 400 kHz
Notes:
13. Compliance to datasheet limits is assured by one or more methods: Production test, characterization and/or design. Controller
is independently tested before module assembly.
14. VOUT measured at the termination of the VSENP and VSENN sense points.
15. The MAX load current is determined by the thermal Derating Curves” on page 17.
16. “FS” stands for full scale of recommended maximum operation range.
17. “tSW” stands for time period of operation switching frequency.
VIN = VDD= 12V, fSW = 533kHz, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C. Boldface limits apply
across the operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 13)Typ
Max
(Note 13) Unit
FN9346 Rev.1.00 Page 15 of 58
Mar 15, 2019
RAA210850 3. Typical Performance Curves
3. Typical Performance Curves
3.1 Efficiency Performance
Operating condition: TA = +25°C, no air flow. COUT = 6x470µF POSCAP + 12X100µF Ceramic. Typical values used unless otherwise noted.
Figure 5. Efficiency vs Output Current at VIN = 5V for
Various Output Voltages
Figure 6. Efficiency vs Switching Frequency at VIN = 5V,
IOUT = 50A for Various Output Voltages
Figure 7. Efficiency vs Output Current at VIN = 9V for
Various Output Voltages
Figure 8. Efficiency vs Switching Frequency at VIN = 9V,
IOUT = 50A for Various Output Voltages
Figure 9. Efficiency vs Output Current at VIN = 12V for
Various Output Voltages
Figure 10. Efficiency vs Switching Frequency at
VIN =12V, I
OUT = 50A for Various Output Voltages
86
87
88
89
90
91
92
93
94
95
300 350 400 450 500 550 600 650 700 750 800 850 900
Efficiency (%)
Frequency (kHz)
0.8Vout 1Vout
1.2Vout 1.8Vout
2.5Vout
65
70
75
80
85
90
95
100
0 1020304050
Efficiency (%)
Load Current (A)
0.8Vout_296kHz
1Vout_296kHz
1.2Vout_296kHz
1.8Vout_364kHz
2.5Vout_533kHz
3.3Vout_533kHz
5Vout_571kHz
82
84
86
88
90
92
94
96
98
300 350 400 450 500 550 600 650 700 750 800 850 900
Efficiency (%)
Frequency (kHz)
0.8Vout 1Vout
1.2Vout 1.8Vout
2.5Vout 3.3Vout
65
70
75
80
85
90
95
100
0 1020304050
Efficiency (%)
Load Current (A)
0.8Vout_296kHz
1Vout_296kHz
1.2Vout_296kHz
1.8Vout_364kHz
2.5Vout_533kHz
3.3Vout_533kHz
5Vout_571kHz
80
82
84
86
88
90
92
94
96
98
300 350 400 450 500 550 600 650 700 750 800 850 900
Efficiency (%)
Frequency (kHz)
0.8Vout 1Vout
1.2Vout 1.8Vout
2.5Vout 3.3Vout
5Vout
FN9346 Rev.1.00 Page 16 of 58
Mar 15, 2019
RAA210850 3. Typical Performance Curves
3.2 Transient Response Performance
Operating conditions: VIN = 12V, fSW = 533kHz, IOUT = 0A/25A, IOUT slew rate = 15A/µs, TA= +25°C, no air flow. Typical values are used
unless otherwise noted.
Figure 11. 5VIN to 0.8VOUT Transient Response,
fSW = 615kHz, COUT = 10x100µF Ceramic + 3x470µF
POSCAP, ACSR Residual = 90, ASCR Gain = 450
Figure 12. 5VIN to 1.2VOUT Transient Response,
fSW = 727kHz, COUT = 8x100µF Ceramic + 2x470µF
POSCAP, ACSR Residual = 90, ASCR Gain = 320
Figure 13. 12VIN to 1.5VOUT Transient Response,
fSW = 471kHz, COUT = 6x100µF Ceramic + 2x470µF
POSCAP, ACSR Residual = 90, ASCR Gain = 160
Figure 14. 12VIN to 1.8VOUT Transient Response,
fSW = 471kHz, COUT = 12x100µF Ceramic + 1x470µF
POSCAP, ACSR Residual = 100, ASCR Gain = 160
Figure 15. 12VIN to 2.5VOUT Transient Response,
fSW = 533kHz, COUT = 9x100µF Ceramic + 1x470µF
POSCAP, ACSR Residual = 100, ASCR Gain = 160
Figure 16. 12VIN to 5VOUT Transient Response,
fSW = 571kHz, COUT = 9x100µF Ceramic + 1x470µF
POSCAP, ACSR Residual = 90, ASCR Gain = 120
VOUT = 50mV/Div
IOUT = 10A/Div
50µs/Div
VOUT = 50mV/Div
IOUT = 10A/Div
50µs/Div
VOUT = 50mV/Div
IOUT = 10A/Div
50µs/Div
VOUT = 100mV/Div
IOUT = 10A/Div
50µs/Div
VOUT = 100mV/Div
IOUT = 10A/Div
50µs/Div
VOUT = 100mV/Div
IOUT = 10A/Div
50µs/Div
FN9346 Rev.1.00 Page 17 of 58
Mar 15, 2019
RAA210850 3. Typical Performance Curves
3.3 Derating Curves
All of the following curves were plotted at TJ = +120°C.
Figure 17. 12VIN to 1VOUT
, fSW = 364kHz Figure 18. 5VIN to 1VOUT
, fSW = 364kHz
Figure 19. 12VIN to 1.5VOUT
, fSW = 471kHz Figure 20. 5VIN to 1.5VOUT
, fSW = 471kHz
Figure 21. 12VIN to 1.8VOUT
, fSW = 727kHz Figure 22. 5VIN to 1.8VOUT
, fSW = 727kHz
0
10
20
30
40
50
60
25 35 45 55 65 75 85 95 105 115 125
Load Current (A)
Ambient Temperature (°C)
0LFM
400LFM
200LFM
0
10
20
30
40
50
60
25 35 45 55 65 75 85 95 105 115 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
10
20
30
40
50
60
25 35 45 55 65 75 85 95 105 115 125
Load Current (A)
Ambient Temperature (°C)
400LFM
200LFM
0LFM
0
10
20
30
40
50
60
25 35 45 55 65 75 85 95 105 115 125
Load Current (A)
Ambient Temperature (°C)
400LFM
200LFM
0LFM
0
10
20
30
40
50
60
25 35 45 55 65 75 85 95 105 115 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
10
20
30
40
50
60
25 35 45 55 65 75 85 95 105 115 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
FN9346 Rev.1.00 Page 18 of 58
Mar 15, 2019
RAA210850 3. Typical Performance Curves
Figure 23. 12VIN to 2.5VOUT
, fSW = 533kHz Figure 24. 5VIN to 2.5VOUT
, fSW = 533kHz
Figure 25. 12VIN to 3.3VOUT
, fSW = 533kHz Figure 26. 12VIN to 5VOUT
, fSW = 571kHz
All of the following curves were plotted at TJ = +120°C. (Continued)
0
10
20
30
40
50
60
25 35 45 55 65 75 85 95 105 115 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
10
20
30
40
50
60
25 35 45 55 65 75 85 95 105 115 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
10
20
30
40
50
60
25 35 45 95105115
Load Current (A)
55657585
Ambient Temperature &

0LFM
200LFM
400LFM
0
10
20
30
40
50
60
25 35 45 95 105 115 125
Load Current (A)
55657585
Ambient Temperature (°C)
0LFM
200LFM
400LFM
FN9346 Rev.1.00 Page 19 of 58
Mar 15, 2019
RAA210850 4. Functional Description
4. Functional Description
4.1 SMBus Communications
The RAA210850 provides a SMBus digital interface that enables configuration of the module and monitors the
input and output parameters. The RAA210850 can be used with any SMBus host device. The module is compatible
with PMBus Power System Management Protocol Specification Parts I and II version 1.2. The RAA210850 accepts
most standard PMBus commands. Renesas recommends tying the enable pin to SGND when PMBus commands
are issued.
The SMBus device address is the only parameter that must be set by external pins.
4.2 Output Voltage Selection
The output voltage can be set to a voltage between 0.6V and 5V if the input voltage is higher than the desired
output voltage by an amount sufficient to maintain regulation.
The VSET_CRS (VOUT Coarse) and VSET_FINE (VOUT Fine) pins set the output voltage. A resistor placed
between the VSET_CRS pin and SGND programs the VOUT_CRS (VOUT Coarse) voltage according to the levels
shown in Table 5. A standard 1% resistor is required.
Table 5. Output Voltage (Coarse) Resistor Settings
VOUT_CRS (V) RSET (kΩ)
0.600 10
0.675 11
0.700 12.1
0.720 13.3
0.750 14.7
0.800 16.2
0.850 17.8
0.900 19.6
0.930 21.5
0.950 23.7
0.980 26.1
1.000 Connect to SGND
1.030 28.7
1.050 31.6
1.100 34.8
1.120 38.3
1.150 42.2
1.200 OPEN
1.250 46.4
1.300 51.1
1.350 56.2
1.400 61.9
1.500 68.1
1.650 75
1.800 82.5
1.850 90.9
FN9346 Rev.1.00 Page 20 of 58
Mar 15, 2019
RAA210850 4. Functional Description
If higher resolution is desired, the VSET_FINE pin can be used to fine-tune the output voltage settings according to
the command set below:
Use the resistors values from Table 6 to set the appropriate value of N for calculating the final output voltage.
2.000 100
2.400 110
2.500 Connect to V25
2.800 121
3.000 133
3.300 147
3.600 162
5.000 178
Table 6. VSET_FINE Resistor Settings
NR
SET (kΩ)
0 10, or OPEN
111
2 12.1
3 13.3
4 14.7
5 16.2
6 17.8
7 19.6
8 21.5
9 23.7, or connect to SGND
10 26.1
11 28.7
12 31.6
13 34.8
14 38.3
15 42.2
16 46.4
17 51.1
18 56.2
19 61.9
20 68.1, or connect to V25
Table 5. Output Voltage (Coarse) Resistor Settings
VOUT_CRS (V) RSET (kΩ)
Output voltage =
VOUT_CRS + 5mV • N, if 0.6V ≤ VOUT_CRS ≤ 1.4V
VOUT_CRS + 10mV • N, if 1.5V ≤ VOUT_CRS ≤ 1.85V
VOUT_CRS + 50 mV • N, if 2V ≤ VOUT_CRS ≤ 3.3V
VOUT_CRS + 100 mV • N, if 3.6V ≤ VOUT_CRS < 5V
VOUT_CRS, if VOUT_CRS = 5V
FN9346 Rev.1.00 Page 21 of 58
Mar 15, 2019
RAA210850 4. Functional Description
The output voltage can be set to any value between 0.6V and 5V using the pin-strap settings provided in Tables 5
and 6.
By default, VOUT_MAX is set 110% higher than VOUT set by the pin-strap resistor, which can be changed to any
value up to 5.5V with the PMBus command VOUT_MAX.
4.3 Soft-Start/Stop Delay and Ramp Times
The RAA210850 follows an internal start-up procedure after power is applied to the VDD pin. The module
requires approximately 60ms to 70ms to check for specific values stored in its internal memory and is programmed
by pin-strap resistors. When this process is complete, the device is ready to accept commands from the PMBus
interface and the module is ready to be enabled. If the module is synchronizing to an external clock source, the
clock frequency must be stable before asserting the EN pin.
It may be necessary to set a delay from when an enable signal is received until the output voltage starts to ramp to
its target value. In addition, the designer may wish to precisely set the time required for VOUT to ramp to its target
value after the delay period expires. These features can be used as part of an overall inrush current management
strategy or to precisely control how fast a load IC is turned on. The RAA210850 has several options for precisely
and independently controlling both the delay and ramp time periods. The soft-start delay period begins when the
EN pin is asserted and ends when the delay time expires.
The soft-start delay and ramp up time can be programmed to custom values with the PMBus commands
TON_DELAY and TON_RISE. When the delay time is set to 0ms, the device begins its ramp-up after the internal
circuitry has initialized (approximately 2ms). When the soft-start ramp period is set to 0ms, the output ramps up as
quickly as the output load capacitance and loop settings allow. In general, set the soft-start ramp to a value greater
than 1ms to prevent inadvertent fault conditions due to excessive in-rush current.
Similar to the soft-start delay and ramp up time, the delay and ramp down time for soft-stop/off can be programmed
with the PMBus commands TOFF_DELAY and TOFF_FALL. In addition, the module can be configured as
“immediate off” with the command ON_OFF_CONFIG, so that the FETs are turned off immediately after the delay
time expires.
The SS/UVLO pin can program the soft start/stop delay time and ramp time to some typical values as shown in
Table 7. A standard 1% resistor is required.
Table 7. UVLO and Soft-Start/Stop Resistor Settings
Resistor (kΩ) UVLO (V) Delay Time (ms) Ramp Time (ms)
10 4.5 5 2
11 4.5 5 2
12.1 4.5 5 2
13.3 4.5 5 2
14.7 4.5 5 2
16.2 4.5 5 2
17.8 4.5 5 2
19.6 4.5 5 2
21.5 4.5 10 2
23.7 4.5 5 5
26.1 4.5 10 5
28.7 4.5 20 5
31.6 4.5 5 10
34.8 4.5 10 10
38.3 4.5 20 10
42.2 10.8 5 2
FN9346 Rev.1.00 Page 22 of 58
Mar 15, 2019
RAA210850 4. Functional Description
4.4 Input Undervoltage Lockout (UVLO)
The input undervoltage lockout (UVLO) prevents the RAA210850 from operating when the input falls below a preset
threshold, indicating the input supply is out of its specified range. The UVLO threshold (VUVLO) can be set between
4.18V and 16V by using the PMBus command VIN_UV_FAULT_LIMIT. Use the pin-strap method (SS/UVLO
pin) shown in Table 7 to set the VUVLO to three typical values. A standard 1% resistor is required.
The module shuts down immediately when it falls below the UVLO threshold. The fault must be cleared before the
module can restart.
4.5 Power-Good
The RAA210850 provides a Power-Good (PG) signal that indicates the output voltage is within a specified
tolerance of its target level and no fault condition exists. By default, the PG pin asserts if the output is within 10%
of the target voltage. This limit can be changed using the PMBus command POWER_GOOD_ON.
A PG delay period is defined as the time from when all conditions within the RAA210850 for asserting PG are met
to when the PG pin is actually asserted. This feature is commonly used instead of using an external reset controller
to control external digital logic. A fixed PG delay of 3ms is programmed for the RAA210850.
4.6 Switching Frequency and PLL
The device’s switching frequency is configurable between 296kHz to 1067kHz using the pin-strap method shown
in Table 8, or by using the PMBus command FREQUENCY_SWITCH.
46.4 10.8 10 2
51.1 10.8 5 5
56.2 10.8 10 5
61.9 10.8 20 5
68.1 10.8 5 10
75 10.8 10 10
82.5 10.8 20 10
Connect to SGND 4.5 5 2
OPEN 4.2 5 5
Connect to V25 4.5 10 10
Table 8. Switching Frequency Resistor Settings
fSW (kHz) RSET (kΩ)
296 14.7, or connect to SGND
300 16.2
320 17.8
364 19.6
400 21.5
421 23.7, or OPEN
471 26.1
533 28.7
571 31.6
615 34.8, or connect to V25
Table 7. UVLO and Soft-Start/Stop Resistor Settings (Continued)
Resistor (kΩ) UVLO (V) Delay Time (ms) Ramp Time (ms)
FN9346 Rev.1.00 Page 23 of 58
Mar 15, 2019
RAA210850 4. Functional Description
The RAA210850 incorporates an internal Phase-Locked Loop (PLL) to clock the internal circuitry. The PLL can
also be driven by an external clock source connected to the SYNC pin. Set this configuration by connecting a
resistor to the CFG pin. If the clock source is internal, the internal frequency is set according to the SYNC pin
resistor settings shown in Table 8. If clock source is external, the internal frequency is set according to the resistor
connected to the CFG pin as shown in Table 9. The external clock frequency should be within ±10% of the listed
options.
The incoming clock signal must be stable when the enable pin is asserted. The external clock signal must not vary
more than 10% from its initial value and should have a minimum pulse width of 150ns. A standard 1% resistor is
required.
4.7 Loop Compensation
The module loop response is programmable using the pin-strap method or by using the PMBus command
ASCR_CONFIG according to Table 10. A standard 1% resistor is required. The RAA210850 uses the ChargeMode
control algorithm that responds to output current changes within a single PWM switching cycle, achieving a
smaller total output voltage variation with less output capacitance than traditional PWM controllers.
727 38.3
800 42.2
842 46.4
889 51.1
1067 56.2
Table 9. External Frequency Sync Settings
Clock Source Internal FREQUENCY_SWITCH (kHz) RSET (kΩ)
Internal Determined by SYNC resistor 10, or OPEN
External 296 11
External 340 12.1
External 390 13.3
External 444 14.7
External 516 16.2, or connect to SGND
External 593 17.8
External 696 19.6
External 800 21.5
External 941 23.7
External 1067 26.1, or connect to V25
Table 10. ASCR Resistor Settings
ASCR Gain ASCR Residual RSET (kΩ)
80 90 10
100 90 11
110 90 12.1
120 90 Connect to SGND
160 90 13.3
Table 8. Switching Frequency Resistor Settings (Continued)
fSW (kHz) RSET (kΩ)
FN9346 Rev.1.00 Page 24 of 58
Mar 15, 2019
RAA210850 4. Functional Description
4.8 SMBus Module Address Selection
Each module must have its own unique serial address to distinguish between other devices on the bus. The module
address is set by connecting a resistor between the SA pin and SGND. Table 11 lists the available module
addresses. A standard 1% resistor is required.
200 90 OPEN
220 90 14.7
230 90 16.2
250 90 17.8
280 90 19.6
320 90 21.5
360 90 23.7
400 90 26.1
450 90 28.7
500 90 31.6
550 90 34.8
600 90 38.3
700 90 42.2
800 90 46.4
80 100 51.1
120 100 56.2
160 100 61.9
200 100 68.1
240 100 75
280 100 82.5
320 100 90.9
360 100 100
400 100 110
450 100 121
500 100 Connect to V25
550 100 133
600 100 147
700 100 162
800 100 178
Table 11. SMBus Address Resistor Selection
RSA (kΩ) SMBus Address
10 19h
11 1Ah
12.1 1Bh
13.3 1Ch
Table 10. ASCR Resistor Settings (Continued)
ASCR Gain ASCR Residual RSET (kΩ)
FN9346 Rev.1.00 Page 25 of 58
Mar 15, 2019
RAA210850 4. Functional Description
4.9 Output Overvoltage Protection
The RAA210850 has an internal output overvoltage protection circuit that can protect sensitive load circuitry from
being subjected to a voltage higher than its prescribed limits. A hardware comparator compares the actual output
voltage (seen at the VSENP and VSENN pins) to a threshold set to 15% higher than the target output voltage. The
fault threshold can be programmed to a desired level with the PMBus command VOUT_OV_FAULT_LIMIT. If
the VSENP - VSENN voltage exceeds this threshold, the module initiates an immediate shutdown without retry.
Internal to the module, two 100Ω resistors are populated from VOUT to VSENP and SGND to VSENN to protect
from overvoltage conditions in case of open at voltage sensing pins and differential remote sense traces due to
assembly error. If the differential remote sense traces have low resistance, VOUT regulation accuracy is not
sacrificed.
14.7 1Dh
16.2 1Eh
17.8 1Fh
19.6 20h
21.5 21h
23.7 22h
26.1 23h
28.7 24h
31.6 25h
34.8, or connect to SGND 26h
38.3 27h
42.2, or Open 28h
46.4 29h
51.1 2Ah
56.2 2Bh
61.9 2Ch
68.1 2Dh
75 2Eh
82.5 2Fh
90.9 30h
100 31h
110 32h
121 33h
133 34h
147 35h
162 36h
178 37h
Table 11. SMBus Address Resistor Selection (Continued)
RSA (kΩ) SMBus Address
FN9346 Rev.1.00 Page 26 of 58
Mar 15, 2019
RAA210850 4. Functional Description
4.10 Output Prebias Protection
An output prebias condition exists when an externally applied voltage is present on a power supply’s output before
the power supply’s control IC is enabled. Certain applications require that the converter not be allowed to sink
current during start-up if a prebias condition exists at the output. The RAA210850 provides prebias protection by
sampling the output voltage before initiating an output ramp.
If a prebias voltage lower than the target voltage exists after the preconfigured delay period has expired, the target
voltage is set to match the existing prebias voltage and both drivers are enabled. The output voltage is then ramped
to the final regulation value at the preconfigured ramp rate.
The actual time the output takes to ramp from the prebias voltage to the target voltage varies depending on the
prebias voltage; however, the total time elapsed from when the delay period expires to when the output reaches its
target value matches the preconfigured ramp time (see Figure 27).
If a prebias voltage is higher than the target voltage after the preconfigured delay period has expired, the target
voltage is set to match the existing prebias voltage and both drivers are enabled with a PWM duty cycle that ideally
creates the prebias voltage.
When the preconfigured soft-start ramp period expires, the PG pin is asserted (assuming the prebias voltage is not
higher than the overvoltage limit). The PWM then adjusts its duty cycle to match the original target voltage and the
output ramps down to the preconfigured output voltage.
If a prebias voltage is higher than the overvoltage limit, the device does not initiate a turn-on sequence and declares
an overvoltage fault condition.
'HVLUHG2XWSXW
9ROWDJH
3UHELDV9ROWDJH
9287
7LPH
721'(/$< 7215,6(
'HVLUHG2XWSXW
9ROWDJH
3UHELDV9ROWDJH
9287
7LPH
935(%,$697$5*(7
935(%,$6!97$5*(7
7215,6(
721'(/$<
Figure 27. Output Responses to Prebias Voltages
FN9346 Rev.1.00 Page 27 of 58
Mar 15, 2019
RAA210850 4. Functional Description
4.11 Output Overcurrent Protection
The RAA210850 can protect the power supply from damage if the output is shorted to ground or if an overload
condition is imposed on the output. Average output overcurrent fault threshold can be programmed with the PMBus
command IOUT_OC_FAULT_LIMIT. The module automatically programs the peak inductor current fault
threshold by calculating the inductor ripple current from the input voltage, switching frequency, and the
VOUT_COMMAND.
The response from an overcurrent fault is an immediate shutdown with 70ms retry.
4.12 Thermal Overload Protection
The RAA210850 includes a thermal sensor that continuously measures the internal temperature of the module and
shuts down the controller when the temperature exceeds the preset limit. The default temperature limit is set to
+115°C in the factory, but can be changed with PMBus command OT_FAULT_LIMIT.
The response from an over-temperature fault is an immediate shutdown without retry.
4.13 Phase Spreading
When multiple point-of-load converters share a common DC input supply, adjust the clock phase offset of each
device so that not all devices start to switch simultaneously. Setting each converter to start its switching cycle at a
different point in time can dramatically reduce input capacitance requirements and efficiency losses. Because the
peak current drawn from the input supply is effectively spread out over a period of time, the peak current drawn at
any given moment is reduced and the power losses proportional to the IRMS2 are reduced dramatically.
To enable phase spreading, all converters must be synchronized to the same switching clock.
The phase offset between devices will be determined from the lower 4 bits of the SMBus address of each
interleaved device. The phase offset of each device can be set to any value between 0˚ and 360˚ in 22.5˚ increments.
The internal two phase of the module always maintain a phase difference of 180˚.
This functionality can also be accessed using the PMBus command INTERLEAVE.
Table 12. Interleave
SMBus Address
SMBus Address in
Binary Low 4-Bits INTERLEAVE Phase Shift in ˚Rail ID
19h 00011001 1001 9 202.5 25
1Ah 00011010 1010 10 225 26
1Bh 00011011 1011 11 247.5 27
1Ch 00011100 1100 12 270 28
1Dh 00011101 1101 13 292.5 29
1Eh 00011110 1110 14 315 30
1Fh 00011111 1111 15 337.5 31
20h 00100000 0000 0 0 0
21h 00100001 0001 1 22.5 1
22h 00100010 0010 2 45 2
23h 00100011 0011 3 67.5 3
24h 00100100 0100 4 90 4
25h 00100101 0101 5 112.5 5
26h 00100110 0110 6 135 6
27h 00100111 0111 7 157.5 7
28h 00101000 1000 8 180 8
29h 00101001 1001 9 202.5 9
FN9346 Rev.1.00 Page 28 of 58
Mar 15, 2019
RAA210850 4. Functional Description
4.14 Monitoring with SMBus
The RAA210850 can monitor a wide variety of system parameters with the following PMBus commands:
READ_VIN
READ_VOUT
READ_IOUT
READ_INTERNAL_TEMP
READ_DUTY_CYCLE
READ_FREQUENCY
READ_VMON
4.15 Snapshot Parameter Capture
The RAA210850’s snapshot feature captures parametric data and some fault status following a fault. A detailed
description is provided in the SNAPSHOT (EAh) and SNAPSHOT_CONTROL (F3h) sections of PMBus
Commands Description” on page 35.
2Ah 00101010 1010 10 225 10
2Bh 00101011 1011 11 247.5 11
2Ch 00101100 1100 12 270 12
2Dh 00101101 1101 13 292.5 13
2Eh 00101110 1110 14 315 14
2Fh 00101111 1111 15 337.5 15
30h 00110000 0000 0 0 16
31h 00110001 0001 1 22.5 17
32h 00110010 0010 2 45 18
33h 00110011 0011 3 67.5 19
34h 00110100 0100 4 90 20
35h 00110101 0101 5 112.5 21
36h 00110110 0110 6 135 22
37h 00110111 0111 7 157.5 23
Table 12. Interleave (Continued)
SMBus Address
SMBus Address in
Binary Low 4-Bits INTERLEAVE Phase Shift in ˚Rail ID
FN9346 Rev.1.00 Page 29 of 58
Mar 15, 2019
RAA210850 5. Layout Guidelines
5. Layout Guidelines
To achieve stable operation, low losses, and good thermal performance, proper layout (Figure 28) is important.
Establish separate SGND plane and PGND planes, then connect SGND to the PGND plane on the middle layer and
underneath PAD6 with a single point connection. For SGND and PGND pin connections, such as small pins H16,
J16, M5, and M17..., use multiple vias for each pin to connect to the inner SGND or PGND layer.
Place enough ceramic capacitors between VIN and PGND, VOUT and PGND, and bypass capacitors between VDD,
VDRV, and the ground plane, as close to the module as possible to minimize high frequency noise. It is critical to
place the output ceramic capacitors as close to the center of the two VOUT pads as possible, to create a low
impedance path for the high frequency inductor ripple current.
Use large copper areas for power path (VIN, PGND, VOUT) to minimize conduction loss and thermal stress. Also,
use multiple vias to connect the power planes in different layers. Renesas recommends enlarging PAD11 and PAD15
and placing more vias on these pads. The ceramic caps CIN can be put on the bottom layer under these two pads.
Connect remote sensed traces to the regulation points to achieve a tight output voltage regulation and keep them in
parallel. Route a trace from VSENN and VSENP to the point of load where the tight output voltage is desired. Avoid
routing any sensitive signal traces, such as the VSENN, VSENP sensing point near the SW pins.
The SW1 and SW2 pads are noisy pads, but they are beneficial for thermal dissipation. If the noise issue is critical for
the application, Renesas recommends using the top layer only for SW pads. For better thermal performance, use
multiple vias on these pads to connect into SW inner and bottom layer. However, be very careful when placing
limited SW planes in any layer. The SW planes should avoid the sensing signals and should be surrounded by the
PGND layer to avoid noise coupling.
For pins SWD1 (L3) and SWD2 (P10), it is recommended to connect to the related SW1 and SW2 pads with short
loop wires. The wire width should be greater than 20 mils.
Figure 28. Recommended Layout
PGND
VIN VIN
PGND PGND
VOUT
SGND
VSEN+VSEN-
Kelvin Connections
CIN CIN
PGND PGND
COUT COUT
FN9346 Rev.1.00 Page 30 of 58
Mar 15, 2019
RAA210850 5. Layout Guidelines
5.1 Thermal Considerations
Experimental power loss curves along with θJA from thermal modeling analysis can be used to evaluate the thermal
consideration for the module. The derating curves are derived from the maximum power allowed while maintaining
the temperature below the maximum junction temperature of +125°C. In actual applications, other heat sources and
design margins should be considered.
5.2 Package Description
The RAA210850 uses the High Density Array No-lead package (HDA). This package offers good thermal and
electrical conductivity, low weight, and small size. The HDA package is applicable for surface mounting
technology and is being more readily used in the industry. The RAA210850 contains several types of devices,
including resistors, capacitors, inductors, and control ICs. The RAA210850 is a copper lead-frame based package
with exposed copper thermal pads, which have good electrical and thermal conductivity. The copper lead frame and
multi component assembly is overmolded with polymer mold compound to protect these devices.
The package outline and typical PCB layout pattern design and typical stencil pattern design are shown in the
Package Outline Drawing starting on page 51. The module has a small size of 18mmx23mmx7.5mm.
5.3 PCB Layout Pattern Design
The bottom of the RAA210850 is a lead-frame footprint, which is attached to the PCB by a surface mounting
process. The PCB layout pattern is shown on pages 55 to 57. The PCB layout pattern is an array of solder mask
defined PCB lands which align with the perimeters of the HDA exposed pads and I/O termination dimensions. The
thermal lands on the PCB layout also feature an array of solder mask defined lands and should match 1:1 with the
package exposed die pad perimeters. The exposed solder mask defined PCB land area should be 50-80% of the
available module I/O area.
5.4 Thermal Vias
A grid of 1.0mm to 1.2mm pitch thermal vias, which drops down and connects to buried copper plane(s), should be
placed under the thermal land. The vias should be about 0.3mm to 0.33mm in diameter with the barrel plated to
about 1.0 ounce copper. Although adding more vias (by decreasing via pitch) improves the thermal performance,
diminishing returns are seen as the number of vias increases. Use as many vias as practical for the thermal land size
and your board design rules allow.
5.5 Stencil Pattern Design
Reflowed solder joints on the perimeter I/O lands should have about a 50µm to 75µm (2mil to 3mil) standoff
height. The solder paste stencil design is the first step in developing optimized, reliable solder joints. The stencil
aperture size to solder mask defined PCB land size ratio should typically be 1:1. The aperture width can be reduced
slightly to help prevent solder bridging between adjacent I/O lands. A typical solder stencil pattern is shown in the
Package Outline Drawing starting on page 51. The gap width between pad to pad is 0.6mm. Consider the symmetry
of the whole stencil pattern when designing its pads. A laser cut, stainless steel stencil with electropolished trapezoidal
walls is recommended. Electropolishing “smooths” the aperture walls, resulting in reduced surface friction and better
paste release which reduces voids. Using a Trapezoidal Section Aperture (TSA) also promotes paste release and forms
a brick-like paste deposit that assists in firm component placement. A 0.1mm to 0.15mm stencil thickness is
recommended for this large pitch HDA.
5.6 Reflow Parameters
Due to the HDAs low mount height, “No Clean” Type 3 solder paste per ANSI/J-STD-005 is recommended.
Nitrogen purge is recommended during reflow. A system board reflow profile depends on the thermal mass of the
entire populated board, so it is not practical to define a specific soldering profile just for the HDA. The profile in
Figure 29 is a guideline to be customized for varying manufacturing practices and applications.
FN9346 Rev.1.00 Page 31 of 58
Mar 15, 2019
RAA210850 5. Layout Guidelines
Figure 29. Typical Reflow Profile
0300100 150 200 250 350
0
50
100
150
200
250
300
Temperature (°C)
Duration (s)
Slow Ramp (3°C/s MAX)
and Soak from +150°C
to +200°C for 60s~180s
Ramp Rate 1.5°C from +70°C to +90°C
Peak Temperature ~+245°C;
Typically 60s-150s Above +217°C
Keep Less Than 30s Within 5°C of Peak Temp.
FN9346 Rev.1.00 Page 32 of 58
Mar 15, 2019
RAA210850 6. PMBus Command Summary
6. PMBus Command Summary
Command
Code Command Name Description Type
Data
Format
Default
Value
Default
Setting Page
01h OPERATION Sets the Enable and Disable
settings.
R/W Byte Bit 35
02h ON_OFF_CONFIG Configures the EN pin and
PMBus commands to turn
the unit ON/OFF
R/W Byte Bit 16h Hardware
Enable,
Soft Off
35
03h CLEAR_FAULTS Clears fault indications. Send Byte 35
21h VOUT_COMMAND Sets the nominal value of
the output voltage.
R/W Word L16u VOUT Pin-Strap
(set based on
VSET_CRS
and
VSET_FINE)
36
24h VOUT_MAX Sets the maximum possible
value of VOUT
. 110% of
pin-strap VOUT
.
R/W Word L16u 1.1 x VOUT
Pin-Strap
36
33h FREQUENCY_SWITCH Sets the switching
frequency.
R/W Word L11 Pin-Strap 36
37h INTERLEAVE Configures a phase offset
between devices sharing a
SYNC clock.
R/W Word Bit Pin-Strap
(set based
on SMBus
address)
37
40h VOUT_OV_FAULT_LIMIT Sets the VOUT overvoltage
fault threshold.
R/W Word L16u 1.15 x VOUT
Pin-Strap
37
44h VOUT_UV_FAULT_LIMIT Sets the VOUT undervoltage
fault threshold.
R/W Word L16u 0.85 x VOUT
Pin-Strap
37
46h IOUT_OC_FAULT_LIMIT Sets the IOUT average
overcurrent fault threshold.
R/W Word L11 E3C0h 60A 37
4Bh IOUT_UC_FAULT_LIMIT Sets the IOUT average
undercurrent fault threshold.
R/W Word L11 E440h -60A 38
4Fh OT_FAULT_LIMIT Sets the over-temperature
fault threshold.
R/W Word L11 EB98h +115°C 38
53h UT_FAULT_LIMIT Sets the under-temperature
fault threshold.
R/W Word L11 E530h -45°C 38
55h VIN_OV_FAULT_LIMIT Sets the VIN overvoltage
fault threshold.
R/W Word L11 D3A0h 14.5V 38
59h VIN_UV_FAULT_LIMIT Sets the VIN undervoltage
fault threshold.
R/W Word L11 Pin-Strap 39
5Eh POWER_GOOD_ON Sets the voltage threshold
for Power-Good indication.
R/W Word L16u 0.9 x VOUT
Pin-Strap
39
60h TON_DELAY Sets the delay time from
ENABLE to start of VOUT
rise.
R/W Word L11 Pin-Strap 39
61h TON_RISE Sets the rise time of VOUT
after ENABLE and
TON_DELAY.
R/W Word L11 Pin-Strap 39
64h TOFF_DELAY Sets the delay time from
DISABLE to start of VOUT
fall.
R/W Word L11 Pin-Strap 40
65h TOFF_FALL Sets the fall time for VOUT
after DISABLE and
TOFF_DELAY.
R/W Word L11 Pin-Strap 40
FN9346 Rev.1.00 Page 33 of 58
Mar 15, 2019
RAA210850 6. PMBus Command Summary
78h STATUS_BYTE Returns an abbreviated
status for fast reads.
Read Byte Bit 00h No Faults 40
79h STATUS_WORD Returns information with a
summary of the unit's fault
condition.
Read
Word
Bit 0000h No Faults 41
7Ah STATUS_VOUT Returns the VOUT specific
status.
Read Byte Bit 00h No Faults 42
7Bh STATUS_IOUT Returns the IOUT specific
status.
Read Byte Bit 00h No Faults 42
7Ch STATUS_INPUT Returns specific status
specific to the input.
Read Byte Bit 00h No Faults 43
7Dh STATUS_TEMPERATURE Returns the temperature
specific status.
Read Byte Bit 00h No Faults 43
7Eh STATUS_CML Returns the Communication,
Logic, and Memory specific
status.
Read Byte Bit 00h No Faults 44
80h STATUS_MFR_SPECIFIC Returns the VMON and
External Sync clock specific
status.
Read Byte Bit 00h No Faults 44
88h READ_VIN Returns the input voltage
reading.
Read
Word
L11 44
8Bh READ_VOUT Returns the output voltage
reading.
Read
Word
L16u 45
8Ch READ_IOUT Returns the output current
reading.
Read
Word
L11 45
8Dh READ_INTERNAL_TEMP Returns the temperature
reading internal to the
device.
Read
Word
L11 45
94h READ_DUTY_CYCLE Returns the duty cycle
reading during the ENABLE
state.
Read
Word
L11 45
95h READ_FREQUENCY Returns the measured
operating switch frequency.
Read
Word
L11 45
96h READ_IOUT_0 Returns phase 1 current
reading.
Read
Word
L11 45
97h READ_IOUT_1 Returns phase 2 current
reading.
Read
Word
L11 46
DFh ASCR_CONFIG Configures ASCR control
loop.
R/W Block CUS Pin-Strap 46
E4h DEVICE_ID Returns the 16-byte
(character) device identifier
string.
Read
Block
ASC Reads Device
Version
46
E5h MFR_IOUT_OC_FAULT_
RESPONSE
Configures the IOUT
overcurrent fault response.
R/W Byte Bit B9h Disable and
70ms
Continuous
Retry
47
E6h MFR_IOUT_UC_FAULT_
RESPONSE
Configures the IOUT
undercurrent fault response.
R/W Byte Bit B9h Disable and
70ms
Continuous
Retry
47
Command
Code Command Name Description Type
Data
Format
Default
Value
Default
Setting Page
FN9346 Rev.1.00 Page 34 of 58
Mar 15, 2019
RAA210850 6. PMBus Command Summary
6.1 PMBus Data Formats
Linear-11 (L11) - The L11 data format uses 5-bit two’s complement exponent (N) and 11-bit two’s complement
mantissa (Y) to represent real world decimal value (X). The relation between real world decimal value (X), N and
Y is: X = Y·2N.
Linear-16 Unsigned (L16u) - The L16u data format uses a fixed exponent (hard-coded to N = -13h) and a 16-bit
unsigned integer mantissa (Y) to represent the real world decimal value (X). The relation between the real world
decimal value (X), N and Y is: X = Y·2-13.
Linear-16 Signed (L16s) - The L16s data format uses a fixed exponent (hard-coded to N = -13h) and a 16-bit
two’s complement mantissa (Y) to represent the real world decimal value (X).
The relation between the real world decimal value (X), N and Y is: X = Y·2-13.
Bit Field (BIT) - An explanation of the Bit Field is provided in PMBus Commands Description” on page 35.
Custom (CUS) - An explanation of the Custom data format is provided in PMBus Commands Description” on
page 35. A combination of Bit Field and integer are common type of Custom data format.
ASCII (ASC) - A variable length string of text characters that uses the ASCII data format.
6.2 PMBus Use Guidelines
The PMBus is a powerful tool that allows the user to optimize circuit performance by configuring devices for their
application. When configuring a device in a circuit, the device should be disabled whenever most settings are
changed with PMBus commands. Some exceptions to this recommendation are OPERATION, ON_OFF_CONFIG,
CLEAR_FAULTS, VOUT_COMMAND, and ASCR_CONFIG. While the device is enabled any command can be
read. Many commands do not take effect until after the device has been re-enabled, hence the recommendation that
commands that change device settings are written while the device is disabled.
In addition, there should be a 2ms delay between repeated READ commands sent to the same device. When
sending any other command, a 5ms delay is recommended between repeated commands sent to the same device.
Commands not listed in the PMBus command summary are not allowed for customer use, and are reserved for
factory use only. Issuing reserved commands may result in unexpected operation.
EAh SNAPSHOT Returns 32-byte read-back
of parametric and status
values.
Read
Block
Bit 48
F3h SNAPSHOT_CONTROL Snapshot feature control
command.
R/W Byte Bit 48
F5h MFR_VMON_OV_FAULT_
LIMIT
Returns the VMON
overvoltage threshold.
Read
Word
L11 CB00h 6V 49
F6h MFR_VMON_UV_FAULT_
LIMIT
Returns the VMON
undervoltage threshold.
Read
Word
L11 CA00h 4V 49
F7h MFR_READ_VMON Returns the VMON voltage
reading.
Read
Word
L11 49
Command
Code Command Name Description Type
Data
Format
Default
Value
Default
Setting Page
Data Byte High Data Byte Low
Exponent (N) Mantissa (Y)
76543210 76543210
FN9346 Rev.1.00 Page 35 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
7. PMBus Commands Description
OPERATION (01h)
Definition: Sets the Enable and Disable settings.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value:
Units: N/A
ON_OFF_CONFIG (02h)
Definition: Configures the interpretation and coordination of the OPERATION command and the ENABLE pin (EN).
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: 16h (Device starts from ENABLE pin with soft off)
Units: N/A
CLEAR_FAULTS (03h)
Definition: Clears all fault bits in all registers and releases the SALRT pin (if asserted) simultaneously. If a fault
condition still exists, the bit reasserts immediately. This command does not restart a device if it has shut down, it will
clears the faults.
Data Length in Bytes: 0 Byte
Data Format: N/A
Type: Write only
Default Value: N/A
Units: N/A
Reference: N/A
Settings Actions
00h Immediate off
40h Soft off
80h On
Settings Actions
16h Device starts from ENABLE pin with soft off.
17h Device starts from ENABLE pin with immediate off.
1Ah Device starts from OPERATION command with soft off.
1Bh Device starts from OPERATION command with immediate off.
FN9346 Rev.1.00 Page 36 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
VOUT_COMMAND (21h)
Definition: Sets or reports the target output voltage. This command cannot set a value higher than either VOUT_MAX
or 110% of the pin-strap VOUT setting.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: Pin-strap setting (set based on VSET_CRS and VSET_FINE)
Units: Volts
Range: 0V to VOUT_MAX
VOUT_MAX (24h)
Definition: Sets an upper limit on the output voltage the unit can command regardless of any other commands or
combinations. The intent of this command is to provide a safeguard against a user accidentally setting the output
voltage to a possibly destructive level rather than to be the primary output overprotection. The default value can be
changed using PMBus.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.10 x VOUT pin-strap setting
Units: Volts
Range: 0V to 5.5V
FREQUENCY_SWITCH (33h)
Definition: Sets the switching frequency of the device. The initial default value is defined by a pin-strap and this value
can be overridden by writing this command using PMBus. The output must be disabled when writing this command.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: kHz
Range: 296kHz to 1067kHz
FN9346 Rev.1.00 Page 37 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
INTERLEAVE (37h)
Definition: Configures the phase offset of a device that is sharing a common SYNC clock with other devices. The
phase offset of each device can be set to any value between and 360° in 22.5° increments. The internal two phases of
the module always maintain a phase difference of 180°.
Data Length in Bytes: 2
Data Format: BIT
Type: R/W
Default Value: Pin-strap (set based on SMBus address)
Units: N/A
VOUT_OV_FAULT_LIMIT (40h)
Definition: Sets the VOUT overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.15 x VOUT pin-strap setting
Units: V
Range: 0V to VOUT_MAX
VOUT_UV_FAULT_LIMIT (44h)
Definition: Sets the VOUT undervoltage fault threshold. This fault is masked during ramp or when disabled.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.85xVOUT pin-strap setting
Units: V
Range: 0V to VOUT_MAX
IOUT_OC_FAULT_LIMIT (46h)
Definition: Sets the IOUT average overcurrent fault threshold. The device automatically calculates the peak inductor
overcurrent fault limit for each phase based on the equation:
IOUT(PEAK OC LIMIT) = (0.5*IOUT_OC_FAULT_LIMIT+0.5*I
RIPPLE(P-P)) * 120%. A hard bound of 42A is
applied to the peak overcurrent fault limit per phase.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E3C0h (60A)
Units: A
Range: -100A to 100A
Bits Purpose Value Description
15:8 Reserved 0 These bits are reserved.
7:4 Group Number 0 to 15 Sets the group number. A value of 0 is interpreted as 16.
3:0 Position in Group 0 to 15 Sets position of the device's rail within the group.
FN9346 Rev.1.00 Page 38 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
IOUT_UC_FAULT_LIMIT (4Bh)
Definition: Sets the IOUT average undercurrent fault threshold. The device automatically calculates the valley inductor
undercurrent fault limit for each phase based on the equation: IOUT(VALLEY UC LIMIT) =
(0.5 * IOUT_UC_FAULT_LIMIT - 0.5 * IRIPPLE(P-P)) * 120%. A hard bound of -42A is applied to the valley
undercurrent fault limit per phase.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: -60A
Units: A
Range: -100A to 100A
OT_FAULT_LIMIT (4Fh)
Definition: Sets the temperature at which the device should indicate an over-temperature fault. Note that the
temperature must drop below the fault limit to clear this fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: EB98h (+115˚C)
Units: Celsius
Range: 0°C to +150°C
UT_FAULT_LIMIT (53h)
Definition: Sets the temperature, in degrees Celsius, of the unit where it should indicate an under-temperature fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E530h (-45°C)
Units: Celsius
Range: -55°C to +25°C
VIN_OV_FAULT_LIMIT (55h)
Definition: Sets the VIN overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: D3A0h (14.5V)
Units: V
Range: 0V to 16V
FN9346 Rev.1.00 Page 39 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
VIN_UV_FAULT_LIMIT (59h)
Definition: Sets the VIN undervoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: V
Range: 0V to 12V
POWER_GOOD_ON (5Eh)
Definition: Sets the voltage threshold for Power-good indication. Power-good asserts after the output voltage exceeds
POWER_GOOD_ON. Renesas recommends setting POWER_GOOD_ON higher than VOUT_UV_FAULT_LIMIT.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.9 x VOUT pin-strap setting
Units: V
TON_DELAY (60h)
Definition: Sets the delay time from when the device is enabled to the start of VOUT rise.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 2 to 300ms
TON_RISE (61h)
Definition: Sets the rise time of VOUT after ENABLE and TON_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 0 to 120ms
FN9346 Rev.1.00 Page 40 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
TOFF_DELAY (64h)
Definition: Sets the delay time from DISABLE to the start of VOUT fall.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 2 to 300ms
TOFF_FALL (65h)
Definition: Sets the soft-off fall time for VOUT after DISABLE and TOFF_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 0 to 120ms
STATUS_BYTE (78h)
Definition: Returns one byte of information with a summary of the most critical faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 BUSY A fault was declared because the device was busy and unable to respond.
6 OFF This bit is asserted if the unit is not providing power to the output, regardless
of the reason, including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault has occurred.
4 IOUT_OC_FAULT An output overcurrent fault has occurred.
3 VIN_UV_FAULT An input undervoltage fault has occurred.
2 TEMPERATURE A temperature fault has occurred.
1 CML A communications, memory or logic fault has occurred.
0 None of the Above A fault not listed in Bits 7:1 has occurred.
FN9346 Rev.1.00 Page 41 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
STATUS_WORD (79h)
Definition: Returns two bytes of information with a summary of the unit's fault condition. Based on the information in
these bytes, the host can get more information by reading the appropriate status registers. The low byte of the
STATUS_WORD is the same register as the STATUS_BYTE (78h) command.
Data Length in Bytes: 2
Data Format: BIT
Type: Read-only
Default Value: 0000h
Units: N/A
Bit Number Status Bit Name Meaning
15 VOUT An output voltage fault has occurred.
14 IOUT/POUT An output current or output power fault has occurred.
13 INPUT An input voltage, input current, or input power fault has occurred.
12 MFG_SPECIFIC A manufacturer specific fault has occurred.
11 POWER_GOOD# The POWER_GOOD signal, if present, is negated.
10 Reserved This bit is reserved.
9 OTHER A bit in STATUS_OTHER is set.
8 UNKNOWN A fault type not given in bits 15:1 of the STATUS_WORD has been detected.
7 BUSY A fault was declared because the device was busy and unable to respond.
6 OFF This bit is asserted if the unit is not providing power to the output, regardless
of the reason, including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault has occurred.
4 IOUT_OC_FAULT An output overcurrent fault has occurred.
3 VIN_UV_FAULT An input undervoltage fault has occurred.
2 TEMPERATURE A temperature fault has occurred.
1 CML A communications, memory, or logic fault has occurred.
0 None of the Above A fault not listed in Bits 7:1 has occurred.
FN9346 Rev.1.00 Page 42 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
STATUS_VOUT (7Ah)
Definition: Returns one data byte with the status of the output voltage.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
STATUS_IOUT (7Bh)
Definition: Returns one data byte with the status of the output current.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 VOUT_OV_FAULT Indicates an output overvoltage fault.
6:5 Reserved These bits are reserved.
4 VOUT_UV_FAULT Indicates an output undervoltage fault.
3:0 N/A These bits are not used.
Bit Number Status Bit Name Meaning
7 IOUT_OC_FAULT An output overcurrent fault has occurred.
6:5 Reserved These bits are reserved.
4 IOUT_UC_FAULT An output undercurrent fault has occurred.
3:0 N/A These bits are not used.
FN9346 Rev.1.00 Page 43 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
STATUS_INPUT (7Ch)
Definition: Returns input voltage and input current status information.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
STATUS_TEMPERATURE (7Dh)
Definition: Returns one byte of information with a summary of any temperature related faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 VIN_OV_FAULT An input overvoltage fault has occurred.
6:5 Reserved These bits are reserved.
4 VIN_UV_FAULT An input undervoltage fault has occurred.
3:0 N/A These bits are not used.
Bit Number Status Bit Name Meaning
7 OT_FAULT An over-temperature fault has occurred.
6:5 Reserved These bits are reserved.
4 UT_FAULT An under-temperature fault has occurred.
3:0 N/A These bits are not used.
FN9346 Rev.1.00 Page 44 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
STATUS_CML (7Eh)
Definition: Returns one byte of information with a summary of any communications, logic, and/or memory errors.
Data Length in Bytes: 1
Data Format: BIT
Type: Read-only
Default Value: 00h
Units: N/A
STATUS_MFR_SPECIFIC (80h)
Definition: Returns one byte of information providing the status of the device's voltage monitoring and clock
synchronization faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
READ_VIN (88h)
Definition: Returns the input voltage reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Units: V
Bit Number Meaning
7 Invalid or unsupported PMBus command was received.
6 The PMBus command was sent with invalid or unsupported data.
5 Packet error was detected in the PMBus command.
4 Memory/logic fault.
3:2 These bits are reserved.
1 A PMBus command tried to write to a read-only or protected command, or a communication fault other than the
ones listed in this table has occurred.
0 This bit is reserved.
Bit Number Field Name Meaning
7:4 Reserved These bits are reserved.
3 External Switching Period Fault Loss of external clock synchronization has occurred.
2 Reserved This bit is reserved.
1 VMON UV Fault The voltage on the VMON pin has dropped below the level set by
VMON_UV_FAULT_LIMIT.
0 VMON OV Fault The voltage on the VMON pin has risen above the level set by
VMON_OV_FAULT_LIMIT.
FN9346 Rev.1.00 Page 45 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
READ_VOUT (8Bh)
Definition: Returns the output voltage reading.
Data Length in Bytes: 2
Data Format: L16u
Type: Read-only
Units: V
READ_IOUT (8Ch)
Definition: Returns the output current reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Default Value: N/A
Units: A
READ_INTERNAL_TEMP (8Dh)
Definition: Returns the controller junction temperature reading from internal temperature sensor.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Units: °C
READ_DUTY_CYCLE (94h)
Definition: Reports the actual duty cycle of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: %
READ_FREQUENCY (95h)
Definition: Reports the actual switching frequency of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: kHz
READ_IOUT_0 (96h)
Definition: Returns the Phase 1 current reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Default Value: N/A
Units: A
FN9346 Rev.1.00 Page 46 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
READ_IOUT_1 (97h)
Definition: Returns the Phase 2 current reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read-only
Default Value: N/A
Units: A
ASCR_CONFIG (DFh)
Definition: Allows user configuration of ASCR settings. ASCR Gain is analogous to bandwidth and ASCR Residual
is analogous to damping. To improve load transient response performance, increase ASCR Gain. To lower transient
response overshoot, increase ASCR Residual. Increasing ASCR gain can result in increased PWM jitter and should be
evaluated in the application circuit. Excessive ASCR gain can lead to excessive output voltage ripple. Increasing
ASCR Residual to improve transient response damping can result in slower recovery times, but does not affect the
peak output voltage deviation. Typical ASCR Gain settings range from 50 to 1000 and ASCR Residual settings range
from 10 to 100.
Data Length in Bytes: 4
Data Format: CUS
Type: R/W
Default Value: Pin-strap setting
DEVICE_ID (E4h)
Definition: Returns the 16-byte (character) device identifier string.
Data Length in Bytes: 16
Data Format: ASCII
Type: Block Read
Default Value: Part number/Die revision/Firmware revision
Bit Purpose Data Format Value Description
31:25 Unused 0000000h Unused
24 Reserved This bit is reserved
23:16 ASCR Residual Setting Integer ASCR residual
15:0 ASCR Gain Setting Integer ASCR gain
FN9346 Rev.1.00 Page 47 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
MFR_IOUT_OC_FAULT_RESPONSE (E5h)
Definition: Configures the IOUT overcurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the overcurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable and 70ms continuous retry)
Units: N/A
MFR_IOUT_UC_FAULT_RESPONSE (E6h)
Definition: Configures the IOUT undercurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the undercurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable and 70ms continuous retry)
Units: N/A
Settings Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay.
Settings Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay.
FN9346 Rev.1.00 Page 48 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
SNAPSHOT (EAh)
Definition: A 32-byte read-back of parametric and status values. It allows monitoring and status data to be stored to
flash following a fault condition. In case of a fault, the last updated values are stored to the flash memory. When the
SNAPSHOT STATUS bit is set stored, the device will no longer automatically capture parametric and status values
following fault until stored data are erased. Use the SNAPSHOT_CONTROL command to erase store data and clear
the status bit before next ramp up. Data erased is not allowed when the module is enabled.
Data Length in Bytes: 32
Data Format: Bit field
Type: Block Read
SNAPSHOT_CONTROL (F3h)
Definition: Writing a 01h causes the device to copy the current SNAPSHOT values from NVRAM to the 32-byte
SNAPSHOT command parameter. Writing a 02h causes the device to write the current SNAPSHOT values to
NVRAM, and writing a 03h erases all SNAPSHOT values from NVRAM. Write (02h) and Erase (03h) can only be
used when the device is disabled. All other values are ignored.
Data Length in Bytes: 1
Data Format: Bit field
Type: R/W byte
Byte Number Value PMBus Command Format
31:23 Reserved These bits are reserved 00h
22 Flash Memory Status Byte
FF - Not Stored
00 - Stored
N/A BIT
21 Manufacturer Specific Status Byte STATUS_MFR_SPECIFIC (80h) Byte
20 CML Status Byte STATUS_CML (7Eh) Byte
19 Temperature Status Byte STATUS_TEMPERATURE (7Dh) Byte
18 Input Status Byte STATUS_INPUT (7Ch) Byte
17 IOUT Status Byte STATUS_IOUT (7Bh) Byte
16 VOUT Status Byte STATUS_VOUT (7Ah) Byte
15:14 Switching Frequency READ_FREQUENCY (95h) L11
13:12 Reserved These bits are reserved 00h
11:10 Internal Temperature READ_INTERNAL_TEMP (8Dh) L11
9:8 Duty Cycle READ_DUTY_CYCLE (94h) L11
7:6 Reserved These bits are reserved L11
5:4 Output Current READ_IOUT (8Ch) L11
3:2 Output Voltage READ_VOUT (8Bh) L16u
1:0 Input Voltage READ_VIN (88h) L11
Value Description
01h Read SNAPSHOT values from NVRAM
02h Write SNAPSHOT values to NVRAM
03h Erase SNAPSHOT values stored in NVRAM.
FN9346 Rev.1.00 Page 49 of 58
Mar 15, 2019
RAA210850 7. PMBus Commands Description
MFR_VMON_OV_FAULT_LIMIT (F5h)
Definition: Reads the VMON OV fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: CB00h (6V)
Units: V
Range: 4V to 6V
MFR_VMON_UV_FAULT_LIMIT (F6h)
Definition: Reads the VMON UV fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: CA00h (4V)
Units: V
Range: 4V to 6V
MFR_READ_VMON (F7h)
Definition: Reads the VMON voltage.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: N/A
Units: V
Range: 4V to 6V
FN9346 Rev.1.00 Page 50 of 58
Mar 15, 2019
RAA210850 8. Revision History
8. Revision History
8.1 Firmware
8.2 Datasheet
Firmware Revision Code Change Description Note
RAA210850--G0100 Initial Release Recommended for new designs.
Rev Date Change
1.00 Mar 15, 2019 Updated pin configuration to show correct location for M5, N5, and N6.
Updated description for pin D5.
Changed PMBus to SMBus in the SMBus Communications section.
Changed On-Nominal to On in the table under the OPERATION section on page 35.
Updated Disclaimer.
0.00 Sep 12, 2018 Initial release.
FN9346 Rev.1.00 Page 51 of 58
Mar 15, 2019
RAA210850 9. Package Outline Drawing
9. Package Outline Drawing
Y58.18x23
58 I/O 18mmx23mmx7.5mm Custom HDA Module
Rev 4, 4/18
1518 1617 1314 1112
AB
AC
U
V
W
Y
AA
N
P
R
T
6910 784523
H
J
K
L
M
D
E
F
G
A
B
C
1
Terminal Tip
7.50 Max
Max 0.025
Seating Plane
Side View
C
42x0.60 ±0.05
Top View
18.00
Detail A
0.20 Ref
0.20 Ref
0.10 C
(9x11.5)
Index Area
Terminal #A1
0.10 C2X
2X
23.00
AB
0.10 C A B
3
30.05 C
42x0.60 ±0.05
2
2
1.00
1.00
0.10 C
0.08 C
Represents the basic land grid pitch.
3.
2.
All dimensions are in millimeters.1.
Notes:
Dimensioning and tolerancing per ASME Y14.5-2009.
Tolerance for exposed PAD edge location dimension on
4.
5.
These 42 I/Os are centered in a fixed row and column matrix
at 1.0mm pitch BSC.
page 3 is ±0.1mm.
Datum A Pin A1 Indicator
C = 0.35
See Detail A
Datum B
16.00
17.20
22.60 ±0.15
0.10 C A B
M
0.40 Ref
0.10 C A B
M
12.00
Bottom View
0.100 R Ref
M
M
7.30 Min
For the most recent package outline drawing, see Y58.18x23.
FN9346 Rev.1.00 Page 52 of 58
Mar 15, 2019
RAA210850 9. Package Outline Drawing
9.70
2.90
3.60
2.00
5.40
7.00
4.00
6.50
8.60
0.20 0.80
6.60
7.20
2.60
8.50
6.40
2.90
5.10
2.40
1.80
4.40
4.60
6.00
0.40
8.60
6.00
8.10
9.30 9.70
11.30
3.80
3.00
1.20
8.10
9.30
11.30
5.20
6.30
6.00
4.00
3.30
0.00
9.10
6.20
7.20
2.00
5.70
5.50
6.30
6.50
8.80
7.80
2.70
2.30
1.70 1.30
0.70
0.70
1.30 1.70
2.30
5.80
5.20
4.80
4.20
3.80
3.20
9.30
8.70
5.30
4.70
3.30
4.30
3.70
2.70
0.30
0.30
7.30 6.70
9.70
11.30
7.70
2.30
1.00
8.20
6.80
2.00
5.50
6.50
9.10
7.20
9.30
4.30
4.70
5.30
5.70
3.70
0.00
0.70
1.30
7.30
6.70
7.80
8.80
9.70
7.70
6.30
11.30
6.20
4.80
4.20
3.80 3.20
1.80
2.20
2.80
5.20
5.80
0.50
0.50
2.80
2.20
1.20 0.80
0.80 1.20
0.20
0.20
1.80
1.60 (2X)
2.10 (2X)
1.10 (2X)
5.30 (2X)
5.60
7.40
6.40
1.40 (2X)
4.40
6.20
0.60
5.60
4.00 (2X)
4.20
2.00 (2X)
0.80 (2X)
2.20
1.10
5.00 (2X)
2.20
3.50 (2X)
2.60
4.80 (2X)
1.60 (2X)
1.00 (2X)
3.60
8.30 (2X)
3.40
1.00 (2X)
1.30
2.30
4.60
4.40
1.60 (2X)
SIZE DETAILS FOR THE 16 EXPOSED PADS
BOTTOM VIEW
1.00 (2X)
TERMINAL AND PAD EDGE DETAILS
Stencil opening edge
FN9346 Rev.1.00 Page 53 of 58
Mar 15, 2019
RAA210850 9. Package Outline Drawing
0.000 0.000
11.270
2.030
3.590
3.910
5.470
7.810
8.130
9.410
11.270
11.500
11.500
0.530
1.390
1.710
2.500
5.610
6.400
6.720
7.510
7.830
8.770
0.530
1.390
1.710
2.500
5.610
6.400
6.720
7.510
7.830
8.770
9.000
11.500
11.270
9.730
9.410
8.130
7.810
6.530
5.470
3.910
3.590
2.030
7.510
7.830
8.640
8.960
9.770
10.090
11.270
11.500
9.730
9.000
8.570
7.660
7.340
5.240
4.920
4.190
3.870
3.140
2.090
0.230
0.770
1.230
1.910
2.230
2.910
3.230
3.910
4.230
4.910
5.230
5.910
6.230
6.910
9.000 9.000
Stencil Opening Edge Position - 1
3.895
5.290
2.820
3.895
4.215
5.290
6.530
6.330
7.790
8.110
9.490
9.810
2.820
5.970
6.430
9.730
9.730
6.330
2.820
4.215
0.000
0.000
0.000 0.000
Stencil Opening Edge Position - 2
0.785
3.215
0.215
0.785
4.215
5.215
5.785
6.215
6.785
7.785
9.285
8.715
8.285
7.715
7.285
6.715
6.285
5.715
5.285
4.715
3.715
3.285
2.715
1.715
1.285
0.715
0.285
0.285
0.715
2.715
2.285
8.715
7.285
6.285
5.285
4.285
1.285
0.715
0.285
0.285
0.715
1.285
2.715
1.785
1.785
7.215
7.785
4.785
4.215
9.000
9.000
11.500
11.500 11.500
11.500
9.000
9.000
2.285
4.785
3.785
3.215
2.785
2.215
1.785
1.215
5.785
5.215
0.215
1.215
1.785
2.215
2.785
3.785
4.215
4.785
6.215
6.785
4.285
1.285
3.285
6.215
6.785
1.215
1.215
3.215
3.785
3.715
4.715
5.715
6.715
7.715
9.285
3.285
1.715
8.285
0.0000.000
8.450
7.215
8.785
8.215
FN9346 Rev.1.00 Page 54 of 58
Mar 15, 2019
RAA210850 9. Package Outline Drawing
0.000 0.000
6.330
7.960
11.500
6.570
5.890
5.570
4.890
3.890
3.570
2.890
2.570
1.990
1.670
1.160
2.090
2.820
3.140
3.870
4.190
4.430
4.920
5.240
5.970
6.030
6.890
7.210
8.070
11.500
11.500
9.000
9.000
11.500
9.000
9.000
Stencil Opening Edge Position - 3
2.770
1.875
1.555
0.660
0.340
0.555
0.875
1.770
2.330
3.495
4.340
4.660
5.505
5.825
6.670
3.175
4.570
8.530
7.640
9.270
0.0000.000
0.000 0.000
Stencil Opening Edge Position - 4
9.070
7.960
7.640
6.530
9.070
7.960
7.640
6.530
2.930
3.840
4.160
5.070
7.170
6.230
3.840
4.160
2.430
3.110
3.430
4.110
5.110
5.430
6.110
8.530
9.270
0.230
1.840
2.160
3.770
4.090
4.570
9.000
9.000
11.500
11.500
9.000
9.000
11.500
11.500
7.170
6.230
6.030
6.7057.025
7.7008.020
9.280
10.275
8.570
7.230
5.230
6.740
7.060
8.570
5.070
4.030
5.430
4.430
2.930
9.600
10.595
11.270
6.970
0.000
0.000
FN9346 Rev.1.00 Page 55 of 58
Mar 15, 2019
RAA210850 9. Package Outline Drawing
0.000 0.000
STENCIL OPENING EDGE POSITION - 5
6.890
8.070
1.030
2.270
4.030
2.030
3.570
4.430
4.910
8.770
7.810
7.490
6.530
0.430
1.770
6.030
6.705
7.025
7.700
3.030
4.080
4.810
5.130
5.860
6.180
6.910
9.000
9.000
9.280
9.600
10.275
10.595
11.270
11.500
11.500
9.000
9.000
11.500
11.500
5.070
6.030
7.210
3.760
8.020
0.000
PCB LAND PATTERN - 1 (FOR REFERENCE)
0.000
9.000
8.800
7.800
7.540
6.690
6.430
5.580
5.320
4.185
3.925
2.790
2.530
1.680
1.420
0.500
1.420
1.680
2.530
2.790
3.925
4.185
5.320
5.580
6.430
6.690
7.540
7.800
8.450
9.000
0.000
11.500
10.950
9.700
9.440
8.100
7.840
6.500
5.500
3.880
3.620
2.000
6.300
7.540
7.800
8.670
8.930
9.800
10.060
11.300
11.500
9.700
0.000
9.000
8.600
7.630
7.370
6.400
6.000
5.210
4.950
4.160
3.900
3.110
2.850
2.060
0.200
0.800
1.200
1.940
2.200
2.940
3.200
3.940
4.200
4.940
5.200
5.940
6.200
6.940
9.000
0.000
9.780
9.700
9.520
8.080
7.820
6.300
11.300
11.500
2.000
3.620
3.880
5.500
6.500
7.840
8.100
9.440
9.700
11.300
11.500
0.500
0.000
8.800
FN9346 Rev.1.00 Page 56 of 58
Mar 15, 2019
RAA210850 9. Package Outline Drawing
PCB LAND PATTERN - 2 (FOR REFERENCE)
0.000
9.000
5.800
5.200
4.800
4.200
6.800
6.200
3.800
3.200
2.800
2.200
1.800
1.200
0.800
0.200
0.200
0.800
1.200
1.800
2.200
2.800
3.200
3.800
4.200
4.800
9.000
5.200
5.800
0.000
11.500
9.300
8.700
8.300
7.700
7.300
6.700
6.300
5.700
5.300
4.700
4.300
3.700
1.300
0.700
0.300
0.300
0.700
1.300
2.700
3.300
11.500
0.000
9.000
4.800
4.200
3.800
3.200
1.800
1.200
0.200
0.800
1.200
1.800
3.200
3.800
4.200
4.800
6.200
6.800
7.200
7.800
9.000
0.000
11.500
9.300
8.700
8.300
7.700
7.300
6.700
6.300
5.700
5.300
4.700
4.300
3.700
3.300
2.700
2.300
1.700
1.300
0.700
0.300
0.300
0.700
1.300
2.700
3.300
11.500
6.200
6.800
7.200
7.800 8.200
8.800
1.700
2.300
PCB LAND PATTERN - 3 (FOR REFERENCE)
0.000
1.800
0.845
0.585
0.370
0.630
1.585
1.845
2.800
9.000
9.000
0.000
6.700
5.795
5.535
4.630
4.370
3.465
3.205
2.300
6.000
6.920
7.180
8.100
11.500
11.500
0.000
11.500
9.300
8.500
7.930
7.670
6.300
11.500
0.000
9.000
6.000
5.210
4.950
4.160
3.900
3.110
2.850
2.060
9.000
1.060
1.700
1.960
2.600
2.860
3.600
3.860
4.600
4.860
5.600
5.860
6.600
FN9346 Rev.1.00 Page 57 of 58
Mar 15, 2019
RAA210850 9. Package Outline Drawing
PCB LAND PATTERN - 4 (FOR REFERENCE)
9.100
7.930
7.670
6.500
9.000
7.200
6.200
9.000
0.000
11.500
2.900
3.870
4.130
5.100
8.500
9.300
11.500
0.000
9.000
6.140
5.400
5.140
4.400
4.140
3.400
3.140
2.400
7.030
6.770
5.200
8.600
9.000
0.000
11.500
11.300
10.565
10.305
9.570
9.310
7.990
7.730
6.995
6.735
6.000
5.100
4.000
4.130
3.870
2.900
11.500
6.500
7.670
7.930
9.100
0.200
1.870
2.130
3.800
4.060
4.600
5.400
7.000
7.200
8.600
0.000
7.200
6.200
0.000
4.000
5.100
6.000
6.735
6.995
7.730
7.990
9.310
9.570
10.305
10.565
11.300
11.500
11.500
9.000
1.800
0.400
3.000
3.790
4.050
4.840
5.100
5.890
6.150
6.940
9.000
0.000
11.500
8.100
7.180
6.920
6.000
11.500
0.000
9.000
1.000
2.300
PCB LAND PATTERN - 5 (FOR REFERENCE)
0.000
8.800
7.780
7.520
6.500
4.940
4.400
3.600
2.000
5HQHVDV(OHFWURQLFV&RUSRUDWLRQ$OOULJKWVUHVHUYHG
1RWLFH
 'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV
DQGDSSOLFDWLRQH[DPSOHV<RXDUHIXOO\UHVSRQVLEOHIRUWKHLQFRUSRUDWLRQRUDQ\RWKHUXVHRIWKHFLUFXLWVVRIWZDUHDQGLQIRUPDWLRQLQWKHGHVLJQRI\RXU
SURGXFWRUV\VWHP5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\ORVVHVDQGGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPWKHXVHRI
WKHVHFLUFXLWVVRIWZDUHRULQIRUPDWLRQ
 5HQHVDV(OHFWURQLFVKHUHE\H[SUHVVO\GLVFODLPVDQ\ZDUUDQWLHVDJDLQVWDQGOLDELOLW\IRULQIULQJHPHQWRUDQ\RWKHUFODLPVLQYROYLQJSDWHQWVFRS\ULJKWVRU
RWKHULQWHOOHFWXDOSURSHUW\ULJKWVRIWKLUGSDUWLHVE\RUDULVLQJIURPWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRUWHFKQLFDOLQIRUPDWLRQGHVFULEHGLQWKLV
GRFXPHQWLQFOXGLQJEXWQRWOLPLWHGWRWKHSURGXFWGDWDGUDZLQJVFKDUWVSURJUDPVDOJRULWKPVDQGDSSOLFDWLRQH[DPSOHV
 1ROLFHQVHH[SUHVVLPSOLHGRURWKHUZLVHLVJUDQWHGKHUHE\XQGHUDQ\SDWHQWVFRS\ULJKWVRURWKHULQWHOOHFWXDOSURSHUW\ULJKWVRI5HQHVDV(OHFWURQLFVRU
RWKHUV
 <RXVKDOOQRWDOWHUPRGLI\FRS\RUUHYHUVHHQJLQHHUDQ\5HQHVDV(OHFWURQLFVSURGXFWZKHWKHULQZKROHRULQSDUW5HQHVDV(OHFWURQLFVGLVFODLPVDQ\
DQGDOOOLDELOLW\IRUDQ\ORVVHVRUGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPVXFKDOWHUDWLRQPRGLILFDWLRQFRS\LQJRUUHYHUVHHQJLQHHULQJ
 5HQHVDV(OHFWURQLFVSURGXFWVDUHFODVVLILHGDFFRUGLQJWRWKHIROORZLQJWZRTXDOLW\JUDGHV6WDQGDUGDQG+LJK4XDOLW\7KHLQWHQGHGDSSOLFDWLRQVIRU
HDFK5HQHVDV(OHFWURQLFVSURGXFWGHSHQGVRQWKHSURGXFWVTXDOLW\JUDGHDVLQGLFDWHGEHORZ
6WDQGDUG &RPSXWHUVRIILFHHTXLSPHQWFRPPXQLFDWLRQVHTXLSPHQWWHVWDQGPHDVXUHPHQWHTXLSPHQWDXGLRDQGYLVXDOHTXLSPHQWKRPH
HOHFWURQLFDSSOLDQFHVPDFKLQHWRROVSHUVRQDOHOHFWURQLFHTXLSPHQWLQGXVWULDOURERWVHWF
+LJK4XDOLW\ 7UDQVSRUWDWLRQHTXLSPHQWDXWRPRELOHVWUDLQVVKLSVHWFWUDIILFFRQWUROWUDIILFOLJKWVODUJHVFDOHFRPPXQLFDWLRQHTXLSPHQWNH\
ILQDQFLDOWHUPLQDOV\VWHPVVDIHW\FRQWUROHTXLSPHQWHWF
8QOHVVH[SUHVVO\GHVLJQDWHGDVDKLJKUHOLDELOLW\SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV
(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWVDUHQRWLQWHQGHGRUDXWKRUL]HGIRUXVHLQSURGXFWVRUV\VWHPVWKDWPD\SRVHDGLUHFWWKUHDWWR
KXPDQOLIHRUERGLO\LQMXU\DUWLILFLDOOLIHVXSSRUWGHYLFHVRUV\VWHPVVXUJLFDOLPSODQWDWLRQVHWFRUPD\FDXVHVHULRXVSURSHUW\GDPDJHVSDFHV\VWHP
XQGHUVHDUHSHDWHUVQXFOHDUSRZHUFRQWUROV\VWHPVDLUFUDIWFRQWUROV\VWHPVNH\SODQWV\VWHPVPLOLWDU\HTXLSPHQWHWF5HQHVDV(OHFWURQLFVGLVFODLPV
DQ\DQGDOOOLDELOLW\IRUDQ\GDPDJHVRUORVVHVLQFXUUHGE\\RXRUDQ\WKLUGSDUWLHVDULVLQJIURPWKHXVHRIDQ\5HQHVDV(OHFWURQLFVSURGXFWWKDWLV
LQFRQVLVWHQWZLWKDQ\5HQHVDV(OHFWURQLFVGDWDVKHHWXVHUVPDQXDORURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW
 :KHQXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVUHIHUWRWKHODWHVWSURGXFWLQIRUPDWLRQGDWDVKHHWVXVHUVPDQXDOVDSSOLFDWLRQQRWHV*HQHUDO1RWHVIRU
+DQGOLQJDQG8VLQJ6HPLFRQGXFWRU'HYLFHVLQWKHUHOLDELOLW\KDQGERRNHWFDQGHQVXUHWKDWXVDJHFRQGLWLRQVDUHZLWKLQWKHUDQJHVVSHFLILHGE\
5HQHVDV(OHFWURQLFVZLWKUHVSHFWWRPD[LPXPUDWLQJVRSHUDWLQJSRZHUVXSSO\YROWDJHUDQJHKHDWGLVVLSDWLRQFKDUDFWHULVWLFVLQVWDOODWLRQHWF5HQHVDV
(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\PDOIXQFWLRQVIDLOXUHRUDFFLGHQWDULVLQJRXWRIWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRXWVLGHRIVXFK
VSHFLILHGUDQJHV
 $OWKRXJK5HQHVDV(OHFWURQLFVHQGHDYRUVWRLPSURYHWKHTXDOLW\DQGUHOLDELOLW\RI5HQHVDV(OHFWURQLFVSURGXFWVVHPLFRQGXFWRUSURGXFWVKDYHVSHFLILF
FKDUDFWHULVWLFVVXFKDVWKHRFFXUUHQFHRIIDLOXUHDWDFHUWDLQUDWHDQGPDOIXQFWLRQVXQGHUFHUWDLQXVHFRQGLWLRQV8QOHVVGHVLJQDWHGDVDKLJKUHOLDELOLW\
SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWV
DUHQRWVXEMHFWWRUDGLDWLRQUHVLVWDQFHGHVLJQ<RXDUHUHVSRQVLEOHIRULPSOHPHQWLQJVDIHW\PHDVXUHVWRJXDUGDJDLQVWWKHSRVVLELOLW\RIERGLO\LQMXU\
LQMXU\RUGDPDJHFDXVHGE\ILUHDQGRUGDQJHUWRWKHSXEOLFLQWKHHYHQWRIDIDLOXUHRUPDOIXQFWLRQRI5HQHVDV(OHFWURQLFVSURGXFWVVXFKDVVDIHW\
GHVLJQIRUKDUGZDUHDQGVRIWZDUHLQFOXGLQJEXWQRWOLPLWHGWRUHGXQGDQF\ILUHFRQWURODQGPDOIXQFWLRQSUHYHQWLRQDSSURSULDWHWUHDWPHQWIRUDJLQJ
GHJUDGDWLRQRUDQ\RWKHUDSSURSULDWHPHDVXUHV%HFDXVHWKHHYDOXDWLRQRIPLFURFRPSXWHUVRIWZDUHDORQHLVYHU\GLIILFXOWDQGLPSUDFWLFDO\RXDUH
UHVSRQVLEOHIRUHYDOXDWLQJWKHVDIHW\RIWKHILQDOSURGXFWVRUV\VWHPVPDQXIDFWXUHGE\\RX
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHIRUGHWDLOVDVWRHQYLURQPHQWDOPDWWHUVVXFKDVWKHHQYLURQPHQWDOFRPSDWLELOLW\RIHDFK5HQHVDV
(OHFWURQLFVSURGXFW<RXDUHUHVSRQVLEOHIRUFDUHIXOO\DQGVXIILFLHQWO\LQYHVWLJDWLQJDSSOLFDEOHODZVDQGUHJXODWLRQVWKDWUHJXODWHWKHLQFOXVLRQRUXVHRI
FRQWUROOHGVXEVWDQFHVLQFOXGLQJZLWKRXWOLPLWDWLRQWKH(85R+6'LUHFWLYHDQGXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVLQFRPSOLDQFHZLWKDOOWKHVH
DSSOLFDEOHODZVDQGUHJXODWLRQV5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUGDPDJHVRUORVVHVRFFXUULQJDVDUHVXOWRI\RXUQRQFRPSOLDQFH
ZLWKDSSOLFDEOHODZVDQGUHJXODWLRQV
 5HQHVDV(OHFWURQLFVSURGXFWVDQGWHFKQRORJLHVVKDOOQRWEHXVHGIRURULQFRUSRUDWHGLQWRDQ\SURGXFWVRUV\VWHPVZKRVHPDQXIDFWXUHXVHRUVDOHLV
SURKLELWHGXQGHUDQ\DSSOLFDEOHGRPHVWLFRUIRUHLJQODZVRUUHJXODWLRQV<RXVKDOOFRPSO\ZLWKDQ\DSSOLFDEOHH[SRUWFRQWUROODZVDQGUHJXODWLRQV
SURPXOJDWHGDQGDGPLQLVWHUHGE\WKHJRYHUQPHQWVRIDQ\FRXQWULHVDVVHUWLQJMXULVGLFWLRQRYHUWKHSDUWLHVRUWUDQVDFWLRQV
 ,WLVWKHUHVSRQVLELOLW\RIWKHEX\HURUGLVWULEXWRURI5HQHVDV(OHFWURQLFVSURGXFWVRUDQ\RWKHUSDUW\ZKRGLVWULEXWHVGLVSRVHVRIRURWKHUZLVHVHOOVRU
WUDQVIHUVWKHSURGXFWWRDWKLUGSDUW\WRQRWLI\VXFKWKLUGSDUW\LQDGYDQFHRIWKHFRQWHQWVDQGFRQGLWLRQVVHWIRUWKLQWKLVGRFXPHQW
 7KLVGRFXPHQWVKDOOQRWEHUHSULQWHGUHSURGXFHGRUGXSOLFDWHGLQDQ\IRUPLQZKROHRULQSDUWZLWKRXWSULRUZULWWHQFRQVHQWRI5HQHVDV(OHFWURQLFV
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHLI\RXKDYHDQ\TXHVWLRQVUHJDUGLQJWKHLQIRUPDWLRQFRQWDLQHGLQWKLVGRFXPHQWRU5HQHVDV
(OHFWURQLFVSURGXFWV
1RWH 5HQHVDV(OHFWURQLFVDVXVHGLQWKLVGRFXPHQWPHDQV5HQHVDV(OHFWURQLFV&RUSRUDWLRQDQGDOVRLQFOXGHVLWVGLUHFWO\RULQGLUHFWO\FRQWUROOHG
VXEVLGLDULHV
1RWH 5HQHVDV(OHFWURQLFVSURGXFWVPHDQVDQ\SURGXFWGHYHORSHGRUPDQXIDFWXUHGE\RUIRU5HQHVDV(OHFWURQLFV
5HY1RYHPEHU
&RUSRUDWH+HDGTXDUWHUV &RQWDFW,QIRUPDWLRQ
72<268)25(6,$7R\RVX
.RWRNX7RN\R-DSDQ
ZZZUHQHVDVFRP
)RUIXUWKHULQIRUPDWLRQRQDSURGXFWWHFKQRORJ\WKHPRVWXSWRGDWH
YHUVLRQRIDGRFXPHQWRU\RXUQHDUHVWVDOHVRIILFHSOHDVHYLVLW
ZZZUHQHVDVFRPFRQWDFW
7UDGHPDUNV
5HQHVDVDQGWKH5HQHVDVORJRDUHWUDGHPDUNVRI5HQHVDV(OHFWURQLFV
&RUSRUDWLRQ$OOWUDGHPDUNVDQGUHJLVWHUHGWUDGHPDUNVDUHWKHSURSHUW\
RIWKHLUUHVSHFWLYHRZQHUV
Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
Contact Information
For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.