DBV-5 DGN-8 DGK-8
D-8
1FEATURESDESCRIPTION
APPLICATIONS
_
+
768
+7.5 V
49.9
VI
-7.5 V
50 Source
Low-Noise, Low-Distortion, Wideband Application Circuit
NOTE:Power supply decoupling capacitors not shown
768
50
THS3201 49.9
50
0
1
2
3
4
5
6
7
8
100 k 1 M 10 M 100 M 1 G 10 G
f - Frequency - Hz
Noninverting Gain - dB
NONINVERTING SMALL SIGNAL
FREQUENCY RESPONSE
RF = 768
Gain = 2.
RL = 100 ,
VO = 0.2 VPP.
VS = ±7.5 V
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
1.8-GHz,LOWDISTORTION,CURRENT-FEEDBACKAMPLIFIER
23Unity-GainBandwidth:1.8GHzTheTHS3201isawideband,high-speed
current-feedbackamplifier,designedtooperateover
HighSlewRate:6700V/µs(G=2V/V,awidesupplyrangeof±3.3Vto±7.5Vfortoday's
RL=100,10-VStep)highperformanceapplications.
IMD3:–78dBcat20MHz:(G=10V/V,Thewidesupplyrange,combinedwithlowdistortion
RL=100,2-VPPEnvelope)andhighslewrate,makestheTHS3201ideally
NoiseFigure:11dB(G=10V/V,RG=28,suitedforarbitrarywaveformdriverapplications.The
RF=255)distortionperformancealsoenablesdriving
high-resolutionandhigh-samplingrate
Input-ReferredNoise(f>10MHz)analog-to-digitalconverters(ADCs).
VoltageNoise:1.65nV/HzItshighvoltageoperationcapabilitiesmakethe
NoninvertingCurrentNoise:13.4pA/HzTHS3201especiallysuitableformanytest,
InvertingCurrentNoise:20pA/Hzmeasurement,andATEapplicationswherelower
OutputDrive:100mAvoltagedevicesdonotofferenoughvoltageswing
capability.Outputriseandfalltimesarenearly
Power-SupplyVoltageRange:±3.3Vto±7.5Vindependentofstepsize(tofirst-order
approximation),makingtheTHS3201idealfor
bufferingsmalltolargesteppulseswithexcellent
TestandMeasurementlinearityinhighdynamicsystems.
ATETheTHS3201isofferedina5-pinSOT-23,8-pin
High-Resolution,High-SamplingRateADCSOIC,andan8-pinMSOPwithPowerPAD™
Driverspackages.
High-Resolution,High-SamplingRateDAC
OutputBuffersRELATEDDEVICESANDDESCRIPTIONS
DEVICEDESCRIPTION
THS3202±7.5-V,2-GHzDualLowDistortionCFBAmplifier
THS3001±15-V,420-MHzLowDistortionCFBAmplifier
THS3061/2±15-V,300-MHzLowDistortionCFBAmplifier
THS3122±15-V,DualCFBAmplifierWith350mADrive
OPA695±5-V,1.7-GHzLowDistortionCFBAmplifier
1
Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsofTexas
Instrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet.
2PowerPADisatrademarkofTexasInstruments.
3Allothertrademarksarethepropertyoftheirrespectiveowners.
PRODUCTIONDATAinformationiscurrentasofpublicationdate.Copyright©2003–2009,TexasInstrumentsIncorporated
ProductsconformtospecificationsperthetermsoftheTexas
Instrumentsstandardwarranty.Productionprocessingdoesnot
necessarilyincludetestingofallparameters.
Not Recommended for New Designs
ABSOLUTEMAXIMUMRATINGS
PACKAGEDISSIPATIONRATINGS(1)
RECOMMENDEDOPERATINGCONDITIONS
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
ThisintegratedcircuitcanbedamagedbyESD.TexasInstrumentsrecommendsthatallintegratedcircuitsbehandledwith
appropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage.
ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemore
susceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications.
Overoperatingfree-airtemperaturerangeunlessotherwisenoted.(1)
UNIT
VSSupplyvoltage16.5V
VIInputvoltage±VS
IOOutputcurrent175mA
VIDDifferentialinputvoltage±3V
ContinuouspowerdissipationSeeDissipationRatingTable
TJMaximumjunctiontemperature(2)+150°C
TJMaximumjunctiontemperature,continuousoperation,longtermreliability(3)+125°C
TAOperatingfree-airtemperaturerange–40°Cto+85°C
TSTGStoragetemperaturerange–65°Cto+150°C
HBM3000V
ESDratingsCDM1500V
MM100V
(1)Stressesabovetheseratingsmaycausepermanentdamage.Exposuretoabsolutemaximumconditionsforextendedperiodsmay
degradedevicereliability.Thesearestressratingsonly,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyond
thosespecifiedisnotimplied.
(2)Theabsolutemaximumratingsunderanyconditionislimitedbytheconstraintsofthesiliconprocess.Stressesabovetheseratingsmay
causepermanentdamage.Exposuretoabsolutemaximumconditionsforextendedperiodsmaydegradedevicereliability.Theseare
stressratingsonly,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthosespecifiedisnotimplied.
(3)Themaximumjunctiontemperatureforcontinuousoperationislimitedbypackageconstraints.Operationabovethistemperaturemay
resultinreducedreliabilityand/orlifetimeofthedevice.
POWERRATING(3)
θJCθJA(2)(TJ=+125°C)
PACKAGE(°C/W)(°C/W)TA+25°CTA=+85°C
DBV(5)55255.4391mW156mW
D(8)38.397.51.02W410mW
DGN(8)(1)4.758.41.71W685mW
DGK(8pin)54.2260385mW154mW
(1)TheTHS3201mayincorporateaPowerPAD™ontheundersideofthechip.Thisactsasaheatsink
andmustbeconnectedtoathermallydissipativeplaneforproperpowerdissipation.Failuretodoso
mayresultinexceedingthemaximumjunctiontemperaturewhichcouldpermanentlydamagethe
device.SeeTItechnicalbriefsSLMA002andSLMA004formoreinformationaboututilizingthe
PowerPADthermallyenhancedpackage.
(2)ThisdatawastakenusingtheJEDECstandardHigh-KtestPCB.
(3)Powerratingisdeterminedwithajunctiontemperatureof+125°C.Thisisthepointwheredistortion
startstosubstantiallyincrease.ThermalmanagementofthefinalPCBshouldstrivetokeepthe
junctiontemperatureatorbelow+125°Cforbestperformanceandlongtermreliability.
MINMAXUNIT
Dualsupply±3.3±7.5
SupplyvoltageV
Singlesupply6.615
TAOperatingfree-airtemperaturerange–40+85°C
2SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
PINASSIGNMENTS
VOUT
VS-
IN+
VS+
IN-
3
2
4
5
1
VOUT-
VS-
VIN-VS+
VIN+
NC=Nointernalconnection.
SeeNoteA.
1
2
3
4
8
7
6
5
NC
NC
NC
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
PACKAGE/ORDERINGINFORMATION(1)
PARTNUMBERPACKAGETYPEPACKAGEMARKINGTRANSPORTMEDIA,QUANTITY
THS3201DRails,75
SOIC-8
THS3201DRTapeandReel,2500
THS3201DBVTTapeandReel,250
SOT-23BEO
THS3201DBVRTapeandReel,3000
THS3201DGNRails,80
MSOP-8-PPBEN
THS3201DGNRTapeandReel,2500
THS3201DGKRails,80
MSOP-8BGP
THS3201DGKRTapeandReel,2500
(1)ForthemostcurrentpackageandorderinginformationseethePackageOptionAddendumattheendofthisdocument,orseetheTI
websiteatwww.ti.com.
DBVPACKAGED,DGN,DGKPACKAGES
SOT23-5SOIC-8,MSOP-8
(TOPVIEW)(TOPVIEW)
A.IfaPowerPADisused,itiselectrically
isolatedfromtheactivecircuitry.
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback3
ProductFolderLink(s):THS3201
Not Recommended for New Designs
ELECTRICALCHARACTERISTICS:VS=±7.5V
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
AtRF=768,RL=100,andG=+2,unlessotherwisenoted.
THS3201
TYPOVERTEMPERATURE
PARAMETERTESTCONDITIONSMIN/
0°Cto–40°Cto
+25°C+25°CUNITSTYP/
+70°C+85°CMAX
ACPERFORMANCE
G=+1,RF=1.2k1.8GHz
G=+2,RF=768850
Small-signalbandwidth,3dBTyp
(VO=200mVPP)G=+5,RF=619565MHz
G=+10,RF=487520
Bandwidthfor0.1dBflatnessG=+2,VO=200mVpp380MHzTyp
Large-signalbandwidthG=+2,VO=2Vpp880MHzTyp
G=+2,VO=5-Vstep,Rise/Fall5400/4000
SlewrateV/µsTyp
G=+2,VO=10-Vstep,Rise/Fall9800/6700
RiseandfalltimeG=+2,VO=4-Vstep,Rise/Fall0.7/0.9nsTyp
Settlingtimeto0.1%20
G=–2,VO=2-VstepnsTyp
Settlingtimeto0.01%60
Harmonicdistortion
RL=100–64dBcTyp
2nd-orderharmonicG=+5,f=10MHz,
VO=2VppRL=100–73dBcTyp
3rd-orderharmonic
G=+10,fc=20MHz,Δf=1MHz,
Third-orderintermodulationdistortion(IMD3)–78dBcTyp
VO(envelope)=2Vpp
G=+10,fc=100MHz,RF=255,
Noisefigure11dBTyp
RG=28
Inputvoltagenoisef>10MHz1.65nV/Hz Typ
Inputcurrentnoise(noninverting)13.4pA/HzTyp
f>10MHz
Inputcurrentnoise(inverting)20pA/HzTyp
NTSC0.008%Typ
DifferentialgainPAL0.004%Typ
G=+2,RL=150,
RF=768NTSC0.007°Typ
DifferentialphasePAL0.011°Typ
DCPERFORMANCE
Open-looptransimpedancegainVO=±1V,RL=1k300200140120kMin
Inputoffsetvoltage±0.7±3±3.8±4mVMax
Averageoffsetvoltagedrift±10±13µV/°CTyp
Inputbiascurrent(inverting)±13±60±80±85µAMax
VCM=0V
Averagebiascurrentdrift(–)±300±400nA/°CTyp
Inputbiascurrent(noninverting)±14±35±45±50µAMax
Averagebiascurrentdrift(+)±300±400nA/°CTyp
4SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
ELECTRICALCHARACTERISTICS:VS=±7.5V(continued)
AtRF=768,RL=100,andG=+2,unlessotherwisenoted.
THS3201
TYPOVERTEMPERATURE
PARAMETERTESTCONDITIONSMIN/
0°Cto–40°Cto
+25°C+25°CUNITSTYP/
+70°C+85°CMAX
INPUT
Common-modeinputrange±5.1±5±5±5VMin
Common-moderejectionratioVCM=±3.75V71605858dBMin
Invertinginputimpedance,ZinOpenloop16Typ
Noninverting780kTyp
InputresistanceInverting11Typ
InputcapacitanceNoninverting1pFTyp
OUTPUT
RL=1k±6±5.9±5.8±5.8VMin
VoltageoutputswingRL=100±5.8±5.7±5.5±5.5VMin
Currentoutput,sourcing115105100100mAMin
RL=20
Currentoutput,sinking100858080mAMin
Closed-loopoutputimpedanceG=+1,f=1MHz0.01Typ
POWERSUPPLY
MinimumoperatingvoltageAbsoluteminimum±3.3±3.3±3.3VMin
MaximumoperatingvoltageAbsolutemaximum±8.25±8.25±8.25VMax
Maximumquiescentcurrent14182121mAMax
Power-supplyrejection(+PSRR)VS+=7Vto8V69636060dBMin
Power-supplyrejection(–PSRR)VS–=–7Vto–8V65585555dBMin
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback5
ProductFolderLink(s):THS3201
Not Recommended for New Designs
ELECTRICALCHARACTERISTICS:VS=±5V
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
AtRF=715,RL=100,andG=+2,unlessotherwisenoted.
THS3201
TYPOVERTEMPERATURE
PARAMETERTESTCONDITIONSMIN/
0°Cto–40°Cto
+25°C+25°CUNITSTYP/
+70°C+85°CMAX
ACPERFORMANCE
G=+1,RF=1.2k1.3GHz
G=+2,RF=715725
Small-signalbandwidth,3dBTyp
(VO=200mVPP)G=+5,RF=576540MHz
G=+10,RF=464480
Bandwidthfor0.1dBflatnessG=+2,VO=200mVPP170MHzTyp
Large-signalbandwidthG=+2,VO=2VPP900MHzTyp
SlewrateG=+2,VO=5-Vstep,Rise/Fall5200/4000V/µsTyp
RiseandfalltimeG=+2,VO=4-Vstep,Rise/Fall0.7/0.9nsTyp
Settlingtimeto0.1%20nsTyp
G=–2,VO=2-Vstep
Settlingtimeto0.01%60nsTyp
Harmonicdistortion
RL=100–69dBcTyp
2nd-orderharmonicG=+5,f=10MHz,
VO=2VppRL=100–75dBcTyp
3rd-orderharmonic
G=+10,fc=20MHz,Δf=1MHz,
Third-orderintermodulationdistortion(IMD3)–81dBcTyp
VO(envelope)=2VPP
G=+10,fc=100MHz,RF=255,
Noisefigure11dBTyp
RG=28
Inputvoltagenoisef>10MHz1.65nV/Hz Typ
Inputcurrentnoise(noninverting)13.4pA/HzTyp
f>10MHz
Inputcurrentnoise(inverting)20pA/HzTyp
NTSC0.006%Typ
DifferentialgainPAL0.004%Typ
G=+2,RL=150,
RF=768NTSC0.03°Typ
DifferentialphasePAL0.04°Typ
DCPERFORMANCE
Open-looptransimpedancegainVO=+1V,RL=1k300200140120kMin
Inputoffsetvoltage±0.7±3±3.8±4mVMax
Averageoffsetvoltagedrift±10±13±V/°CTyp
Inputbiascurrent(inverting)±13±60±80±85µAMax
VCM=0V
Averagebiascurrentdrift(–)±300±400nA/°CTyp
Inputbiascurrent(noninverting)±14±35±45±50µAMax
Averagebiascurrentdrift(+)±300±400nA/°CTyp
6SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
ELECTRICALCHARACTERISTICS:VS=±5V(continued)
AtRF=715,RL=100,andG=+2,unlessotherwisenoted.
THS3201
TYPOVERTEMPERATURE
PARAMETERTESTCONDITIONSMIN/
0°Cto–40°Cto
+25°C+25°CUNITSTYP/
+70°C+85°CMAX
INPUT
Common-modeinputrange±2.6±2.5±2.5±2.5VMin
Common-moderejectionratioVCM=±2.5V71605858dBMin
Invertinginputimpedance,ZINOpenloop17.5Typ
Noninverting780kTyp
InputresistanceInverting11Typ
InputcapacitanceNoninverting1pFTyp
OUTPUT
RL=1k±3.65±3.5±3.45±3.4
VoltageoutputswingVMin
RL=100±3.45±3.33±3.25±3.2
Currentoutput,sourcing115105100100mAMin
RL=20
Currentoutput,sinking100858080mAMin
Closed-loopoutputimpedanceG=+1,f=1MHz0.01Typ
POWERSUPPLY
MinimumoperatingvoltageAbsoluteminimum±3.3±3.3±3.3VMin
MaximumoperatingvoltageAbsolutemaximum±8.25±8.25±8.25VMax
Maximumquiescentcurrent1416.81920mAMax
Power-supplyrejection(+PSRR)VS+=4.5Vto5.5V69636060dBMin
Power-supplyrejection(–PSRR)VS–=4.5Vto–5.5V65585555dBMin
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback7
ProductFolderLink(s):THS3201
Not Recommended for New Designs
TYPICALCHARACTERISTICS
TableofGraphs(VS=±7.5V)
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
FIGURE
Noninvertingsmall-signalfrequencyresponse1,2
Invertingsmall-signalfrequencyresponse3
Noninvertinglarge-signalfrequencyresponse4
Invertinglarge-signalfrequencyresponse5
0.1dBgainflatnessfrequencyresponse6
Capacitiveloadfrequencyresponse7
RecommendedswitchingresistancevsCapacitiveLoad8
2ndharmonicdistortionvsFrequency9
3rdharmonicdistortionvsFrequency10
2ndharmonicdistortion,G=2vsOutputvoltage11
3rdharmonicdistortion,G=2vsOutputvoltage12
2ndharmonicdistortion,G=5vsOutputvoltage13
3rdharmonicdistortion,G=5vsOutputvoltage14
2ndharmonicdistortion,G=10vsOutputvoltage15
3rdharmonicdistortion,G=10vsOutputvoltage16
Third-orderintermodulationdistortion(IMD3)vsFrequency17
S-ParametervsFrequency18,19
InputvoltageandcurrentnoisevsFrequency20
NoisefigurevsFrequency21
TransimpedancevsFrequency22
InputoffsetvoltagevsCaseTemperature23
InputbiasandoffsetcurrentvsCaseTemperature24
SlewratevsOutputvoltagestep25
Settlingtime26,27
QuiescentcurrentvsSupplyvoltage28
OutputvoltagevsLoadresistance29
RejectionratiovsFrequency30
Noninvertingsmall-signaltransientresponse31
Invertinglarge-signaltransientresponse32
Overdriverecoverytime33
DifferentialgainvsNumberofloads34
DifferentialphasevsNumberofloads35
Closed-loopoutputimpedancevsFrequency36
8SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
TableofGraphs(VS=±5V)
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
FIGURE
Noninvertingsmall-signalfrequencyresponse37
Invertingsmall-signalfrequencyresponse38
0.1dBgainflatnessfrequencyresponse39
2ndharmonicdistortionvsFrequency40
3rdharmonicdistortionvsFrequency41
2ndharmonicdistortion,G=2vsOutputvoltage42
3rdharmonicdistortion,G=2vsOutputvoltage43
2ndharmonicdistortion,G=5vsOutputvoltage44
3rdharmonicdistortion,G=5vsOutputvoltage45
2ndharmonicdistortion,G=10vsOutputvoltage46
3rdharmonicdistortion,G=10vsOutputvoltage47
Third-orderintermodulationdistortion(IMD3)vsFrequency48
S-ParametervsFrequency49,50
SlewratevsOutputvoltagestep51
Noninvertingsmall-signaltransientresponse52
Invertinglarge-signaltransientresponse53
Overdriverecoverytime54
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback9
ProductFolderLink(s):THS3201
Not Recommended for New Designs
VS=±7.5VGraphs
0
1
2
3
4
5
6
7
8
100 k 1 M 10 M 100 M 1 G 10 G
f - Frequency - Hz
Noninverting Gain - dB
RF = 619
RF = 768
RF = 1 k
Gain = 2.
RL = 100 ,
VO = 0.2 VPP.
VS = ±7.5 V
-4
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
100 k 1 M 10 M 100 M 1 G 10 G
f - Frequency - Hz
RL = 100 ,
VO = 0.2 VPP.
VS = ±7.5 V
G = 10, RF = 487
G = 5, RF = 619
G = 2, RF = 768
G =1, RF = 1.2 k
Noninverting Gain - dB
-4
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
100 k 1 M 10 M 100 M 1 G 10 G
f - Frequency - Hz
RL = 100 ,
VO = 0.2 VPP.
VS = ±7.5 V
G = -10, RF = 499
G = -5, RF = 549
G = -2, RF = 576
G = -1, RF = 619
Noninverting Gain - dB
-4
-2
0
2
4
6
8
10
12
14
16
100 k 1 M 10 M 100 M 1 G
f - Frequency - Hz
G =-5, RF = 549
G = -1, RF = 576
RL = 100 ,
VO = 2 VPP.
VS = ±7.5 V
Inverting Gain - dB
0
2
4
6
8
10
12
14
16
100 k 1 M 10 M 100 M 1 G
f - Frequency - Hz
Inverting Gain - dB
G =-5, RF = 576
G = 2, RF = 715
RL = 100 ,
VO = 2 VPP.
VS = ±7.5 V
-2
0
2
4
6
8
10
12
14
16
0 100 200 300 400 500
f - Frequency - MHz
Gain - dB
R(ISO) = 30 , CL = 22 pF
R(ISO) = 20 ,
CL = 47 pF
Gain = 5
RF = 619
RL = 100
VS = ±7.5 V
R(ISO) = 20 ,
CL = 50 pF
R(ISO) = 15 ,
CL = 100 pF
0
10
20
30
40
50
60
10 100
CL - Capacitive Load - pF
Recommended RISO
Gain = 5,
RF = 619
RL = 100 ,
VS = ±7.5 V
-
_
+RISO
CL
-100
-90
-80
-70
-60
-50
-40
1 100
f-Frequency-MHz
2ndOrderHarmonicDistortion-dBc
Vs= 5V
V =2V
R =100
out PP
LW
±7.
G=10
R=499 ,R =54.9
F G
W W
G=5
R=619 ,
R =154
F
G
W
W
G=2
R =768 ,R =768
F G
W W
10
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
NONINVERTINGSMALL-SIGNALNONINVERTINGSMALL-SIGNALINVERTINGSMALL-SIGNAL
FREQUENCYRESPONSEFREQUENCYRESPONSEFREQUENCYRESPONSE
Figure1.Figure2.Figure3.
INVERTINGLARGE-SIGNALINVERTINGLARGE-SIGNAL0.1dBGAINFLATNESS
FREQUENCYRESPONSEFREQUENCYRESPONSEFREQUENCYRESPONSE
Figure4.Figure5.Figure6.
RECOMMENDEDRISO2ndHARMONICDISTORTION
CAPACITIVELOADvsvs
FREQUENCYRESPONSECAPACITIVELOADFREQUENCY
Figure7.Figure8.Figure9.
10SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
-100
-95
-90
-85
-80
-75
-70
-65
-60
1 10 100
f-Frequency-MHz
3rdOrderHarmonicDistortion-dBc
Vs= 5V
V =2V
R =100
out PP
LW
±7.
G=10
R =499 ,R =54.9
F G
W W
G=2
R =768 ,R =768
F G
W W
G=5
R =619 ,R =154
F G
W W
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
2ndOrderHarmonicDistortion-dBc
Vs= 5V
F G
L
G=2
R =768 ,R =768
R =100 W
±7.
W W
1MHz
2MHz
8MHz 4MHz
64MHz
32MHz
16MHz
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
3rdOrderHarmonicDistortion-dBc
Vs= 5V
F G
L
G=2
R =768 ,R =768
R =100 W
±7.
W W
1MHz
8MHz 4MHz
64MHz
32MHz
16MHz 2MHz
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
2ndOrderHarmonicDistortion-dBc
Vs= 5V
F G
L
G=5
R =619 ,R =154
R =100 W
±7.
W W
1MHz
2MHz
8MHz
4MHz
64MHz
32MHz
16MHz
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
3rdOrderHarmonicDistortion-dBc
Vs= 5V
F G
L
G=5
R =649 ,R =154
R =100 W
±7.
W W
1MHz
8MHz
4MHz
64MHz
32MHz
16MHz 2MHz
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
2ndOrderHarmonicDistortion-dBc
Vs= 5V, G=10
R =499 ,R =54.9
R =100
F G
LW
±7.
W W
1MHz
4MHz
64MHz
32MHz
16MHz
2MHz
8MHz
-100
-80
-60
-40
-20
1 M 10 M 100 M 10 G
f - Frequency - Hz
0
S-Parameter - dB
1 G
S12
S11
S22
Source
C
50
50
50
50
RF
RG
VS = ±7.5 V
Gain = +10
C = 0 pF
+
-
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
3rdOrderHarmonicDistortion-dBc
Vs= 5V
F G
L
G=10
R =499 ,R =54.9
R =100 W
±7.
W W
1MHz
8MHz
4MHz
64MHz
32MHz
16MHz 2MHz
-100
-90
-70
-50
-40
10 30 40 60 70 90 100
f-Frequency-MHz
3rdOrderIntermodulationDistortion-dBc
-80
-60
20 50 80
Vs= 5V
V =2V
R =100
out PP
LW
±7.
G2
R =768 ,R =768
F G
W W
G10
R=499 ,R =54.9
F G
W W
G5
R=619 ,R =154
F G
W W
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
VS=±7.5VGraphs(continued)
2ndHARMONICDISTORTION3rdHARMONICDISTORTION
3rdHARMONICDISTORTIONG=2G=2
vsvsvs
FREQUENCYOUTPUTVOLTAGEOUTPUTVOLTAGE
Figure10.Figure11.Figure12.
2ndHARMONICDISTORTION3rdHARMONICDISTORTION2ndORDERHARMONICDISTORTION
G=5G=5G=10
vsvsvs
OUTPUTVOLTAGEOUTPUTVOLTAGEOUTPUTVOLTAGE
Figure13.Figure14.Figure15.
3rdORDERHARMONICDISTORTION3rdORDERINTERMODULATION
G=10DISTORTIONS-PARAMETER
vsvsvs
OUTPUTVOLTAGEFREQUENCYFREQUENCY
Figure16.Figure17.Figure18.
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback11
ProductFolderLink(s):THS3201
Not Recommended for New Designs
10
15
20
25
30
40
45
50
100 k 1 M 10 M 100 M
Inverting
Noise Current
Noninverting
Current Noise
VS = ±7.5 V and ±5 V
TA = 25°C
f - Frequency - Hz
35
0
0.5
1.5
2.5
3
4
Voltage Noise Density - nV/ Hz
Input Current Noise Density - pA Hz
In-
Vn-
Vn
3.5
-100
-80
-60
-40
-20
1 M 10 M 100 M 10 G
f - Frequency - Hz
0
S-Parameter - dB
1 G
Source
C
50
50
50
50
RF
RG
VS = ±7.5 V
Gain = +10
C = 3.3 pF
S22
S11
S12
+
-
6
7
8
9
10
11
12
13
14
0 50 100 150 200 250 300 350 400
Noise Figure - dB
f - Frequency - MHz
Gain = +10
RG = 28
RF = 255
VS = ±7.5 V & ±5 V
0
20
40
60
80
100
120 VS = ±5 and ±7.5V
f - Frequency - Hz
100 k 10 M 1 G100 M1 M
Transimpedance Gain -dB
_
+
Gain W+VO
IIB
10
_
+
0
0.5
1
1.5
2
2.5
3
-40-30-20-10 0 10 20 30 40 50 60 70 80 90
TC - Case Temperature - °C
- Input Offset Voltage - mV
VOS
VS = ±5 V
VS = ±7.5 V
10
11
12
13
14
15
16
17
-40-30-20-10 0 10 20 30 40 50 60 70 80 90
0
1
2
3
4
5
6
7
TC - Case Temperature - °C
- Input Bias Currents -IIB
IOS - Input Offset Currents -
Aµ
Aµ
IOS
IIB-
IIB+
VS = ±7.5 V
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
0 2.5 7.5 12.5
t - Time - ns
- Output Voltage - VVO
Rising Edge
Gain = -2
RL = 100
RF = 576
f= 1 MHz
VS = ±7.5 V
Falling Edge
5 10
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
Gain = -2
RL = 100
RF = 576
f= 1 MHz
VS = ±7.5 V
Rising Edge
Falling Edge
t - Time - ns
- Output Voltage - VVO
0
2000
4000
6000
8000
9000
10000
1 2 4 10
V OutputVoltage-Vstep
out -
SR -V/ sm
-SlewRate±
9
SR+
SR-
1000
3000
5000
7000
5 73 6 8
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
VS=±7.5VGraphs(continued)
INPUTVOLTAGEAND
S-PARAMETERCURRENTNOISENOISEFIGURE
vsvsvs
FREQUENCYFREQUENCYFREQUENCY
Figure19.Figure20.Figure21.
TRANSIMPEDANCEINPUTOFFSETVOLTAGEINPUTBIASANDOFFSETCURRENT
vsvsvs
FREQUENCYCASETEMPERATURECASETEMPERATURE
Figure22.Figure23.Figure24.
SLEWRATE
vs
OUTPUTVOLTAGESETTLINGTIMESETTLINGTIME
Figure25.Figure26.Figure27.
12SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
10 100 1000
RL - Load Resistance -
- Output Voltage - VVO
VS = ±7.5 V
TA = -40 to 85°C
0
10
20
30
40
50
60
70
80
100 k 1 M 10 M 100 M
CMRR
PSRR+
VS = ±7.5 V
Rejection Ratios - dB
f - Frequency - Hz
0
2
4
6
8
10
12
14
16
18
20
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
VS - Supply Voltage - ±V
Quiescent Current - mA
TA = 85°C
TA = 25°C
TA = -40°C
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t - Time - µs
- Output Voltage - VVO
Output
Input
Gain = 2
RL = 100
RF = 715
VS = ±7.5 V
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t - Time - µs
- Output Voltage - VVO
Output
Input
Gain = -5
RL = 100
RF = 549
VS = ±7.5 V
-10
-8
-6
-4
-2
0
2
4
6
8
10
0 0.2 0.4 0.6 0.8 1 -5
-4
-3
-2
-1
0
1
2
3
4
5
t - Time - µs
- Output Voltage - V
- Input Voltage - VVI
VO
G = 2,
RF = 768 ,
VS = ±7.5 V
0
0.005
0.010
0.015
0.020
0.025
0.030
012345678
Number of Loads - 150
Differential Gain - %
Gain = 2
RF = 768
VS = ±7.5 V
40 IRE - NTSC and Pal
Worst Case ±100 IRE Ramp
NTSC
PAL
0
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
012345678
Number of Loads - 150
Differential Phase -
Gain = 2
RF = 768 k
VS = ±7.5 V
40 IRE - NTSC and Pal
Worst Case ±100 IRE Ramp
NTSC
PAL
°
0.001
0.01
0.1
1
10
100
1000
100 k 1 M 10 M 1 M 1 G
f - Frequency - Hz
Closed-Loop Output Impedance -
Gain = 2
RF = 715
RL = 100
VS = ±7.5 V
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
VS=±7.5VGraphs(continued)
QUIESCENTCURRENTOUTPUTVOLTAGEREJECTIONRATIO
vsvsvs
SUPPLYVOLTAGELOADRESISTANCEFREQUENCY
Figure28.Figure29.Figure30.
NONINVERTINGSMALL-SIGNALINVERTINGLARGE-SIGNAL
TRANSIENTRESPONSETRANSIENTRESPONSEOVERDRIVERECOVERYTIME
Figure31.Figure32.Figure33.
DIFFERENTIALGAINDIFFERENTIALPHASECLOSED-LOOPOUTPUTIMPEDANCE
vsvsvs
NUMBEROFLOADSNUMBEROFLOADSFREQUENCY
Figure34.Figure35.Figure36.
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback13
ProductFolderLink(s):THS3201
Not Recommended for New Designs
VS=±5VGraphs
-4
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
100 k 1 M 10 M 100 M 1 G 10 G
f - Frequency - Hz
RL = 100 ,
VO = 0.2 VPP.
VS = ±5 V
G = 10, RF = 464
G = 5, RF = 576
G = 2, RF = 715
G =1, RF = 1.2 k
Noninverting Gain - dB
-4
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
100 k 1 M 10 M 100 M 1 G 10 G
f - Frequency - Hz
RL = 100 ,
VO = 0.2 VPP.
VS = ±5 V
G = -10, RF = 499
G = -5, RF = 549
G = -2, RF = 576
G =-1, RF = 576
Inverting Gain - dB
-100
-95
-90
-85
-80
-75
-70
-65
-60
1 10 100
f-Frequency-MHz
3rdOrderHarmonicDistortion-dBc
Vs= 5V
V =2V
R =100
out PP
LW
±
G=10
R =464 ,R =51.1
F G
W W
G=2
R =715 ,R =715
F G
W W
G=5
R =576 ,R =143
F G
W W
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
2ndOrderHarmonicDistortion-dBc
Vs= 5V
L
G=2
RF=715 ,RG=715
R =100 W
±
W W
1MHz
2MHz
8MHz
4MHz
64MHz
32MHz
16MHz
-100
-90
-80
-70
-60
-50
-40
1 100
f-Frequency-MHz
2ndOrderHarmonicDistortion-dBc
Vs= 5V
V =2V
R =100
out PP
LW
±
G=10
R=464 ,R =51.1
F G
W W
G=5
R=576 ,
R =143
F
G
W
W
G=2
R =715 ,R =715
F G
W W
10
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
3rdOrderHarmonicDistortion-dBc
Vs= 5V
F G
L
G=2
R =715 ,R =715
R =100 W
±
W W
1MHz
2MHz
8MHz
4MHz
64MHz
32MHz
16MHz
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
2ndOrderHarmonicDistortion-dBc
Vs= 5V
F G
L
G=5
R =576 ,R =143
R =100 W
±
W W
1MHz
2MHz
8MHz 4MHz
64MHz
32MHz
16MHz
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
3rdOrderHarmonicDistortion-dBc
Vs= 5V
F G
L
G=5
R =576 ,R =143
R =100 W
±
W W
1MHz
2MHz
8MHz
4MHz
64MHz
32MHz
16MHz
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
NONINVERTINGSMALL-SIGNALINVERTINGSMALL-SIGNAL0.1dBGAINFLATNESS
FREQUENCYRESPONSEFREQUENCYRESPONSEFREQUENCYRESPONSE
Figure37.Figure38.Figure39.
2ndORDERHARMONICDISTORTION
2ndHARMONICDISTORTION3rdORDERHARMONICDISTORTIONG=2
vsvsvs
FREQUENCYFREQUENCYOUTPUTVOLTAGE
Figure40.Figure41.Figure42.
3rdORDERHARMONIC2ndORDERHARMONIC3rdORDERHARMONIC
DISTORTION,G=2DISTORTION,G=5DISTORTION,G=5
vsvsvs
OUTPUTVOLTAGEOUTPUTVOLTAGEOUTPUTVOLTAGE
Figure43.Figure44.Figure45.
14SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
2ndOrderHarmonicDistortion-dBc
Vs= 5V, G=10
R =464 ,R =51.1
R =100
F G
LW
±
W W
1MHz
2MHz
8MHz 4MHz
64MHz
32MHz
16MHz
-110
-100
-90
-80
-70
-60
-50
-40
-30
0 1 2 3 4 5 6
V OutputVoltage-V
out PP
-
3rdOrderHarmonicDistortion-dBc
Vs= 5V
F G
L
G=10
R =464 ,R =51.1
R =100
W W
W
±
1MHz
2MHz
8MHz
4MHz
64MHz
32MHz
16MHz
-100
-95
-90
-85
-75
-70
-60
-55
-50
10 30 40 60 70 90 100
f-Frequency-MHz
3rdOrderIntermodulationDistortion-dBc
Vs= 5V
V =2V
R =100
out PP
LW
±
G2
R =715 ,R =715
F G
W W
G10
R =464 ,
R =51.1
F
G
W
W
G5
R=576 ,
R =143
F
G
W
W
-80
-65
20 50 80
-100
-80
-60
-40
-20
1 M 10 M 100 M 10 G
f - Frequency - Hz
0
S-Parameter - dB
1 G
S12
S22
S11
VS = ±5 V
Gain = +10
C = 0 pF
Source
C
50
50
50
50
RF
RG
+
-
-100
-80
-60
-40
-20
1 M 10 M 100 M 10 G
f - Frequency - Hz
0
S-Parameter - dB
1 G
S12
VS = ±5 V
Gain = +10
C = 3.3 pF
S22
S11
Source
C
50
50
50
50
RF
RG
+
-
0
1000
2000
3000
4000
5000
6000
1 2 3 5
V OutputVoltage-Vstep
out -
SR -V/ s
m-SlewRate±
4
SR+
SR-
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t - Time - µs
- Output Voltage - VVO
Output
Input
Gain = 2
RL = 100
RF = 715
VS = ±5 V
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t - Time -µs
- Output Voltage - VVO
Output
Input
Gain = -5
RL = 100
RF = 549
VS = ±5 V
-6
-4
-2
0
2
4
6
0 0.2 0.4 0.6 0.8 1-3
-2
-1
0
1
2
3
t - Time - µs
- Output Voltage - V
- Input Voltage - VVI
VO
G = 2,
RF = 715 ,
VS = ±5 V
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
VS=±5VGraphs(continued)
2ndORDERHARMONIC3rdORDERHARMONIC3rdORDERINTERMODULATION
DISTORTION,G=10DISTORTION,G=10DISTORTION
vsvsvs
OUTPUTVOLTAGEOUTPUTVOLTAGEFREQUENCY
Figure46.Figure47.Figure48.
S-PARAMETERS-PARAMETERSLEWRATE
vsvsvs
FREQUENCYFREQUENCYOUTPUTVOLTAGE
Figure49.Figure50.Figure51.
NONINVERTINGSMALL-SIGNALINVERTINGLARGE-SIGNAL
TRANSIENTRESPONSETRANSIENTRESPONSEOVERDRIVERECOVERYTIME
Figure52.Figure53.Figure54.
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback15
ProductFolderLink(s):THS3201
Not Recommended for New Designs
APPLICATIONINFORMATION
WIDEBAND,NONINVERTINGOPERATION
WIDEBAND,INVERTINGGAINOPERATION
_
+
THS3201
RF
768
49.9
100 pF
0.1 µF 6.8 µF
-VS
-7.5 V
RG
50 Source
+
VI
100 pF 0.1 µF 6.8 µF
+
+VS
7.5 V
50
768
49.9
_
+
THS3201
RG
287
100 pF
0.1 µF 6.8 µF
-VS
-7.5 V
50 Source
+
VI
100 pF 0.1 µF 6.8 µF
+
+VS
7.5 V
RF
576
RM
60.4
50
49.9
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
Table1.RecommendedResistorValuesfor
OptimumFrequencyResponse
TheTHS3201isaunity-gainstable,1.8-GHzTHS3201RFforACWhenRLOAD=100
current-feedbackoperationalamplifier,designedtoGainSupplyVoltageRGRF
operatefroma±3.3-Vto±7.5-Vpowersupply.(V/V)(V)()()
Figure55showstheTHS3201inanoninvertinggain±7.51.2k
1
of2-V/Vconfigurationtypicallyusedtogeneratethe±51.2k
performancecurves.Mostofthecurveswere±7.5768768
characterizedusingsignalsourceswith50-source2±5715715
impedance,andwithmeasurementequipment
presentinga50-loadimpedance.The49.9-shunt±7.5154.9619
5
resistorattheVIterminalinFigure55matchesthe±5143576
sourceimpedanceofthetestgenerator.±7.554.9487
10±551.1464
±7.5619619
–1±5576576
–2±7.5and±5287576
–5±7.5and±5110549
–10±7.5and±549.9499
Figure56showstheTHS3201inatypicalinverting
gainconfigurationwheretheinputandoutput
impedancesandsignalgainfromFigure55are
retainedinaninvertingcircuitconfiguration.
Figure55.Wideband,Noninverting
GainConfiguration
Unlikevoltage-feedbackamplifiers,current-feedback
amplifiersarehighlydependentonthefeedback
resistorRFformaximumperformanceandstability.
Table1showstheoptimalgainsettingresistorsRF
andRGatdifferentgainstogivemaximumbandwidth
withminimalpeakinginthefrequencyresponse.
Higherbandwidthscanbeachieved,attheexpense
ofaddedpeakinginthefrequencyresponse,byusing
evenlowervaluesforRF.Conversely,increasingRF
decreasesthebandwidth,butstabilityisimproved.
Figure56.Wideband,InvertingGain
Configuration
16SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
SINGLE-SUPPLYOPERATION
+
-
75 75
75
75
75
n Lines
VO(1)
VO(n)
THS3201
75- Transmission Line
VI
768 768
±7.5 V
±7.5 V
ADCDRIVERAPPLICATION
_
+
THS3201
49.9
50 Source
VI
+VS
RF
768
RG
768
+VS
2
+VS
2
_
+
THS3201
287
50 Source
VI
VS
RF
576
+VS
2+VS
2
60.4
RG
50
RT
50
RT
49.9
49.9
VIDEOHDTVDRIVERS
THS3201
47pF CM
ADC
47pF
1:n 24.9
VS+
RF
VS-
VIN
RG
0.1 µF
0.1 µF
24.9
ROUT
0.1 µF
RT
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
TheTHS3201hasthecapabilitytooperatefroma
singlesupplyvoltagerangingfrom6.6Vto15V.
Whenoperatingfromasinglepowersupply,care
mustbetakentoensuretheinputsignalandamplifier
arebiasedappropriatelytoallowforthemaximum
outputvoltageswing.ThecircuitsshowninFigure57
demonstratemethodstoconfigureanamplifierina
mannerconduciveforsingle-supplyoperation.
Figure58.VideoDistributionAmplifier
Application
TheTHS3201canbeusedasahigh-performance
ADCdriverinapplicationslikeradioreceiverIF
stages,andtestandmeasurementdevices.All
high-performanceADCshavedifferentialinputs.The
THS3201canbeusedinconjunctionwitha
transformerasadriveamplifierintheseapplications.
Figure59andFigure60showtwodifferent
approaches.
InFigure59,atransformerisusedaftertheamplifier
toconvertthesignaltodifferential.Theadvantageof
thisapproachisfewercomponentsarerequired.
ROUTandRTarerequiredforimpedancematching
thetransformer.
Figure57.DC-CoupledSingle-SupplyOperation
Theexceptionalbandwidthandslewrateofthe
THS3201matchesthedemandsforprofessional
videoandHDTV.MostcommercialHDTVstandards
requiresavideopassbandof30-MHz.Toensure
highsignalqualitywithminimaldegradationof
performance,a0.1-dBgainflatnessshouldbeat
least7xthepassbandfrequencytominimizegroup
delayvariations—requiring210-MHz0.1-dB
frequencyflatnessfromtheamplifier.Highslewrates
ensurethereisminimaldistortionofthevideosignal.Figure59.DifferentialADCDriverCircuit1
ComponentvideoandRGBvideosignalsrequirefast
transitiontimesandfastsettlingtimestokeepahigh
signalquality.TheTHS8135,forexample,isaInFigure60,atransformerisusedbeforetwo
240-MSPSvideodigital-to-analogconverter(DAC)amplifierstoconvertthesignaltodifferential.Thetwo
andhasatransitiontimeapproaching4ns.Theamplifiersthenamplifythedifferentialsignal.The
THS3201isaperfectcandidateforinterfacingtheadvantagetothisapproachiseachamplifieris
outputofsuchhigh-performancevideocomponents.requiredtodrivehalfthevoltageasbefore.RTis
usedtoimpedancematchthetransformer.
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback17
ProductFolderLink(s):THS3201
Not Recommended for New Designs
fP+1
2pRC
2
ǸxR
THS3201
THS3201
47pF
CM
ADC
47pF
1:n 24.9
0.1 µF
RF
RG
VS-
VS+
24.9
0.1 µF
0.1 µF
VIN
RT
RG
RF
DACDRIVERAPPLICATION
IOUT2
DAC
IOUT1 THS3201
THS3201
47pF
47pF
24.9
VS+
RF
RG
0.1 µF
ROUT VOUT1
VOUT2
ROUT
VS-
0.1 µF
RF
RG
24.9
AVDD
AVDD
RPU
RPU
0.1 µF
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
Typically,alowvalueresistorintherangeof10to
100providestherequiredisolation.Together,the
RandCformarealpoleinthes-planelocatedatthe
frequency:
Placingthispoleatabout10xthehighestfrequency
ofinterestensuresithasnoimpactonthesignal.
Sincetheresistoristypicallyasmallvalue,itisvery
badpracticetoplacethepoleat(orverynear)
frequenciesofinterest.Atthepolefrequency,the
amplifiersseesaloadwithamagnitudeof:
IfRisonly10,theamplifierisveryheavilyloaded
abovethepolefrequency,andgeneratesexcessive
distortion.
Figure60.DifferentialADCDriverCircuit2TheTHS3201canbeusedasahigh-performance
DACoutputdriverinapplicationslikeradiotransmitter
Itisalmostuniversallyrecommendedtouseastagesandarbitrarywaveformgenerators.All
resistorandcapacitorbetweentheopampoutputhigh-performanceDACshavedifferentialcurrent
andtheADCinputasshowninbothfigures.outputs.TwoTHS3201scanbeusedasadifferential
driveamplifierintheseapplications,asshownin
Thisresistor-capacitor(RC)combinationhasmultipleFigure61.
functions:
ThecapacitorisalocalchargereservoirforADCRPUontheDACoutputisusedtoconverttheoutput
currenttovoltage.The24.9-resistorand47-pF
TheresistorisolatestheamplifierfromtheADCcapacitorbetweeneachDACoutputandtheopamp
Inconjunction,theyformalow-passnoisefilterinputisusedtoreducetheimagesgeneratedat
Duringthesamplingphase,currentisrequiredtomultiplesofthesamplingrate.Thevaluesshown
chargetheADCinputsamplingcapacitors.Byplacingformapoleat136MHz.ROUTsetstheoutput
externalcapacitorsdirectlyattheinputpins,mostofimpedanceofeachamplifier.
thecurrentisdrawnfromthem.Theyareseenasa
verylowimpedancesource.Theycanbethoughtof
asservingmuchthesamepurposeasa
power-supplybypasscapacitortosupplytransient
current,withtheamplifierthenprovidingthebulk
charge.
Typically,alow-valuecapacitorintherangeof10pF
to100pFprovidestherequiredtransientcharge
reservoir.
ThecapacitanceandtheswitchingactionoftheADC
isoneoftheworstloadingscenariosthata
high-speedamplifierencounters.Theresistor
providesasimplemeansofisolatingtheassociated
phaseshiftfromthefeedbacknetworkand
maintainingthephasemarginoftheamplifier.
Figure61.DifferentialDACDriverCircuit
18SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
PRINTEDCIRCUITBOARDLAYOUT
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
withalowparasiticcapacitanceshuntingthe
TECHNIQUESFOROPTIMALexternalresistors,excessivelyhighresistorvalues
PERFORMANCEcancreatesignificanttimeconstantsthatcan
degradeperformance.Goodaxialmetal-filmor
Achievingoptimumperformancewithhighfrequencysurface-mountresistorshaveapproximately
amplifier-likedevicesintheTHS3201requirescareful0.2pFinshuntwiththeresistor.Forresistor
attentiontoboardlayoutparasiticandexternalvalues>2.0kthisparasiticcapacitancecanadd
componenttypes.apoleand/orazerothatcanaffectcircuit
operation.Keepresistorvaluesaslowas
Recommendationsthatoptimizeperformanceinclude:possible,consistentwithloaddriving
Minimizeparasiticcapacitancetoanypowerorconsiderations.
groundplaneforthenegativeinputandoutputConnectionstootherwidebanddevicesonthe
pinsbyvoidingtheareadirectlybelowthesepinsboardmaybemadewithshortdirecttracesor
andconnectingtracesandthefeedbackpath.throughonboardtransmissionlines.Forshort
Parasiticcapacitanceontheoutputandnegativeconnections,considerthetraceandtheinputto
inputpinscancauseinstability.Toreducethenextdeviceasalumpedcapacitiveload.
unwantedcapacitance,awindowaroundtheRelativelywidetraces(50milsto100mils)should
signalI/Opinsshouldbeopenedinallofthebeused,preferablywithgroundandpowerplanes
groundandpowerplanesaroundthosepinsandopeneduparoundthem.Estimatethetotal
thefeedbackpath.Otherwise,groundandpowercapacitiveloadanddetermineifisolationresistors
planesshouldbeunbrokenelsewhereontheontheoutputsarenecessary.Lowparasitic
board.capacitiveloads(<4pF)maynotneedanRS
Minimizethedistance(<0.25")fromthesincetheTHS3201isnominallycompensatedto
power-supplypinstohighfrequency0.1-µFandoperatewitha2-pFparasiticload.Higherparasitic
100pFdecouplingcapacitors.Atthedevicepins,capacitiveloadswithoutanRSareallowedasthe
thegroundandpower-planelayoutshouldnotbesignalgainincreases(increasingtheunloaded
incloseproximitytothesignalI/Opins.Avoidphasemargin).Ifalongtraceisrequired,andthe
narrowpowerandgroundtracestominimize6-dBsignallossintrinsictoadoubly-terminated
inductancebetweenthepinsandthedecouplingtransmissionlineisacceptable,implementa
capacitors.Thepower-supplyconnectionsshouldmatchedimpedancetransmissionlineusing
alwaysbedecoupledwiththesecapacitors.microstriporstriplinetechniques(consultanECL
Larger(6.8µFormore)tantalumdecouplingdesignhandbookformicrostripandstriplinelayout
capacitors,effectiveatlowerfrequency,shouldtechniques).
alsobeusedonthemainsupplypins.ThesemayA50-environmentisnotnecessaryonboard,
beplacedsomewhatfartherfromthedeviceandandinfact,ahigherimpedanceenvironment
maybesharedamongseveraldevicesintheimprovesdistortionasshowninthedistortion
sameareaoftheprintedcircuitboard(PCB).Theversusloadplots.Withacharacteristicboard
primarygoalistominimizetheimpedanceseenintraceimpedancebasedonboardmaterialand
thedifferential-currentreturnpaths.Fordrivingtracedimensions,amatchingseriesresistorinto
differentialloadswiththeTHS3201,addingathetracefromtheoutputoftheTHS3201isused
capacitorbetweenthepower-supplypinsaswellasaterminatingshuntresistorattheinput
improves2ndorderharmonicdistortionofthedestinationdevice.
performance.Thisalsominimizesthecurrentloop
formedbythedifferentialdrive.Rememberalsothattheterminatingimpedanceis
theparallelcombinationoftheshuntresistorand
Carefulselectionandplacementofexternaltheinputimpedanceofthedestinationdevice:this
componentspreservethehigh-frequencytotaleffectiveimpedanceshouldbesettomatch
performanceoftheTHS3201.Resistorsshouldbethetraceimpedance.Ifthe6-dBattenuationofa
averylowreactancetype.Surface-mountdoubly-terminatedtransmissionlineis
resistorsworkbestandallowatighteroverallun-acceptable,alongtracecanbe
layout.Again,keeptheirleadsandPCBtraceseries-terminatedatthesourceendonly.Treat
lengthasshortaspossible.Neverusewireboundthetraceasacapacitiveloadinthiscase.This
typeresistorsinahighfrequencyapplication.doesnotpreservesignalintegrityaswellasa
Sincetheoutputpinandinvertinginputpinsaredoubly-terminatedline.Iftheinputimpedanceof
themostsensitivetoparasiticcapacitance,alwaysthedestinationdeviceislow,thereissomesignal
positionthefeedbackandseriesoutputresistors,attenuationduetothevoltagedividerformedby
ifany,ascloseaspossibletotheinvertinginputtheseriesoutputintotheterminatingimpedance.
pinsandoutputpins.Othernetworkcomponents,
suchasinputterminationresistors,shouldbespace
placedclosetothegain-settingresistors.Evenspace
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback19
ProductFolderLink(s):THS3201
Not Recommended for New Designs
PowerPADDESIGNCONSIDERATIONS
0.060
0.040
0.075 0.025
0.205
0.010
vias
Pin 1
Top View
0.017
0.035
0.094
0.030
0.013
PowerPADPCBLAYOUTCONSIDERATIONS
DIE
Side View (a)
DIE
End View (b)
Thermal
Pad
Bottom View (c)
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
Socketingahigh-speedpartliketheTHS3201is
notrecommended.Theadditionalleadlengthand
pin-to-pincapacitanceintroducedbythesocket
cancreateanextremelytroublesomeparasitic
networkwhichcanmakeitalmostimpossibleto
achieveasmooth,stablefrequencyresponse.
Bestresultsareobtainedbysolderingthe
THS3201partsdirectlyontotheboard.
TheTHS3201isavailableinathermally-enhanced
PowerPADfamilyofpackages.Thesepackagesare
constructedusingadownsetleadframeuponwhich
thedieismounted[seeFigure62(a)and
Figure62(b)].Thisarrangementresultsinthelead
framebeingexposedasathermalpadonthe
undersideofthepackage[seeFigure62(c)].BecauseFigure63.DGNPowerPADPCBEtchand
thisthermalpadhasdirectthermalcontactwiththeViaPattern
die,excellentthermalperformancecanbeachieved
byprovidingagoodthermalpathawayfromthe
thermalpad.
ThePowerPADpackageallowsforbothassembly1.PreparethePCBwithatopsideetchpatternas
andthermalmanagementinonemanufacturingshowninFigure63.Thereshouldbeetchforthe
operation.Duringthesurface-mountsolderoperationleadsaswellasetchforthethermalpad.
(whentheleadsarebeingsoldered),thethermalpad
canalsobesolderedtoacopperareaunderneaththe2.Placefiveholesintheareaofthethermalpad.
package.ThroughtheuseofthermalpathswithinthisTheseholesshouldbe10milsindiameter.Keep
copperarea,heatcanbeconductedawayfromthethemsmallsothatsolderwickingthroughthe
packageintoeitheragroundplaneorotherheatholesisnotaproblemduringreflow.
dissipatingdevice.3.Additionalviasmaybeplacedanywherealong
thethermalplaneoutsideofthethermalpad
ThePowerPADpackagerepresentsabreakthrougharea.Thishelpsdissipatetheheatgeneratedby
incombiningthesmallareaandeaseofassemblyoftheTHS3201IC.Theseadditionalviasmaybe
surface-mountwiththe,heretofore,awkwardlargerthanthe10-mildiameterviasdirectlyunder
mechanicalmethodsofheatsinking.thethermalpad.Theycanbelargerbecause
theyarenotinthethermalpadareatobe
solderedsothatwickingisnotaproblem.
4.Connectallholestotheinternalgroundplane.
5.Whenconnectingtheseholestotheground
plane,donotusethetypicalweborspokevia
connectionmethodology.Webconnectionshave
ahighthermalresistanceconnectionthatis
Figure62.ViewsofThermally-EnhancedPackageusefulforslowingtheheattransferduring
solderingoperations.Thismakesthesolderingof
viasthathaveplaneconnectionseasier.Inthis
Althoughtherearemanywaystoproperlyheatsinkapplication,however,lowthermalresistanceis
thePowerPADpackage,thefollowingstepsillustratedesiredforthemostefficientheattransfer.
therecommendedapproach.Therefore,theholesundertheTHS3201
PowerPADpackageshouldmaketheir
connectiontotheinternalgroundplanewitha
completeconnectionaroundtheentire
circumferenceoftheplated-throughhole.
6.Thetop-sidesoldermaskshouldleavethe
terminalsofthepackageandthethermalpad
areawithitsfiveholesexposed.Thebottom-side
soldermaskshouldcoverthefiveholesofthe
thermalpadarea.Thispreventssolderfrom
20SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
POWERDISSIPATIONANDTHERMAL
P =
DMax
T T
Max -A
qJA
θJA = 58.4°C/W for 8-Pin MSOP w/PowerPad (DGN)
θJA = 98°C/W for 8-Pin SOIC High Test PCB (D)
θJA = 158°C/W for 8-Pin MSOP w/PowerPad w/o Solder
Results are With No Air Flow and PCB Size = 3”x3”
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
-40 -20 0 20 40 60 80 100
PD - Maximum Power Dissipation - W
TA - Free-Air Temperature - °C
θJA = 98°C/W
θJA = 158°C/W
TJ = 125°C
θJA = 58.4°C/W
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
beingpulledawayfromthethermalpadareaForsystemswhereheatdissipationismorecritical,
duringthereflowprocess.theTHS3201isofferedinan8-pinMSOPwith
PowerPADandalsoavailableintheSOIC-8
7.ApplysolderpastetotheexposedthermalpadPowerPADpackage,offeringevenbetterthermal
areaandalloftheICterminals.performance.Thethermalcoefficientsforthe
8.Withthesepreparatorystepsinplace,theICisPowerPADpackagesaresubstantiallyimprovedover
simplyplacedinpositionandrunthroughthethetraditionalSOIC.Maximumpowerdissipation
solderreflowoperationasanystandardlevelsaredepictedinthegraphfortheavailable
surface-mountcomponent.Thisresultsinapartpackages.ThedataforthePowerPADpackages
thatisproperlyinstalled.assumeaboardlayoutthatfollowsthePowerPAD
layoutguidelinesreferencedaboveanddetailedin
thePowerPADapplicationnotenumberSLMA002.
CONSIDERATIONSThefollowinggraphalsoillustratestheeffectofnot
solderingthePowerPADtoaPCB.Thethermal
Tomaintainmaximumoutputcapabilities,theimpedanceincreasessubstantiallywhichmaycause
THS3201doesnotincorporateautomaticthermalseriousheatandperformanceissues.Besureto
shutoffprotection.ThedesignermusttakecaretoalwayssolderthePowerPADtothePCBforoptimum
ensurethatthedesigndoesnotviolatetheabsoluteperformance.
maximumjunctiontemperatureofthedevice.Failure
mayresultiftheabsolutemaximumjunction
temperatureof+150°Cisexceeded.Forbest
performance,designforamaximumjunction
temperatureof+125°C.Between+125°Cand
+150°C,damagedoesnotoccur,butthe
performanceoftheamplifierbeginstodegrade.
Thethermalcharacteristicsofthedevicearedictated
bythepackageandthePCB.Maximumpower
dissipationforagivenpackagecanbecalculated
usingthefollowingformula.
Where:
PDMaxisthemaximumpowerdissipationinthe
amplifier(W)
TMaxistheabsolutemaximumjunction
temperature(°C)Figure64.MaximumPowerDissipation
TAistheambienttemperature(°C)vsAmbientTemperature
θJA=θJC+θCA
θJCisthethermalcoefficientfromthesiliconWhendeterminingwhetherornotthedevicesatisfies
junctionstothecase(°C/W)themaximumpowerdissipationrequirement,itis
θCAisthethermalcoefficientfromthecasetotheimportanttonotonlyconsiderquiescentpower
ambientair(°C/W)dissipation,butalsodynamicpowerdissipation.Often
times,thisisdifficulttoquantifybecausethesignal
patternisinconsistent,butanestimateoftheRMS
powerdissipationcanprovidevisibilityintoapossible
problem.
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback21
ProductFolderLink(s):THS3201
Not Recommended for New Designs
DESIGNTOOLS
EvaluationFixture,SpiceModels,and
R5
J2
Vin+
R6
U1
2
36
7
4 1
8
J8*
Vs+
C8*
R4
R7
C7*
J9*
R2
J4
Vout
Vs-
R3
J1
Vin-
TP1
+
C1
VS-
J7
C6 C5 C2
VS+
J5
+
FB2
C4 C3
FB1
VS-
GND
VS+
J6
_
+
*Does Not Apply to the THS3201
PD
768
768 49.9
0
PD Ref
49.9
Not Populated
0.1 µF
22 µF100 pF 100 pF 0.1 µF22 µF
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
ApplicationsSupport
TexasInstrumentsiscommittedtoprovidingits
customerswiththehighestqualityofapplications
support.Tosupportthisgoalanevaluationboardhas
beendevelopedfortheTHS3201operational
amplifier.Theboardiseasytouse,allowingfor
straightforwardevaluationofthedevice.The
evaluationboardcanbeorderedthroughtheTexas
Instrumentswebsiteatwww.ti.com,orthroughyour
localTexasInstrumentssalesrepresentative.The
schematicdiagram,boardlayers,andbillofmaterials
oftheevaluationboardsareprovidedbelow.
Figure65.THS3201EVMCircuitConfiguration
22SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
Figure66.THS3201EVMBoardLayoutFigure68.THS3201EVMBoardLayout
(TopLayer)(ThirdLayer,Power)
Figure67.THS3201EVMBoardLayoutFigure69.THS3201EVMBoardLayout
(SecondLayer,Ground)(BottomLayer)
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback23
ProductFolderLink(s):THS3201
Not Recommended for New Designs
ADDITIONALREFERENCEMATERIAL
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
Table2.BillofMaterials(1)
THS3201DGNEVM
PCBMANUFACTURER'S
ITEMDESCRIPTIONSMDSIZEREFDESQUANTITYPARTNUMBER
1Bead,ferrite,3A,801206FB1,FB22(Steward)HI1206N800R-00
2Cap,22µF,tanatalum,25V,10%DC1,C22(AVX)TAJD226K025R
3Cap,100pF,ceramic,5%,150VAQ12C4,C52(AVX)AQ12EM101JAJME
4Cap,0.1µF,ceramic,X7R,50V0805C3,C62(AVX)08055C104KAT2A
6Open0805R71
7Resistor,49.9,1/8W,1%0805R61(Phycomp)9C08052A49R9FKHFT
9Resistor,768,1/8W,1%0805R3,R52(Phycomp)9C08052A7680FKHFT
10Open1206C7,C82
11Resistor,0,1/4W,1%1206R21(KOA)RK73Z2BLTD
12Resistor,49.9,1/4W,1%1206R41(Phycomp)9C12063A49R9FKRFT
13Testpoint,blackTP11(Keystone)5001
14OpenJ8,J92
15Jack,BananaReceptance,0.25dia.holeJ5,J6,J73(HHSmith)101
16Connector,edge,SMAPCBjackJ1,J2,J43(Johnson)142-0701-801
17Standoff,4-40hex,0.625length4(Keystone)1804
18Screw,Phillips,4-40,.2504SHR-0440-016-SN
19IC,THS3201U11(TI)THS3201DGN
20Board,printedcircuit1(TI)Edge#6447972Rev.A
(1)ThecomponentsshownintheBOMwereusedintestbyTI.
blankspace
Computersimulationofcircuitperformanceusing
SPICEisoftenusefulwhenanalyzingthePowerPADMadeEasy,applicationbrief
performanceofanalogcircuitsandsystems.Thisis(SLMA004)
particularlytrueforvideoandRF-amplifiercircuitsPowerPADThermallyEnhancedPackage,
whereparasiticcapacitanceandinductancecanhavetechnicalbrief(SLMA002)
amajoreffectoncircuitperformance.ASPICEmodelVoltageFeedbackvsCurrent-FeedbackAmplifiers
fortheTHS3201familyofdevicesisavailable(SLVA051)
throughtheTexasInstrumentswebsite(www.ti.com).Current-FeedbackAnalysisandCompensation
TheProductInformationCenter(PIC)isavailablefor(SLOA021)
designassistanceanddetailedproductinformation.
ThesemodelsdoagoodjobofpredictingCurrent-FeedbackAmplifiers:Review,Stability,
small-signalacandtransientperformanceunderaandApplication(SBOA081)
widevarietyofoperatingconditions.TheyarenotEffectofParasiticCapacitanceinOpAmpCircuits
intendedtomodelthedistortioncharacteristicsofthe(SLOA013)
amplifier,nordotheyattempttodistinguishbetween
thepackagetypesintheirsmall-signalac
performance.Detailedinformationaboutwhatisand
isnotmodelediscontainedinthemodelfileitself.
24SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
THS3201
www.ti.com
.............................................................................................................................................................SLOS416CJUNE2003REVISEDJUNE2009
EVMWARNINGSANDRESTRICTIONS
ItisimportanttooperatethisEVMwithintheinputvoltageandtheoutputvoltagerangesasspecifiedinthetablebelow.
InputRange,VS6.6V(±3.3V)to16.5V8.25V)
InputRange,VINOTTOEXCEED:Power-SupplyVoltageApplied
OutputRange,VONOTTOEXCEED:Power-SupplyVoltageApplied
Exceedingthespecifiedinputrangemaycauseunexpectedoperationand/orirreversibledamagetotheEVM.Iftherearequestions
concerningtheinputrange,pleasecontactaTIfieldrepresentativepriortoconnectingtheinputpower.
Applyingloadsoutsideofthespecifiedoutputrangemayresultinunintendedoperationand/orpossiblepermanentdamagetotheEVM.
PleaseconsulttheEVMUser'sGuidepriortoconnectinganyloadtotheEVMoutput.Ifthereisuncertaintyastotheloadspecification,
pleasecontactaTIfieldrepresentative.
Duringnormaloperation,somecircuitcomponentsmayhavecasetemperaturesgreaterthan+125°C.TheEVMisdesignedtooperate
properlywithcertaincomponentsabove+125°Caslongastheinputandoutputrangesaremaintained.Thesecomponentsincludebutare
notlimitedtolinearregulators,switchingtransistors,passtransistors,andcurrentsenseresistors.Thesetypesofdevicescanbeidentified
usingtheEVMschematiclocatedintheEVMUser'sGuide.Whenplacingmeasurementprobesnearthesedevicesduringoperation,
pleasebeawarethatthesedevicesmaybeverywarmtothetouch.
MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265
Copyright2008,TexasInstrumentsIncorporated
Copyright©2003–2009,TexasInstrumentsIncorporatedSubmitDocumentationFeedback25
ProductFolderLink(s):THS3201
Not Recommended for New Designs
THS3201
SLOS416CJUNE2003REVISEDJUNE2009.............................................................................................................................................................
www.ti.com
RevisionHistory
NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion.
ChangesfromRevisionB(March2008)toRevisionC..................................................................................................Page
Changed5-VStepto10-VStepinsecondbulletofFeatureslist.........................................................................................1
DeletedleadtemperaturerowfromAbsoluteMaximumRatingstable.................................................................................2
ChangesfromRevisionA(January,2004)toRevisionB..............................................................................................Page
Updateddocumentformat.....................................................................................................................................................1
UpdatedFeatures,Applications,andDescriptionsections...................................................................................................1
UpdatedPackage/OrderingInformation................................................................................................................................3
Changed±7.5-Vslewratetypicalvalues...............................................................................................................................4
Changed±7.5-Vriseandfalltimetypicalvalues...................................................................................................................4
Changed±7.5-V2nd-orderharmonictypicalvalues..............................................................................................................4
Changed±7.5-V3rd-orderharmonictypicalvalues..............................................................................................................4
Deleted±7.5-V3rd-orderintermodulationdistortionspecifications.......................................................................................4
Changed±5-Vslewratetypicalvalues..................................................................................................................................6
Changed±5-Vriseandfalltimetypicalvalues......................................................................................................................6
Changed±5-V2nd-orderharmonictypicalvalues.................................................................................................................6
Changed±5-V3rd-orderharmonictypicalvalues.................................................................................................................6
Deleted±5-V3rd-orderintermodulationdistortionspecifications..........................................................................................6
AddedFigure9throughFigure17;updatedFigure25.........................................................................................................8
AddedFigure40throughFigure48;addedFigure51..........................................................................................................9
DeletedPowerSupplysection.............................................................................................................................................19
UpdatedfirstparagraphinPrintedCircuitBoardLayoutsection.........................................................................................19
26SubmitDocumentationFeedbackCopyright©2003–2009,TexasInstrumentsIncorporated
ProductFolderLink(s):THS3201
Not Recommended for New Designs
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
THS3201D NRND SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 3201
THS3201DBVR NRND SOT-23 DBV 5 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 BEO
THS3201DBVT NRND SOT-23 DBV 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 BEO
THS3201DBVTG4 NRND SOT-23 DBV 5 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 BEO
THS3201DG4 NRND SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 3201
THS3201DGK NRND VSSOP DGK 8 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 BGP
THS3201DGN NRND MSOP-
PowerPAD DGN 8 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 BEN
THS3201DGNG4 NRND MSOP-
PowerPAD DGN 8 80 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 BEN
THS3201DGNR NRND MSOP-
PowerPAD DGN 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 BEN
THS3201DR NRND SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 3201
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 2
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF THS3201 :
Enhanced Product: THS3201-EP
NOTE: Qualified Version Definitions:
Enhanced Product - Supports Defense, Aerospace and Medical Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
THS3201DBVR SOT-23 DBV 5 3000 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
THS3201DBVT SOT-23 DBV 5 250 180.0 9.0 3.15 3.2 1.4 4.0 8.0 Q3
THS3201DGNR MSOP-
Power
PAD
DGN 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
THS3201DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 3-Aug-2017
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
THS3201DBVR SOT-23 DBV 5 3000 182.0 182.0 20.0
THS3201DBVT SOT-23 DBV 5 250 182.0 182.0 20.0
THS3201DGNR MSOP-PowerPAD DGN 8 2500 358.0 335.0 35.0
THS3201DR SOIC D 8 2500 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 3-Aug-2017
Pack Materials-Page 2
www.ti.com
PACKAGE OUTLINE
C
TYP
0.22
0.08
0.25
3.0
2.6
2X 0.95
1.9
1.45 MAX
TYP
0.15
0.00
5X 0.5
0.3
TYP
0.6
0.3
TYP
8
0
1.9
A
3.05
2.75
B
1.75
1.45
(1.1)
SOT-23 - 1.45 mm max heightDBV0005A
SMALL OUTLINE TRANSISTOR
4214839/C 04/2017
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Refernce JEDEC MO-178.
0.2 C A B
1
34
5
2
INDEX AREA
PIN 1
GAGE PLANE
SEATING PLANE
0.1 C
SCALE 4.000
www.ti.com
EXAMPLE BOARD LAYOUT
0.07 MAX
ARROUND 0.07 MIN
ARROUND
5X (1.1)
5X (0.6)
(2.6)
(1.9)
2X (0.95)
(R0.05) TYP
4214839/C 04/2017
SOT-23 - 1.45 mm max heightDBV0005A
SMALL OUTLINE TRANSISTOR
NOTES: (continued)
4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
SYMM
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X
PKG
1
34
5
2
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
EXPOSED METAL
METAL
SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK DETAILS
EXPOSED METAL
www.ti.com
EXAMPLE STENCIL DESIGN
(2.6)
(1.9)
2X(0.95)
5X (1.1)
5X (0.6)
(R0.05) TYP
SOT-23 - 1.45 mm max heightDBV0005A
SMALL OUTLINE TRANSISTOR
4214839/C 04/2017
NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
7. Board assembly site may have different recommendations for stencil design.
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X
SYMM
PKG
1
34
5
2
www.ti.com
PACKAGE OUTLINE
C
TYP
0.22
0.08
0.25
3.0
2.6
2X 0.95
1.9
1.45 MAX
TYP
0.15
0.00
5X 0.5
0.3
TYP
0.6
0.3
TYP
8
0
1.9
A
3.05
2.75
B
1.75
1.45
(1.1)
SOT-23 - 1.45 mm max heightDBV0005A
SMALL OUTLINE TRANSISTOR
4214839/C 04/2017
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Refernce JEDEC MO-178.
0.2 C A B
1
34
5
2
INDEX AREA
PIN 1
GAGE PLANE
SEATING PLANE
0.1 C
SCALE 4.000
www.ti.com
EXAMPLE BOARD LAYOUT
0.07 MAX
ARROUND 0.07 MIN
ARROUND
5X (1.1)
5X (0.6)
(2.6)
(1.9)
2X (0.95)
(R0.05) TYP
4214839/C 04/2017
SOT-23 - 1.45 mm max heightDBV0005A
SMALL OUTLINE TRANSISTOR
NOTES: (continued)
4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
SYMM
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X
PKG
1
34
5
2
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
EXPOSED METAL
METAL
SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK DETAILS
EXPOSED METAL
www.ti.com
EXAMPLE STENCIL DESIGN
(2.6)
(1.9)
2X(0.95)
5X (1.1)
5X (0.6)
(R0.05) TYP
SOT-23 - 1.45 mm max heightDBV0005A
SMALL OUTLINE TRANSISTOR
4214839/C 04/2017
NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
7. Board assembly site may have different recommendations for stencil design.
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X
SYMM
PKG
1
34
5
2
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
THS3201EVM