1/20
0.5Msps to 50Msps sampling frequency
40mW @5Msps,150mW @ 50Msps
2.5V supply voltage with 2.5V/3.3V compati-
bility fordigital I/O
Input range: 2Vpp differential
SFDR up to 77dB @ 50Msps, Fin=15MHz
ENOB up to10.5 bits @ 50Msps, Fin=15MHz
Built-in reference voltage with external bias
capability
Pinout compatibility with TSA0801, TSA1001
and TSA1002
DESCRIPTION
The TSA1201 is a 12-bit, 50MHz maximum
sampling frequency Analog to Digital converter
using a CMOS technology combining high
performances and very low power consumption.
The TSA1201 is based on apipeline structure and
digital error correction to provide excellent static
linearity and achieve 10.5 effective bits at
Fs=50Msps, and Fin=15MHz, with a global power
consumption of 150mW.
The TSA1201 features adaptative behaviour to
the application. Its architecture allows to sample
from 0.5Msps up to 50Msps, witha programmable
power consumption which makes the application
board even more optimized.
It integrates a proprietary track-and-hold structure
to ensure an high analog bandwidth of 1GHz and
enable IF-sampling.
Several features are available on the device. A
voltage reference is integrated in the circuit.
Differential or single-ended analog inputs can be
applied. The output data can be coded into two
differential formats. A Data Ready signal is raised
as the data is valid on the outputand can be used
for synchronization purposes.
The TSA1201 is available in extended (-40°Cto
+85°C) temperature range, in small 48 pins TQFP
package.
APPLICATIONS
High speed data acquisition
Medical imaging and ultrasound
Portable instrumentation
High speed DSP interface
Digital communication - IF sampling
ORDER CODE
PIN CONNECTIONS (top view)
PACKAGE
Part Number Temperature
Range Package Conditioning Marking
TSA1201IF -40°C to +85°C TQFP48 Tray SA1201I
TSA1201IFT -40°C to +85°C TQFP48 Tape & Reel SA1201I
EVAL1201/AA Evaluation board
7 x 7 mm TQFP48
VREFM
VREFP
D2
D3
D4
D5
D6
D7
D8
VINB
AGND
AGND
index
corner
13 14 15 16 17 18 19 20 21 22
47
1
2
3
4
5
6
7
8
9
10
11
12
23 24
32
31
30
29
28
27
26
25
33
35
34
36
48 44 43 42 41 40 39 38 37
46 45
AGND
VIN
D9
D10
AVCC
AVCC
AGND
IPOL
INCM
NC
D0 (LSB)
AVCC
DR
SRC
OEB
AGND
AVCC
DFSB
VCCBI
GNDBE
NC
NC
VCCBE
GNDBE
GNDBI
DGND
DVCC
CLK
DGND
VCCBE
NC
OR
DGND
DVCC
D11 (MSB)
D1
TSA1201
TSA1201
12-BIT, 50MSPS, 150mW A/D CONVERTER
March 2001
TSA1201
2/20
ABSOLUTE MAXIMUM RATINGS
OPERATING CONDITIONS
BLOCK DIAGRAM
Symbol Parameter Values Unit
AVCC Analog Supply voltage 1) 0 to 3.3 V
DVCC Digital Supply voltage 1) 0 to 3.3 V
VCCBI Digital buffer Supply voltage 1) 0 to 3.3 V
VCCBE Digital buffer Supply voltage 1) 0 to 3.6 V
Tstg Storage temperature +150 °C
ESD Electrical Static Discharge
- HBM
- CDM-JEDEC Standard 2
1.5 KV
1. All voltages values, except differential voltage, are with respect to network ground terminal. The magnitude of input and output voltages
must never exceed -0.3V or VCC+0V
Symbol Parameter Test conditions Min Typ Max Unit
AVCC Analog Supply voltage 2.25 2.5 2.7 V
DVCC Digital Supply voltage 2.25 2.5 2.7 V
VCCBI Internal (quiet) buffer Supply voltage 2.25 2.5 2.7 V
VCCBE External (noisy) buffer Supply voltage 2.25 2.5 3.5 V
VREFP Forced top voltage reference 0.8 - AVCC V
VREFM Bottom internal reference voltage input 0 1 V
stage stage stage
12n
Reference
Timing
circuit
Sequencer-phaseshifting
Digital data correction
Buffers
IPOL
VREFM
VREFP
CLK
+2.5V
VIN
VINB
DFSB
OEB
DR
DO
TO
D11
OR
INCM
GND
GNDA
+2.5V/3.3V
SRC
TSA1201
3/20
PIN CONNECTIONS (top view)
PIN DESCRIPTION
VREFM
VREFP
D2
D3
D4
D5
D6
D7
D8
VINB
AGND
AGND
index
corner
13 14 15 16 17 18 19 20 21 22
47
1
2
3
4
5
6
7
8
9
10
11
12
23 24
32
31
30
29
28
27
26
25
33
35
34
36
48 44 43 42 41 40 39 38 37
46 45
AGND
VIN
D9
D10
AVCC
AVCC
AGND
IPOL
INCM
NC
D0 (LSB)
AVCC
DR
SRC
OEB
AGND
AVCC
DFSB
VCCBI
GNDBE
NC
NC
VCCBE
GNDBE
GNDBI
DGND
DVCC
CLK
DGND
VCCBE
NC
OR
DGND
DVCC
D11 (MSB)
D1
TSA1201
Pin No Name Description Observation Pin No Name Description Observation
1 IPOL Analog bias currentinput 25 D10 Digital output CMOS output (2.5V/3.3V)
2 VREFP Top voltage reference 1V 26 D9 Digital output CMOS output (2.5V/3.3V)
3 VREFM Bottom voltage reference 0V 27 D8 Digital output CMOS output (2.5V/3.3V)
4 AGND Analog ground 0V 28 D7 Digitaloutput CMOS output (2.5V/3.3V)
5 VIN Analog input 1Vpp 29 D6 Digital output CMOS output (2.5V/3.3V)
6 AGND Analog ground 0V 30 D5 Digitaloutput CMOS output (2.5V/3.3V)
7 VINB Inverted analog input 1Vpp 31 D4 Digital output CMOS output (2.5V/3.3V)
8 AGND Analog ground 0V 32 D3 Digitaloutput CMOS output (2.5V/3.3V)
9 INCM Input common mode 0.5V 33 D2 Digital output CMOS output (2.5V/3.3V)
10 AGND Analog ground 0V 34 D1 Digital output CMOS output (2.5V/3.3V)
11 AVCC Analog power supply 2.5V 35 D0(LSB) Least Significant Bit output CMOS output (2.5V/3.3V)
12 AVCC Analog power supply 2.5V 36 NC Non connected
13 DVCC Digital power supply 2.5V 37 NC Non connected
14 DVCC Digital power supply 2.5V 38 DR Data Ready output CMOS output (2.5V/3.3V)
15 DGND Digital groun d 0V 39 VCCBE Digital Buffer power supply 2.5V/3.3V
16 CLK Clock input 2.5V compatible CMOS input 40 GNDBE Digital Buffer ground 0V
17 DGND Digital groun d 0V 41 VCCBI Digital Buffer power supply 2.5V
18 NC Non connected 42 NC Non connected
19 DGND Digital groun d 0V 43 SRC Slew rate control input 2.5V/3.3V CMOS input
20 GNDBI Digital buffer ground 0V 44 OEB OutputEnable input 2.5V/3.3V CMOS input
21 GNDBE Digital buffer ground 0V 45 DFSB Data Format Select input 2.5V/3.3V CMOS input
22 VCCBE Digital buffer power supply 2.5V/3.3V 46 AVCC Analog power supply 2.5V
23 OR Out Of Range output CMOS output (2.5V/3.3V) 47 AVCC Analog powersupply 2.5V
24 D11(MSB) Most Significant Bit output CMOS output (2.5V/3.3V) 48 AGND Analog ground 0V
TSA1201
4/20
ELECTRICAL CHARACTERISTICS
AVCC = DVCC= VCCBE = VCCBI = 2.5V,Fs= 50Msps,Fin=2MHz, Vin@ -1dBFS, VREFM=0V
Tamb = 25°C (unless otherwise specified)
TIMING CHARACTERISTICS
TIMING DIAGRAM
Symbol Parameter Test conditions Min Typ Max Unit
FS Sampling Frequency 0.5 50 MHz
DC Clock Duty Cycle 45 50 55 %
TC1 Clock pulse width (high) 9 10 ns
TC2 Clock pulse width (low) 9 10 ns
Tod Data Output Delay (Fall of Clock
to Data Valid) 6pF load capacitance 8ns
Tpd Data Pipeline delay 5.5 cycles
Ton Falling edge of OEB to digital
output valid data 1ns
Toff Rising edge of OEB to digital
output tri-state 1ns
N-3 N-2 N-1
N+4
N+5
N
N+3
N+1
N+2
N+6
N-3 N-1N-4N-5N-6N-7N-8N-9
CLK
OEB
DR
Tod Ton
Toff
Tpd + Tod
HZ state
N
DATA
OUT
TSA1201
5/20
CONDITIONS
AVCC = DVCC = VCCBE = VCCBI = 2.5V,Fs= 50Msps,Fin=2MHz, Vin@ -1dBFS, VREFM=0V
Tamb = 25°C (unless otherwise specified)
ANALOG INPUTS
REFERENCE VOLTAGE
Symbol Parameter Test conditions Min Typ Max Unit
VIN-VINB Full scale reference voltage 2.0 Vpp
Cin Input capacitance 7.0 pF
Rin Differential input resistance 5 M
BW Analog Input Bandwitdh Vin@Full Scale, Fs=50Msps 1000 MHz
ERB Effective Resolution Bandwidth1) 90 MHz
1. See parameters definition for more information.
Symbol Parameter Test conditions Min Typ Max Unit
VREFP Top internal reference voltage 0.79 1.0 1.16 V
Tmin= -40°C to Tmax= 85°C1) 0.79 1.16 V
Vpol Analog bias voltage 1.08 1.15 1.22 V
Tmin= -40°C to Tmax= 85°C1) 1.07 1.23 V
VINCM Input common mode voltage 0.40 0.55 0.65 V
Tmin= -40°C to Tmax= 85°C1) 0.4 0.65 V
1. Not fully tested over the temperature range. Guaranted by sampling.
TSA1201
6/20
CONDITIONS
AVCC = DVCC = VCCBE = VCCBI = 2.5V,Fs= 50Msps,Fin=2MHz, Vin@ -1dBFS, VREFP=1V,
VREFM=0V
Tamb = 25°C (unless otherwise specified)
POWER CONSUMPTION
DIGITALINPUTS AND OUTPUTS
Symbol Parameter Test conditions Min Typ Max Unit
Pd Power consumption in normal
operation mode
1) 150 158 mW
Tmin= -40°C to Tmax= 85°C2) 165 mW
ICCA Analog Supply current 1) 46 51 mA
Tmin= -40°C to Tmax= 85°C2) 55 mA
ICCD Digital Supply Current 1) 1.9 2.2 mA
Tmin= -40°C to Tmax= 85°C2) 2.2 mA
ICCBI Digital Buffer Supply Current 1) 0.3 0.4 mA
Tmin= -40°C to Tmax= 85°C2) 0.4 mA
ICCBE Digital Buffer Supply Current 1) 9.8 10.8 mA
Tmin= -40°C to Tmax= 85°C2) 10.8 mA
ICCBEZ Digital Buffer Supply Current in
High Impedance Mode 45mA
Rthja Junction-ambient thermal resis-
tance (TQFP48) 80 °C/W
1. Equivalent load: Rload= 470and Cload= 6pF
2. Not fully tested over the temperature range. Guaranted by sampling.
Symbol Parameter Test conditions Min Typ Max Unit
Clock input
VIL Logic ”0” voltage 0 0.8 V
VIH Logic ”1” voltage 2.0 2.5 V
Digital inputs
VIL Logic ”0” voltage 0 0.25 x
VCCBE V
VIH Logic ”1” voltage 0.75 x
VCCBE VCCBE V
Digital Outputs
VOL Logic ”0” voltage Iol=10µA00.1 x
VCCBE V
VOH Logic ”1” voltage Ioh=10µA 0.9 x
VCCBE VCCBE V
IOZ High Impedance leakage current OEB set to VIH -2.5 2.5 µA
CLOutput Load Capacitance 15 pF
TSA1201
7/20
CONDITIONS
AVCC = DVCC = VCCBE = VCCBI = 2.5V,Fs= 50Msps, Vin@ -1dBFS, VREFP=1V, VREFM=0V
Tamb = 25°C (unless otherwise specified)
ACCURACY
DYNAMIC CHARACTERISTICS
Symbol Parameter Test conditions Min Typ Max Unit
OE Offset Error Fin= 2MHz, VIN@+1dBFS 2.45 mV
DNL Differential Non Linearity Fin= 2MHz, VIN@+1dBFS ±0.6 LSB
INL Integral Non Linearity Fin= 2MHz, VIN@+1dBFS ±1.7 LSB
-Monotonicity and no missing
codes Guaranted
Symbol Parameter Test conditions Min Typ Max Unit
SFDR Spurious Free Dynamic Range Fin= 15MHz1) -77.2 -68 dBc
Fin= 15MHz2) -67 dBc
SNR Signal to Noise Ratio Fin= 15MHz1) 61.6 64.9 dB
Fin= 15MHz2) 60.7 dB
THD Total Harmonics Distorsion Fin= 15MHz1) -74.3 -68 dB
Fin= 15MHz2) -64 dB
SINAD Signal to Noise and Distorsion-
Ratio Fin= 15MHz1) 61 64.4 dB
Fin= 15MHz2) 60 dB
ENOB Effective Number of Bits Fin= 15MHz1) 10 10.5 bits
Fin= 15MHz2) 9.9 bits
1. Equivalent load: Rload= 470and Cload= 6pF
2. Tmin= -40°C to Tmax= 85°C. Not fully tested over the temperature range. Guaranted by sampling.
TSA1201
8/20
DEFINITIONS OF SPECIFIED PARAMETERS
STATIC PARAMETERS
Static measurements are performed through
method of histograms on a 2MHz input signal,
sampled at 50Msps, which is high enough to fully
characterize the test frequency response. The
input level is +1dBFS to saturate the signal.
Differential Non Linearity (DNL)
The average deviation of any output code width
from the ideal code width of 1LSB.
Integral Non linearity (INL)
An ideal converter presents a transfer function as
being the straight line fromthe starting code to the
ending code. The INL is the deviation for each
transition from this ideal curve.
DYNAMIC PARAMETERS
Dynamic measurements are performed by
spectral analysis, applied to an input sinewave of
various frequencies and sampled at 50Msps.
Spurious Free Dynamic Range (SFDR)
The ratio between the power of the worst spurious
signal (not always an harmonic) and the amplitude
of fundamental tone (signal power) over the full
Nyquist band. It is expressed in dBc.
Total Harmonic Distortion (THD)
The ratio of the rms sum of the first five harmonic
distortion components to the rms value of the
fundamental line. It is expressed in dB.
Signal to Noise Ratio (SNR)
The ratio of the rms value of the fundamental
component to the rms sum of all other spectral
components in the Nyquist band (fs/2) excluding
DC, fundamental and the first five harmonics.
SNR is reported in dB.
Signal to Noise and Distorsion Ratio (SINAD)
Similar ratioas for SNR but including the harmonic
distortion components in the noise figure (not DC
signal). It is expressed in dB.
From the SINAD, the Effective Number of Bits
(ENOB) can easily be deduced using the formula:
SINAD= 6.02 ×ENOB + 1.76 dB.
When the applied signal is notFull Scale (FS), but
has an A0amplitude, the SINAD expression
becomes:
SINAD= 6.02×ENOB+ 1.76 dB + 20log (2A0/FS)
The ENOB is expressed in bits.
Analog Input Bandwidth
The maximum analog input frequency at which the
spectral response of a full power signal is reduced
by 3dB. Higher values can be achieved with
smaller input levels.
Effective Resolution Bandwidth (ERB)
The band of input signal frequencies that the ADC
is intended to convert without loosing linearity i.e.
the maximum analog input frequency at which the
SINAD is decreased by 3dB or the ENOB by 1/2
bit.
Pipeline delay
Delay between the initial sample of the analog
input and the availability of the corresponding
digital data output,on the output bus. Also called
data latency. It is expressed as a number of clock
cycles.
TSA1201
9/20
Static parameter: Integral Non Linearity
Fs=50MSPS; Fin=1MHz; Icca=45mA; N=131072pts
Static parameter: Differential Non Linearity
Fs=50MSPS; Fin=1MHz; Icca=45mA; N=131072pts
Linearity vs. VCCA
Fs=50MSPS; Icca=45mA; Fin=10MHz Distortion vs. VCCA
Fs=50MSPS; Icca=45mA; Fin=10MHz
-3
-2
-1
0
1
2
3
0 500 1000 1500 2000 2500 3000 3500 4000
Output Code
INL (LSBs)
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 500 1000 1500 2000 2500 3000 3500 4000
Output Code
DNL (LSBs)
62
62.5
63
63.5
64
64.5
65
65.5
66
66.5
67
2.25 2.35 2.45 2.55 2.65
VCCA(V)
Dynamic parameters
(dB)
10
10.2
10.4
10.6
10.8
11
11.2
11.4
11.6
11.8
12
ENOB (bits)
SINAD
ENOB
SNR
-82
-81
-80
-79
-78
-77
-76
-75
-74
-73
-72
2.25 2.35 2.45 2.55 2.65
VCCA (V)
Dynamic Parameters (dB)
SFDR
THD
TSA1201
10/20
Linearity vs. VCCD
Fs=50MSPS; Icca=45mA; Fin=10MHz
Linearity vs. VCCBE
Fs=50MSPS; Icca=45mA; Fin=10MHz
Linearity vs. Fs
Icca=45mA; Fin=10MHz
Distortion vs. VCCD
Fs=50MSPS; Icca=45mA; Fin=10MHz
Distortion vs. VCCBE
Fs=50MSPS; Icca=45mA; Fin=10MHz
Distortion vs. Fs
Icca=45mA; Fin=10MHz
61
61.5
62
62.5
63
63.5
64
64.5
65
65.5
66
2.25 2.35 2.45 2.55 2.65
VCCD(V)
Dynamic parameters
(dB)
10
10.2
10.4
10.6
10.8
11
11.2
11.4
11.6
11.8
12
ENOB (bits)
SINAD
ENOB
SNR
60
61
62
63
64
65
66
2.25 2.35 2.45 2.55 2.65
VCCBE(V)
Dynamic parameters
(dB)
10
10.2
10.4
10.6
10.8
11
11.2
11.4
11.6
11.8
12
ENOB (bits)
SINAD
ENOB
SNR
50
52
54
56
58
60
62
64
66
68
70
15 25 35 45 55 65 75
Fs (MHz)
Dynamic parameters (dB)
9.5
10
10.5
11
11.5
12
ENOB (bits)
ENOB
SNR
SINAD
-85
-83
-81
-79
-77
-75
-73
-71
2.25 2.35 2.45 2.55 2.65
VCCD(V)
Dynamic parameters (dB)
THD
SFDR
-82
-81
-80
-79
-78
-77
-76
-75
-74
-73
-72
2.25 2.35 2.45 2.55 2.65
VCCBE(V)
Dynamic Parameters (dB)
SFDR
THD
-90
-85
-80
-75
-70
-65
-60
-55
-50
15 25 35 45 55 65 75
Fs (MHz)
Dynamic parameters (dB)
THD
SFDR
TSA1201
11/20
Linearity vs. Fin
Fs=50MHz; Icca=45mA
Linearity vs.Temperature
Fs=49.7MSPS; Icca=45mA; Fin=15MHz
Distortion vs. Fin
Fs=50MHz; Icca=45mA
Distortion vs. Temperature
Fs=49.7MSPS; Icca=45mA; Fin=15MHz
Single-tone 16K FFT at 50Msps
Fin=94.5MHz; Icca=45mA, Vin@-0.5dBFS
50
55
60
65
70
75
80
020406080
Fin (MHz)
Dynamic parameters (dB)
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
ENOB
SNR
SINAD
55
57
59
61
63
65
67
69
-40 10 60 110
Temperature (°C)
Dynamic Parameters (dB)
9.5
10
10.5
11
11.5
12
SINAD
ENOB
SNR
-90
-85
-80
-75
-70
-65
-60
0 20406080
Fin (MHz)
Dynamic parameters (dB)
THD
SFDR
50
55
60
65
70
75
80
85
90
-40 10 60 110
Temperature (°C)
Dynamic Parameters (dB)
SFDR
THD
20
-140
0
-20
-40
-60
-80
-100
-120
151050
PowerSpectrum(dB)
Frequency (MHz)
12/20
TSA1201 APPLICATION NOTE
DETAILED INFORMATION
The TSA1201 is a High Speed analog to digital
converter basedon apipeline architecture and the
latest deep submicron CMOS process to achieve
the best performances in terms of linearity and
power consumption.
The pipeline structure consists of 11 internal
conversion stages in which the analog signal is
fed and sequencially converted into digital data.
Each 10 first stages consists of an Analog to
Digital converter, a Digital to Analog converter, a
Sample and Hold and a gain of 2 amplifier. A
1.5-bit conversion resolution is achieved in each
stage. The latest stage simply is a comparator.
Each resulting LSB-MSB couple is then time
shifted to recover from the delay caused by
conversion. Digital data correction completes the
processing by recovering from the redundancy of
the (LSB-MSB) couple for each stage. The
corrected data are outputed through the digital
buffers.
Signal input is sampled on the rising edge of the
clock while digital outputs are delivered on the
falling edge of the clock.
The advantages of such a converter reside in the
combination of pipeline architecture and the most
advanced technologies. The highest dynamic
performances are achieved while consumption
remains at the lowest level.
Some functionalites have been added in order to
simplify as much as possible the application
board. These operational modes are described in
the following table.
The TSA1201 is pin to pin compatible with the
8bits/40Msps TSA0801, the 10bits/25Msps
TSA1001 and the 10bits/50Msps TSA1002. This
ensures a conformity with the product family and
above all, an easy upgrade of the application
OPERATIONAL MODES DESCRIPTION
Data Format Select (DFSB)
When set to low level (VIL), the digital inputDFSB
provides a two’s complement digital output MSB.
This can be of interest when performing some
further signal processing.
When set to high level (VIH), DFSB provides a
standard binary output coding.
Output Enable (OEB)
When set to low level (VIL), all digital outputs
remain active and are in low impedance state.
When set to high level (VIH), all digital outputs
buffers are in high impedance state while the
converter goes onsampling. When OEB is set to a
low level again, the data are then present on the
output with a very short Ton delay.
Therefore, thisallows the chip select of the device.
The timing diagram summarizes this functionality.
Inputs Outputs
Analog input differential level DFSB OEB SRC OR DR Most Significant Bit (MSB)
(VIN-VINB) > RANGE H L X H CLK D11
-RANGE > (VIN-VINB) H L X H CLK D11
RANGE> (VIN-VINB) >-RANGE H L X L CLK D11
(VIN-VINB) > RANGE L L X H CLK D11 Complemented
-RANGE > (VIN-VINB) L L X H CLK D11 Complemented
RANGE> (VIN-VINB) >-RANGE L L X L CLK D11 Complemented
X X H X HZ HZ HZ
X X X H X CLK 25Msps compliant slew rate
X X X L X CLK 50Msps compliant slew rate
TSA1201
13/20
Slew Rate Control (SRC)
When set to high level (VIH), all digital outputs
currents arelimited toa clamp value so that digital
noise power is reduced to its minimum. Rise and
fall times just match 25MHz sampling rate
assuming the load capacitance on each digital
output remains below 10pF.
When set to low level (VIL), the maximum digital
output current increases so that rise and fall times
just match the 50MHz sampling rate assuming the
load capacitance on each digital output remains
below 10pF.
Out of Range (OR)
This function is implemented on the output stage
in order to set up an ”Out of Range” flag whenever
the digital data is over the full scale range.
Typically, there is a detection of all the data being
at ’0’ or all the data beingat ’1’. This ends up with
an output signal OR which is in low level state
(VOL) when the data stay within in the range, or in
high level state (VOH)when the data are out of the
range.
Data Ready (DR)
The Data Ready output is an image of the clock
being synchronized on the output data (D0 to
D11). This is a very helpful signal that simplifes
the synchronization of the measurement
equipment or the controling DSP.
As digital output, DR goes into high impedance
state when OEB is asserted to high level as
described in the timing diagram.
DRIVING THE ANALOG INPUT
Differential inputs
The TSA1201 has been designed to obtain
optimum performances when being differentially
driven. An RF transformer is a good way to
achieve such performances.
Figure 1 describes the schematics. The input
signal is fed to the primary of the transformer,
while the secondary drives both ADC inputs. The
common mode voltage of the ADC (INCM) is
connected to the center-tap of the secondary of
the transformer in order to bias the input signal
around this common voltage, internally set to
0.56V. It determines the DC component of the
analog signal. As being an high impedance input,
it acts as an I/O and can be externally driven to
adjust this DC component. The INCM is
decoupled to maintain a low noise level on this
node. Our evaluation board is mounted with a 1:1
ADT1-1 transformer from Minicircuits. You might
also use a higher impedance ratio (1:2 or 1:4) to
reduce the driving requirement on the analog
signal source.
Each analog input can drive a 1Vpp amplitude
input signal, so the resultant differential amplitude
is 2Vpp.
Figure 1 : Differential input configuration
Single-ended input configuration
Some applications may require a single-ended
input. This is easily achieved with the
configuration reported on Figure 2 for an
AC-coupled input or on Figure 3 and 4 for a
DC-coupled input..
In the case of AC-coupled analog input, it is
recommended to connectthe other analoginput to
the common mode voltage of the circuit (INCM) so
as to properly bias the ADC. The INCM may
remain at the same internal level (0.56V) thus
driving only a 1Vpp input amplitude, or it must be
increased to 1V to drive a 2Vpp input amplitude.
Figure 2 : AC-coupled Single-ended input
In the case of DC-coupled analog input, Figure 3
shows the configuration for a 2Vpp input signal.
The DC component is driven by VREFP which is
connected to INCM and VINB and therefore
imposes its voltage. VREFM being connected to
ground, a dynamic of 2Vpp is achievable.
Figure 4 describes the configuration for a 1Vpp
analog signal. In this case, VREFM is connected
TSA1201
VIN
VINB INCM
50100pF
330pF 470nF10nF
Analog source 1:1
ADT1-1
TSA1201
VIN
VINB INCM
50
100nF
330pF 470nF
10nF
Signal source
1V
TSA1201
14/20
to VINB and INCM. The latest imposes its voltage.
VREFP being internally set to 1V, the dynamic is
then 1Vpp.
Figure 3 : DC-coupled 2Vpp analog input
Figure 4 : DC-coupled 1Vpp analog input
IF-sampling
Software radio has become a common mode for
receiving data through RF receivers. Its main
advantage being to digitally implement what was
originally done with analog functions such as
discriminators, demodulation and filtering.
Originally, bipolar process was mainly used
because they provided high transistor transit
frequency, while pure CMOS technology showed
a lower one. With new CMOS process and circuit
topology, higher frequencies are now achieved.
The TSA1201 has been specifically designed to
meet the requirement of sampling at Intermediate
Frequency. For this purpose, the Track-and-Hold
of the first pipeline stage has been built to ensure
the global linearity of the overall ADC to perform
the right characteristics.
Our proprietary Track-and-Hold has a patented
switch control system to enable the performances
not to be degraded as input signal frequency
increases.
As a result, an analog bandwidth of 1GHz is
achieved.
REFERENCE CONNECTION
Internal reference
In the standard configuration, the ADC is biased
with the internal reference voltage. VREFM pin is
connected to Analog Ground while VREFP is
internally set to a voltage of 1.0V. It is
recommended to decouple the VREFP in order to
minimize low and high frequency noise. Refer to
Figure 5 for the schematics.
Figure 5 : Internal reference setting
External reference
It is possible to use an external reference voltage
instead of the internal one for specificapplications
requiring even better linearity or enhanced
temperature behaviour. In this case, the amplitude
of the external voltage must be at least equal to
the internal one (1.0V). Using the
STMicroelectronics Vref TS821 leads to optimum
performances when configured as shown on
Figure 6.
Figure 6 : External reference setting
This can be very helpful for example for
multichannel application to keep a good matching
over the sampling frequency range.
TSA1201
VIN
VINB INCM
330pF 470nF
10nF
Analog
DC
Analog+DC VREFP
VREFM
TSA1201
VIN
VINB INCM
330pF 470nF
10nF
Analog
DC
Analog+DC
VREFM
TSA1201
VIN
VINB VREFM
1.0V
VREFP 330pF 470nF
10nF
1k
TSA1201
VIN
VINB VREFM
VREFP
external
reference
TS821
VCCA 330pF 470nF
10nF
TSA1201
15/20
Clock input
The quality of your converter isvery dependant on
your clock input accuracy, in terms of aperture
jitter; the use of low jitter crystal controlled
oscillator is recommended.
The duty cycle must be between 45% and 55%.
The clock power supplies must be separated from
the ADC output ones to avoid digital noise
modulation at the output.
It is recommended to always keep the circuit
clocked, even at the lowest specified sampling
frequency of 0.5Msps, before applying the supply
voltages.
Power consumption optimization
The internal architecture of the TSA1201 enables
to optimize the power consumption according to
the sampling frequency of. For this purpose, a
resistor is placed between IPOL and the analog
Ground pins. Therefore, the total dissipation is
adjustable from 0.5Msps up to 50Msps. This
feature is of highest importance when power
saving conditions the application.
The TSA1201 will combine highest performances
and lowest consumption at 50Msps when Rpol is
equal to 12k.
At lower sampling frequency range, this value of
resistor may be adjusted in order to decrease the
analog current without any degradation of
dynamic performances.
As an example, 40mW total power consumption is
achieved at 5 Msps with Rpol equal to 190k
and
35mW is dissipated at 1Msps with Rpol equal to
350k.
The table below sums up the relevant data.
Figure 7 describes the behaviour of the converter
as sampling frequency increases and shows the
optimum in terms of analog current and
polarization resistor.
Total power consumption optimization
depending on Rpol value
Figure 7 : Optimized power consumption
Fin=1MHz
Layout precautions
To use the ADC circuits inthe best mannerat high
frequencies, some precautions have to be taken
for power supplies:
- First of all, the implementation of 4 separate
proper supplies and ground planes (analog,
digital, internal and external buffer ones) on the
PCB is mandatory for high speed circuit
applications to provide low inductance and low
resistance common return.
The separation of the analog signal from the
digital part is essential to prevent noise from
coupling onto the input signal.
- Power supply bypass capacitors must be placed
as close as possible to the IC pins in order to
improve high frequency bypassing and reduce
harmonic distortion.
- Proper termination of all inputs and outputs must
be incorporated with output termination resistors;
then the amplifier load will be only resistive and
the stability of the amplifier will be improved. All
leads must be wide and as short as possible
especially for the analog input inorder to decrease
parasitic capacitance and inductance.
- To keep the capacitive loading as low as
possible at digital outputs, short lead lengths of
routing are essential to minimize currents when
the output changes. To minimize this output
capacitance, buffers or latches close to the output
pins will relax this constraint.
- Choose component sizes as small as possible
(SMD).
Fs (Msps) 5 35 50
Rpol (kΩ) 190 29 12
Optimized
power (mW) 40 100 150
0
20
40
60
80
100
120
140
160
180
200
5 25456585
Fs(MHz)
Rpol(kOhms)
0
10
20
30
40
50
60
70
Icca(mA)
RPOL
ICCA
TSA1201
16/20
EVAL1201 evaluation board
The characterization of the board has been made
with a fully ADC devoted test bench as shown on
Figure 8. The analog signal must be filtered to be
very pure.
The dataready signal is the acquisitionclock of the
logic analyzer.
The ADC digital outputs are latched by the octal
buffers 74LCX573.
All characterization measurements have been
made with:
- SFSR=+0.5dB for static parameters.
- SFSR=-0.5dB for dynamic parameters.
Figure 8 : Analog to Digital Converter characterization bench
Sinewave
Generator
Power
SineWave
Generator
ADC
evaluation
board Logic
Analyzer
Pulse
Generator
dataready
data
ck
Vin
HP8644B
HP8644B
HP8133A
TLA704
TSA1201
17/20
Figure 9 : TSA1201 Evaluation board schematic
R1
50
R2
1K
R3
50
C1
100pF
C2
330pF
C3
470nF
C4
10nF
C5
330pF
C6
10nF
C7
470nF
C8
330pF
C9
10nF
C10
470nF
C11
330pF
C12
10nF
C13
470nF
C14
330pF
C15
10nF
C16
470nF
Raj1
47K
C17
330pF
C18
10nF
C19
470nF
J4
CLJ/SMB
C24
10µ
OEB
1
D0
2
D1
3
D2
4
D3
5
D4
6
D5
7
D6
8
D7
9
GND
10 LE 11
Q0 19
Q1 18
Q2 17
Q3 16
Q4 15
Q5 14
Q6 13
Q7 12
VCC 20
U2
74LCX573
OEB
1
D0
2
D1
3
D2
4
D3
5
D4
6
D5
7
D6
8
D7
9
GND
10 LE 11
Q0 19
Q1 18
Q2 17
Q3 16
Q4 15
Q5 14
Q6 13
Q7 12
VCC 20
U3
74LCX573
R10
47K
R11
47K
R12
47K
R14
47K R15
47K
C25
330pF
C27
10nF
C28
470nF
+
C29
10µF
DO
D7
D8
D9
D10
D11
D12
R13
47K
C30
330pF
C31
10nF
C32
470nF
1
2
12
VCC
1
2
J17
VDDBUFF3V
1
2
J18
VccB1
+
C34
47µ
+
C35
47µ
1
2
2
refP
1
2
5
refM
1
2
7
egl commode
1
2
8
es comMode
AVCC
AVCC
VCCB1
VCCB1
1
2
J9
DFSB
1
2
J10
OEB
1
2
J11
1
2
J13
C26
330pF
C39
10nF
C37
470nF
VCCB2
C33
330pF
C40
10nF
C38
470nF
D13
1
2
19
GND
1
2
20
GND
1
2
21
ndB2
1
2
22
ndB1
C41
10µF
+C42
47µF
Ipol
1
VrefP
2
VrefM
3
AGND
4
Vin
5
AGND
6
VINB
7
AGND
8
INCM
9
AGND
10
AVCC
11
AVCC
12
DVCC
13
DVCC
14
DGN D
15
CLK
16
DGN D
17
NC
18
DGN D
19
GND BUF F
20
GND BUF F
21
2.5VCCBUFF
22
OR
23
D13
24
D12 25
D11 26
D10 27
D9 28
D8 29
D7 30
D6 31
D5 32
D4 33
D3 34
D2 35
D1 36
D0 37
DR 38
2.5VCCBUFF 39
GNDB UFF 40
2.5VCCBUFF 41
NC 42
NC 43
OEB 44
DFSB 45
AVCC 46
AVCC 47
AGN D 48
8-14bitsADC
TSA1002
OR
R16
47K R17
47K R18
47K R19
47K
D1
D2
D3
D4
D5
D6
DR 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
J6
32PIN
1
2
J16
CON2
C20
330pF
C21
10nF
C22
470nF
C23
10µ
1
2
J15
DVCC
+
C36
47µ
1
43
2
6
T1
T2-AT1-1WT
1
43
2
6
T2
T2-AT1-1WT
TSA1201
R1
50
R2
1K
R3
50
C1
100pF
C2
330pF
C3
470nF
C4
10nF
C5
330pF
C6
10nF
C7
470nF
C8
330pF
C9
10nF
C10
470nF
C11
330pF
C12
10nF
C13
470nF
C14
330pF
C15
10nF
C16
470nF
Raj1
47K
C17
330pF
C18
10nF
C19
470nF
J4
CLJ/SMB
C24
10µ
OEB
1
D0
2
D1
3
D2
4
D3
5
D4
6
D5
7
D6
8
D7
9
GND
10 LE 11
Q0 19
Q1 18
Q2 17
Q3 16
Q4 15
Q5 14
Q6 13
Q7 12
VCC 20
U2
74LCX573
OEB
1
D0
2
D1
3
D2
4
D3
5
D4
6
D5
7
D6
8
D7
9
GND
10 LE 11
Q0 19
Q1 18
Q2 17
Q3 16
Q4 15
Q5 14
Q6 13
Q7 12
VCC 20
U3
74LCX573
R10
47K
R11
47K
R12
47K
R14
47K R15
47K
C25
330pF
C27
10nF
C28
470nF
+
C29
10µF
DO
D7
D8
D9
D10
D11
D12
R13
47K
C30
330pF
C31
10nF
C32
470nF
1
2
12
VCC
1
2
J17
VDDBUFF3V
1
2
J18
VccB1
+
C34
47µ
+
C35
47µ
1
2
2
refP
1
2
5
refM
1
2
7
egl commode
1
2
8
es comMode
AVCC
AVCC
VCCB1
VCCB1
1
2
J9
DFSB
1
2
J10
OEB
1
2
J11
1
2
J13
C26
330pF
C39
10nF
C37
470nF
VCCB2
C33
330pF
C40
10nF
C38
470nF
D13
1
2
19
GND
1
2
20
GND
1
2
21
ndB2
1
2
22
ndB1
C41
10µF
+C42
47µF
Ipol
1
VrefP
2
VrefM
3
AGND
4
Vin
5
AGND
6
VINB
7
AGND
8
INCM
9
AGND
10
AVCC
11
AVCC
12
DVCC
13
DVCC
14
DGN D
15
CLK
16
DGN D
17
NC
18
DGN D
19
GND BUF F
20
GND BUF F
21
2.5VCCBUFF
22
OR
23
D13
24
D12 25
D11 26
D10 27
D9 28
D8 29
D7 30
D6 31
D5 32
D4 33
D3 34
D2 35
D1 36
D0 37
DR 38
2.5VCCBUFF 39
GNDB UFF 40
2.5VCCBUFF 41
NC 42
NC 43
OEB 44
DFSB 45
AVCC 46
AVCC 47
AGN D 48
8-14bitsADC
TSA1002
OR
R16
47K R17
47K R18
47K R19
47K
D1
D2
D3
D4
D5
D6
DR 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
J6
32PIN
1
2
J16
CON2
C20
330pF
C21
10nF
C22
470nF
C23
10µ
1
2
J15
DVCC
+
C36
47µ
1
43
2
6
T1
T2-AT1-1WT
1
43
2
6
T2
T2-AT1-1WT
TSA1201
TSA1201
18/20
Figure 10 : Printed circuit of evaluationboard.
Printed circuit board - List of components
Part Design Footprint Part Design Footprint Part Design Footprint Part Design Footprint
Type ator Type ator Type ator Type ator
10uF C2 4 1210 330pF C33 603 470nF C7 805 AVCC J12 FICHE2MM
10uF C2 3 1210 330pF C20 603 470nF C16 805 CLJ/SMB J4 SMB /H
10uF C4 1 1210 330pF C8 603 470nF C19 805 AGND J19 FICHE2MM
10uF C2 9 1210 330pF C2 603 470nF C3 805 DFSB J9 FICHE2MM
100pF C1 60 3 330pF C5 603 47KR12 603 DGND J20 FICHE2MM
10nF C12 60 3 33 0pF C 11 6 03 47KR14 603 DVCC J15 FICHE2MM
10nF C3 9 60 3 330pF C30 603 47KR11 603 GndB 1 J22 FICHE2MM
10nF C15 60 3 33 0pF C 17 6 03 47KR a j1 VR5 GndB 2 J2 1 F ICH E2 MM
10nF C4 0 60 3 33 0pF C 14 6 03 47KR10 603 Mes com mo de J8 FICHE2MM
10nF C2 7 60 3 47uF C36 CAP 47KR19 603 OEB J10 FICHE2MM
10nF C4 60 3 47uF C34 CAP 47KR13 6 03 R e gl c o m mo de J7 F ICH E2 MM
10nF C2 1 60 3 47uF C35 CAP 47KR15 603 T2-AT1-1WT T2 ADT
10nF C3 1 60 3 47uF C42 CAP 47KR16 603 T2-AT1-1WT T1 ADT
10nF C6 60 3 470nF C22 805 47KR17 603 Vc cB1 J18 FICHE2MM
10nF C9 60 3 470nF C32 805 47KR18 603 VDDBUFF3V J17 FICHE2MM
10nF C18 60 3 470nF C37 805 50R3 603 Vin J1 SMB/H
1KR2 603 470nF C38 805 50R1 603 VrefM J5 FICHE2MM
32PIN J6 IDC32 470nF C13 805 74LCX573 U3 TSSOP20 VrefP J2 FICHE2MM
330pF C2 5 603 470nF C28 805 74LCX573 U2 TSS OP20 TS A1002 U1 TQFP 48
330pF C2 6 603 47 0nF C 10 8 05 CON 2 J16 S IP 2
TSA1201
Part Design Footprint Part Design Footprint Part Design Footprint Part Design Footprint
Type ator Type ator Type ator Type ator
10uF C2 4 1210 330pF C33 603 470nF C7 805 AVCC J12 FICHE2MM
10uF C2 3 1210 330pF C20 603 470nF C16 805 CLJ/SMB J4 SMB /H
10uF C4 1 1210 330pF C8 603 470nF C19 805 AGND J19 FICHE2MM
10uF C2 9 1210 330pF C2 603 470nF C3 805 DFSB J9 FICHE2MM
100pF C1 60 3 330pF C5 603 47KR12 603 DGND J20 FICHE2MM
10nF C12 60 3 33 0pF C 11 6 03 47KR14 603 DVCC J15 FICHE2MM
10nF C3 9 60 3 330pF C30 603 47KR11 603 GndB 1 J22 FICHE2MM
10nF C15 60 3 33 0pF C 17 6 03 47KR a j1 VR5 GndB 2 J2 1 F ICH E2 MM
10nF C4 0 60 3 33 0pF C 14 6 03 47KR10 603 Mes com mo de J8 FICHE2MM
10nF C2 7 60 3 47uF C36 CAP 47KR19 603 OEB J10 FICHE2MM
10nF C4 60 3 47uF C34 CAP 47KR13 6 03 R e gl c o m mo de J7 F ICH E2 MM
10nF C2 1 60 3 47uF C35 CAP 47KR15 603 T2-AT1-1WT T2 ADT
10nF C3 1 60 3 47uF C42 CAP 47KR16 603 T2-AT1-1WT T1 ADT
10nF C6 60 3 470nF C22 805 47KR17 603 Vc cB1 J18 FICHE2MM
10nF C9 60 3 470nF C32 805 47KR18 603 VDDBUFF3V J17 FICHE2MM
10nF C18 60 3 470nF C37 805 50R3 603 Vin J1 SMB/H
1KR2 603 470nF C38 805 50R1 603 VrefM J5 FICHE2MM
32PIN J6 IDC32 470nF C13 805 74LCX573 U3 TSSOP20 VrefP J2 FICHE2MM
330pF C2 5 603 470nF C28 805 74LCX573 U2 TSS OP20 TS A1002 U1 TQFP 48
330pF C2 6 603 47 0nF C 10 8 05 CON 2 J16 S IP 2
TSA1201
TSA1201
19/20
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights ofthird parties which may resultfrom
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
2001 STMicroelectronics - Printed in France - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
http://www.st.com
PACKAGE MECHANICAL DATA
48 PINS - PLASTIC PACKAGE
Dim. Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.60 0.063
A1 0.05 0.15 0.002 0.006
A2 1.35 1.40 1.45 0.053 0.055 0.057
B 0.17 0.22 0.27 0.007 0.009 0.011
C 0.09 0.20 0.004 0.008
D 9.00 0.354
D1 7.00 0.276
D3 5.50 0.216
e 0.50 0.0197
E 9.00 0.354
E1 7.00 0.276
E3 5.50 0.216
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
K0°(min.), 7°(max.)
48 37
D3
e
13 24
1
12 25
36
c
A1 A2
A
D1
D
E3
E1
E
L
K
L1
0,25 mm
.010 inch
GAGE PLANE
0,10 mm
.004 inch
SEATING PLANE
B
TSA1201
20/20