High Speed IGBT with Diode IXSH 30N60B2D1 IXST 30N60B2D1 VCES = 600 V I C25 = 48 A V CE(sat) = 2.5 V Short Circuit SOA Capability Preliminary Data Sheet Symbol Test Conditions Maximum Ratings VCES TJ = 25C to 150C 600 V VCGR TJ = 25C to 150C; RGE = 1 M 600 V VGES Continuous 20 V VGEM Transient 30 V IC25 TC = 25C 48 A IC110 TC = 110C 30 A IF(110) 28 A 90 A ICM = 48 @ 0.8 VCES A 10 s 250 W -55 ... +150 C TJM 150 C Tstg -55 ... +150 C 6 5 g g 300 C 260 C ICM TC = 25C, 1 ms SSOA (RBSOA) VGE = 15 V, TJ = 125C, RG = 10 Clamped inductive load tSC (SCSOA) VGE = 15 V, VCE = 360 V, TJ = 125C RG = 10 , non repetitive PC TC = 25C TJ Weight TO-247 TO-268 Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s Maximum tab temperature for soldering for 10s Symbol Test Conditions = 750 A, VCE = VGE VGE(th) IC ICES VCE = VCES VGE = 0 V IGES VCE = 0 V, VGE = 20 V VCE(sat) IC = 24A, VGE = 15 V G C (TAB) C E TO-268 (IXST) G Characteristic Values (TJ = 25C, unless otherwise specified) min. typ. max. 4.0 TO-247 (IXSH) 7.0 V 150 1 A mA 100 nA 2.5 V G = Gate E = Emitter E C (TAB) C = Collector TAB = Collector Features * International standard package * Guaranteed Short Circuit SOA capability * Low VCE(sat) - for low on-state conduction losses * High current handling capability * MOS Gate turn-on - drive simplicity * Fast fall time for switching speeds up to 20 kHz Applications * AC motor speed control * Uninterruptible power supplies (UPS) * Welding Advantages * High power density DS99249(10/04) (c) 2004 IXYS All rights reserved IXSH 30N60B2D1 IXST 30N60B2D1 Symbol Test Conditions Characteristic Values (TJ = 25C, unless otherwise specified) min. typ. max. gfs IC = 24A; VCE = 10 V, Note 1 7.0 12.0 S 1220 pF 110 140 pF pF C res 42 pF Qg 50 nC 23 nC 15 nC Cies Coes Qge VCE = 25 V, VGE = 0 V f = 1 MHz 20N60B2D1 IC = 24A, VGE = 15 V, VCE = 0.5 VCES Qgc td(on) Inductive load, TJ = 25C 30 ns tri IC = 24A, VGE = 15 V VCE = 400 V, RG = 5 Switching times may increase for VCE (Clamp) > 0.8 * VCES, higher TJ or increased RG 30 ns td(off) tfi Eoff td(on) tri Inductive load, TJ = 125C Eon IC = 24 A, VGE = 15 V 20N60B2 VCE = 400 V, RG = 5 20N60B2D1 Switching times may increase for VCE (Clamp) > 0.8 * VCES, higher TJ or increased RG td(off) tfi Eoff 130 280 140 300 ns 0.55 1.0 mJ 30 ns 50 ns 0.32 0.82 mJ mJ 202 ns 234 ns 1.18 mJ RthJC 1 2 3 Terminals: 1 - Gate Dim. Millimeter Min. Max. A 4.7 5.3 A1 2.2 2.54 A2 2.2 2.6 b 1.0 1.4 b1 1.65 2.13 b2 2.87 3.12 C .4 .8 D 20.80 21.46 E 15.75 16.26 e 5.20 5.72 L 19.81 20.32 L1 4.50 P 3.55 3.65 Q 5.89 6.40 0.21 Reverse Diode (FRED) Test Conditions K/W Characteristic Values (TJ = 25C, unless otherwise specified) min. typ. max. VF IF = 30A, VGE = 0 V TJ =150C IRM trr IF = 50A, VGE = 0 V, -diF/dt = 100 A/s VR = 100 V trr IF = 1 A; -di/dt = 100 A/s; VR = 30 V TJ = 100C 2.0 TJ = 100C 150 1.6 2.5 2.5 30 V V A ns ns 0.9 K/W RthJC Note 1: Pulse test, t 300 s, duty cycle d 2 % IXYS MOSFETs and IGBTs are covered by one or moreof the following U.S. patents: 4,835,592 4,850,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 2 - Drain Inches Min. Max. .185 .209 .087 .102 .059 .098 .040 .055 .065 .084 .113 .123 .016 .031 .819 .845 .610 .640 0.205 0.225 .780 .800 .177 .140 .144 0.232 0.252 TO-268 (IXST) Outline 0.50 K/W RthCS Symbol ns TO-247 (IXSH) Outline 6,683,344 6,710,405B2 6,710,463 6,727,585 6,759,692 IXSH 30N60B2D1 IXST 30N60B2D1 Fig. 1. Output Characteristics @ 25 C Fig. 2. Extended Output Characteristics @ 25 C 120 60 VGE = 17V VGE = 17V 15V 100 50 13V I C - Amperes I C - Amperes 15V 40 30 11V 20 80 60 13V 40 11V 9V 10 20 9V 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 4.5 2 4 6 8 Fig. 3. Output Characteristics @ 125 C 12 14 16 18 20 Fig. 4. Dependence of V CE(sat) on Tem perature 60 2.0 VGE = 17V 15V VC E (sat)- Normalized 13V 40 VGE = 15V 1.8 50 I C - Amperes 10 V C E - Volts V C E - Volts 30 11V 20 9V 10 I C = 48A 1.6 1.4 1.2 I C = 24A 1.0 I C = 12A 0.8 7V 0 0.6 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 -50 -25 0 V CE - Volts Fig. 5. Collector-to-Em itter Voltage vs. Gate-to-Em itter voltage 50 75 100 125 150 Fig. 6. Input Adm ittance 110 7 TJ = 25C 100 6 90 80 I C = 48A 5 I C - Amperes VC E - Volts 25 TJ - Degrees Centigrade 24A 12A 4 3 70 60 50 40 30 TJ = 125C 20 2 25C 10 1 -40C 0 9 10 11 12 13 14 15 V G E - Volts 16 17 18 19 6 8 10 12 V G E - Volts 14 16 18 IXSH 30N60B2D1 IXST 30N60B2D1 Fig. 8. Dependence of Turn-off Fig. 7. Transconductance Energy Loss on RG 3.5 18 16 3.0 I C = 48A E o f f - milliJoules g f s - Siemens 14 12 10 TJ = -40C 8 25C 125C 6 2.5 TJ = 125C VGE = 15V 2.0 VCE = 400V I C = 24A 1.5 1.0 4 0.5 2 I C = 12A 0.0 0 0 20 40 60 80 100 0 120 10 20 30 Fig. 9. Dependence of Turn-Off 50 60 70 80 90 100 Fig. 10. Dependence of Turn-off Energy Loss on Tem perature Energy Loss on IC 3.0 3.0 R G = 5 2.5 R G = 5 TJ = 125C VGE = 15V 2.5 VCE = 400V E o f f - milliJoules E o f f - MilliJoules 40 R G - Ohms I C - Amperes 2.0 1.5 1.0 I C = 48A VGE = 15V VCE = 400V 2.0 1.5 I C = 24A 1.0 TJ = 25C 0.5 0.5 0.0 0.0 I C = 12A 10 15 20 25 30 35 40 45 50 25 35 I C - Amperes 45 55 65 75 85 95 Fig. 11. Dependence of Turn-off Fig. 12. Dependence of Turn-off Sw itching Tim e on IC Sw itching Tim e on RG 550 260 500 tfi - - - - - - 450 TJ = 125C 400 VGE = 15V I C = 12A VCE = 400V 350 300 I C = 48A I C = 24A 250 200 Switching Time - nanoseconds td(off) Switching Time - nanoseconds 105 115 125 TJ - Degrees Centigrade td(off) 240 220 tfi - - - - - - TJ = 125C R G = 5 200 VGE = 15V 180 VCE = 400V 160 140 TJ = 25C 120 I C = 12A 150 100 0 10 20 30 40 50 60 R G - Ohms 70 80 90 100 10 15 20 25 30 35 I C - Amperes 40 45 50 IXSH 30N60B2D1 IXST 30N60B2D1 Fig. 13. Dependence of Turn-off Sw itching Tim e on Tem perature Fig. 14. Gate Charge 16 260 td(off) Switching Time - nanoseconds 240 tfi - - - - - - 24A 12A R G = 5 220 14 I C = 48A 12 200 VG E - Volts VGE = 15V VCE = 400V 180 160 10 8 6 VCE = 300V 4 I C = 24A I C = 12A 140 2 24A 48A 120 I G = 10mA 0 25 35 45 55 65 75 85 95 0 105 115 125 5 10 TJ - Degrees Centigrade 20 25 30 35 40 45 50 55 Q G - nanoCoulombs Fig. 16. Reverse-Bias Safe Operating Area Fig. 15. Capacitance 10000 50 f = 1 MHz 45 40 C ies I C - Amperes Capacitance - p F 15 1000 C oes 100 35 30 25 20 15 10 C res 5 10 TJ = 125C R G = 10 dV/dT < 10V/ns 0 0 5 10 15 20 25 30 35 40 100 150 200 250 300 350 400 450 500 550 600 V C E - Volts V C E - Volts Fig. 17. Maxim um Transient Therm al Resistance R ( t h ) J C - ( C / W ) 1 0.1 1 10 100 Pulse Width - milliseconds 1000 IXSH 30N60B2D1 IXST 30N60B2D1 60 A 1000 nC 50 IF TVJ= 100C A 25 800 Qr 600 IF= 60A IF= 30A IF= 15A IRM IF= 60A IF= 30A IF= 15A 40 TVJ=150C 30 TVJ= 100C 20 30 15 TVJ=100C 400 20 10 TVJ=25C 200 10 0 0 1 0 100 3 V 2 5 0 A/s 1000 -diF/dt VF Fig. 18. Forward current IF versus VF Fig. 19. Reverse recovery charge 90 2.0 0 20 trr Kf 1.00 TVJ= 100C s V VFR 15 ns 600 A/s 800 1000 -diF/dt 400 Fig. 20. Peak reverse current IRM TVJ= 100C 1.5 200 tfr 0.75 VFR tfr 80 IF= 60A IF= 30A IF= 15A 1.0 IRM 10 0.50 5 0.25 70 0.5 Qr 0.0 60 0 40 80 120 C 160 0 0 200 TVJ 400 600 800 1000 A/s 0 400 -diF/dt Fig. ,II Fig.21. 20.Dynamic Dynamicparameters parametersQQ r r,RM RM Fig. 22. Recovery time trr versus 1 K/W 0.00 600 A/s 800 1000 diF/dt Fig. 23. Peak forward voltage VFR Constants for ZthJC calculation: i 1 2 0.1 ZthJC 0.01 0.001 0.00001 200 DSEP 29-06 0.0001 0.001 0.01 s 0.1 t Fig. 24. Transient thermal resistance junction to case 1 Rthi (K/W) ti (s) 0.502 0.193 0.0052 0.0003