© by SEMIKRON 0898 B 6 189
Absolute Maximum Ratings Values
Symbol Conditions 1) Units
VCES
VCGR
IC
ICM
VGES
Ptot
Tj, (Tstg)
Visol
humidity
climate
RGE = 20 k
Tcase = 25/85 °C
Tcase = 25/85 °C; tp = 1 ms
per IGBT, Tcase = 25 °C
AC, 1 min.
DIN 40040
DIN IEC 68 T.1
1200
1200
600 / 400
1200 / 800
± 20
2750
–40 ... +150 (125)
2500
Class F
40/125/56
V
V
A
A
V
W
°C
V
Inverse Diode
IF = –IC
IFM = –ICM
IFSM
I2t
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
tp = 10 ms; sin.; Tj = 150 °C
tp = 10 ms; Tj = 150 °C
390 / 260
1200 / 800
2900
42000
A
A
A
A2s
Characteristics
Symbol Conditions 1) min. typ. max. Units
V(BR)CES
VGE(th)
ICES
IGES
VCEsat
VCEsat
gfs
VGE = 0, IC = 4 mA
VGE = VCE, IC = 12 mA3
VGE = 0 Tj = 25 °C
VCE = VCES Tj = 125 °C
VGE = 20 V, VCE = 0
IC = 300 A VGE = 15 V;
IC = 400 A Tj = 25 (125) °C
VCE = 20 V, IC = 300 A
VCES
4,5
124
5,5
0,4
24
2,1(2,4)
2,5(3,0)
6,5
3
1
2,45(2,85)
V
V
mA
mA
µA
V
V
S
CCHC
Cies
Coes
Cres
LCE
per IGBT
VGE = 0
VCE = 25 V
f = 1 MHz
1300
22
3,3
1,2
1500
30
4
1,6
20
pF
nF
nF
nF
nH
td(on)
tr
td(off)
tf
Eon
Eoff
VCC = 600 V
VGE = –15 V / +15 V3)
IC = 300 A, ind. load
RGon = RGoff = 5
Tj = 125 °C
89
77
690
70
36
42
ns
ns
ns
ns
mWs
mWs
Inverse Diode 8)
VF = VEC
VF = VEC
VTO
rt
IRRM
Qrr
IF = 300 A VGE = 0 V;
IF = 400 A Tj = 25 (125) °C
Tj = 125 °C
Tj = 125 °C
IF = 300 A; Tj = 125 °C2)
IF = 300 A; Tj = 125 °C2)
2,0(1,8)
2,25(2,05)
154
37
2,5
1,2
3,5
V
V
V
m
A
µC
Thermal character isti c s
Rthjc
Rthjc
Rthch
per IGBT
per diode D
per module
0,045
0,125
0,038
°C/W
°C/W
°C/W
SEMITRANS® M
Low Loss IGBT Modules
SKM 400 GA 124 D
Features
MOS input (voltage controlled)
N channel, homogeneous Silicon
structure (NP T- Non punch-
through IGBT)
Low inductance case
Very low tail current with low
temperature dependance
High short circuit capability,
self limiting to 6 * Icnom
Latch-up free
Fast & soft inverse CAL diodes 8)
Isolated copper baseplate using
DCB Direct Copper Bonding
Technology without hard mould
Large clearance (12 mm) and
creepage distances (20 mm)
Typical Applications
Switching (not for linear use)
Inverter drives
UPS
1) Tcase = 25 °C, unless otherwise
specified
2) IF = – IC, VR = 600 V,
–diF/dt = 2000 A/µs, VGE = 0 V
3) Use VGEoff = –5... –15 V
8) CAL = Controlled Axial Lifetime
Technology.
Cases and mech. data
B 6 194
GA
SEMITRANS 4
http://store.iiic.cc/
© by SEMIKRONB 6 – 190
SKM 400 GA 124 D
0898
M401G124.XLS-6
0
2
4
6
8
10
12
0 200 400 600 800 1000 1200 1400
V
CE
V
I
CSC
/I
C
all owed num bers of
s ho rt circuits: <1 000
t i me between sh ort
circuits: >1s
di/d t=10 00 A/ µs
3000 A/µs
5000 A/µs
M401G124.XLS-5
0
0,5
1
1,5
2
2,5
0 200 400 600 800 1000 1200 1400
V
CE
V
I
Cpuls
/I
C
M401G124.XLS-4
0,1
1
10
100
1000
10000
1 10 100 1000 10000
V
CE
V
I
C
A
t
p
=15µs
100µs
1ms
10ms
M401G124.XLS-3
0
20
40
60
80
100
120
140
160
180
0 5 10 15 20 25 30 35
R
G
E
mWs E
on
E
off
M401G124.XLS-2
0
20
40
60
80
100
120
0 200 400 600 800
I
C
A
E
mWs E
on
E
off
M401G124.XLS-1
0
500
1000
1500
2000
2500
3000
0 20 40 60 80 100 120 140 160
T
C
°C
P
tot
W
Fig. 3 Turn-on /-off energy = f (R
G
) Fig. 4 Maximum safe operating area (SOA) I
C
= f (V
CE
)
Fig. 1 Rated power dissipation P
tot
= f (T
C
) Fig. 2 Turn-on /-off energy = f (I
C
)
Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit I
C
= f (V
CE
)
T
j
= 125 °C
V
CE
= 300 V
V
GE
= ± 15 V
R
G
= 5
1 pulse
T
C
= 25 °C
T
j
150 °C
T
j
150 °C
V
GE
= ± 15 V
t
sc
10 µs
L < 50 nH
I
C
= 300 A
T
j
150 °C
V
GE
= ± 15 V
R
Goff
= 5
I
C
= 300 A
T
j
= 125 °C
V
CE
= 300 V
V
GE
= ± 15 V
I
C
= 300 A
Not for
linear use
http://store.iiic.cc/
© by SEMIKRON B 6 – 1910898
M401G124.XLS-12
0
100
200
300
400
500
600
02468101214
V
G
E
V
I
C
A
M401G124.XLS-10
0
100
200
300
400
500
600
012345
V
CE
V
I
C
A
17V
15V
13V
11V
9V
7V
M401G124.XLS-9
0
100
200
300
400
500
600
012345
V
CE
V
I
C
A17V
15V
13V
11V
9V
7V
M401G124.X LS -8
0
100
200
300
400
500
600
0 20 40 60 80 100 120 140 160
T
C
°C
I
C
A
P
cond(t)
= V
CEsat(t
) · I
C(t)
V
CEsat(t)
= V
CE(TO)(Tj)
+ r
CE(Tj)
· I
C(t)
V
CE(TO)(Tj)
1,3 + 0,0005 (T
j
–25) [V]
typ.: r
CE(Tj)
= 0,0027 + 0,000008 (T
j
–25) [
]
max.: r
CE(Tj)
= 0,0038 + 0,000012 (T
j
–25) [
]
valid for V
GE
= + 15 [V]; I
C
0,3 I
Cn
Fig. 9 Typ. output characteristic, t
p
= 250 µs; T
j
= 25 °C Fig. 10 Typ. outpu t c harac teristic, t
p
= 250 µ s; T
j
= 125 °C
Fig. 8 Rated current vs. temperatu re I
C
= f (T
C
)
+2
–1
Fig. 11 Saturation characteris tic (IGBT)
Calculation elements and equations Fig. 12 Typ. transfer characteristic, t
p
= 250 µs; V
CE
= 2 0 V
T
j
= 150 °C
V
GE
15V
http://store.iiic.cc/
© by SEMIKRONB 6 – 192 0898
SKM 400 GA 124 D
M401G124.XLS-15
10
100
1000
10000
0 200 400 600 800
I
C
A
t
ns
t
doff
t
don
t
r
t
f
M401G124.XLS-18
0
5
10
15
20
25
0 100 200 300 400 500
I
F
A
E
offD
mJ
12 Ω
6 Ω
30 Ω
4 Ω
R
G
=3 Ω
M401G124.XLS-17
0
100
200
300
400
500
600
0123
V
F
V
I
F
A
T
j
= 1 25°C, typ.
T
j
= 25°C, t y p.
T
j
= 1 25°C, m a x.
T
j
=25°C, max .
M401G124.XLS-16
10
100
1000
10000
0 10203040
R
G
t
ns t
doff
t
don
t
r
t
f
M401G124.XLS-14
0,1
1
10
100
0102030
V
CE
V
C
nF C
ies
C
oes
C
res
M401G124.XLS-13
0
2
4
6
8
10
12
14
16
18
20
0 400 800 1200 1600 2000
Q
Gate
nC
V
GE
V
600V
800V
Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.V
CE
V
GE
= 0 V
f = 1 MH z
Fig. 15 Typ. switching times vs. I
C
Fig. 16 Typ. switching times vs. gate resist or R
G
Fig. 17 Typ. CAL diode forward characteristic Fig. 18 Diode turn-off energy dissipation per pulse
T
j
= 125 °C
V
CE
= 300 V
V
GE
= ± 15 V
I
C
= 200 A
induct. load
I
Cpuls
= 300 A
T
j
= 125 °C
V
CE
= 300 V
V
GE
= ± 15 V
R
Gon
= 5
R
Goff
= 5
induct. load
V
CC
= 600 V
T
j
= 125 °C
V
GE
= ± 15 V
http://store.iiic.cc/
© by SEMIKRON 0898 B 6 193
I:\MARKETIN\FRAMEDAT\datbl\B06-igbt\400GA124D.FM
M401G124.XLS-22
0
100
200
300
400
500
0 100 200 300 400 500
IFA
IRR
A
12 Ω
6 Ω
30 Ω
4 Ω
RG=
3 Ω
M401G124.XLS-24
0
20
40
60
0 2000 4000 6000 8000
diF/dt A/
µ
s
Qrr
µ
CIF=
300 A
220 A
150 A
75 A
12 Ω
6 Ω
30 Ω
4 Ω
RG=3 Ω
400 A
M401G124.XLS-23
0
100
200
300
400
500
0 2000 4000 6000 8000
diF/dt A/
s
IRR
A
12 Ω
6 Ω
30 Ω
4 Ω
RG=3 Ω
M401G124.XLS-20
0,0001
0,001
0,01
0,1
1
0,00001 0,0001 0,001 0,01 0,1 1
s
ZthJC
K/W
D=0,5
0,2
0,1
0,05
0,02
0,01
sin
g
le pul se
tp
Fig. 19 Transient thermal impedance of IGBT
ZthJC = f (tp); D = tp / tc = t p · f Fig. 20 Transient thermal impedance of
inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp · f
Fig. 22 Typ. CAL diode peak reverse recovery
current IRR = f (IF; RG)Fig. 23 Typ. CAL diode peak reverse recovery
current IRR = f (di/dt)
Fig. 24 Typ. CAL diode recovered charge
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
IF = 300 A
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
M401G124.XLS-19
0,0001
0,001
0,01
0,1
0,00001 0,0001 0,001 0,01 0,1 1
tps
ZthJC
K/
D=0,50
0,20
0,10
0,05
0,02
0,01
sin
g
le pulse
http://store.iiic.cc/
© by SEMIKRONB 6 – 194 0898
SKM 400 GA 124 D
SEMITRANS 4
Case D 59
UL Recognize d
File no. E 63 532
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions Values Units
min. typ. max.
M
1
M
2
a
w
to heatsink, SI Units (M6)
to heatsink, US Units
for terminals, SI Units (M6/M4)
for terminals, US Units
3
27
2,5/1,1
22/10
5
44
5/2
44/18
5x9,81
330
Nm
lb.in.
Nm
lb.in.
m/s
2
g
This is an electrost atic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Three devices are supplied in one
SEMIBOX B without mounting hard -
ware, which can be or dered separa -
tely under Ident No. 33321100
(for 10 SEMITRANS 4)
Larger pa cking units of 12 or 20 p ie-
ces are used if suitable
Accessories
B 6 – 4
SEMIBOX
C
1.
http://store.iiic.cc/