LTC2335-18
13
233518f
For more information www.linear.com/LTC2335-18
pin FuncTions
Pins that are the Same for All Digital I/O Modes
IN0+ to IN7+, IN0− to IN7− (Pins 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 47, and 48): Positive and Negative
Analog Inputs, Channels 0 to 7. The converter samples
(VIN+ – VIN–) and digitizes the selected channel. Wide
input common mode range (VEE ≤ VCM ≤ VCC – 4V) and
high common mode rejection allow the inputs to accept
a wide variety of signal swings. Full-scale input range is
determined by the selected SoftSpan configuration.
GND (Pins 15, 18, 20, 25, 30, 36, 41, 44, 46): Ground.
Solder all GND pins to a solid ground plane.
VCC (Pin 16): Positive High Voltage Power Supply. The
range of VCC is 0V to 38V with respect to GND and 10V to
38V with respect to VEE. Bypass VCC to GND close to the
pin with a 0.1μF ceramic capacitor. In applications where
VCC is shorted to GND this capacitor may be omitted.
VEE (Pins 17, 45): Negative High Voltage Power Supply.
The range of VEE is 0V to –16.5V with respect to GND and
–10V to –38V with respect to VCC. Connect Pins 17 and 45
together and bypass the VEE network to GND close to Pin
17 with a 0.1μF ceramic capacitor. In applications where
VEE is shorted to GND this capacitor may be omitted.
REFIN (Pin 19): Bandgap Reference Output/Reference
Buffer Input. An internal bandgap reference nominally
outputs 2.048V on this pin. An internal reference buffer
amplifies VREFIN to create the converter master reference
voltage VREFBUF = 2•VREFIN on the REFBUF pin. When
using the internal reference, bypass REFIN to GND (Pin
20) close to the pin with a 0.1μF ceramic capacitor to filter
the bandgap output noise. If more accuracy is desired,
overdrive REFIN with an external reference in the range
of 1.25V to 2.2V.
REFBUF (Pin 21): Internal Reference Buffer Output. An
internal reference buffer amplifies VREFIN to create the
converter master reference voltage VREFBUF = 2•VREFIN on
this pin, nominally 4.096V when using the internal bandgap
reference. Bypass REFBUF to GND (Pin 20) close to the
pin with a 47μF ceramic capacitor. The internal reference
buffer may be disabled by grounding its input at REFIN.
With the buffer disabled, overdrive REFBUF with an ex-
ternal reference voltage in the range of 2.5V to 5V. When
using the internal reference buffer, limit the loading of any
external circuitry connected to REFBUF to less than 10µA.
Using a high input impedance amplifier to buffer VREFBUF
to any external circuits is recommended.
PD (Pin 22): Power Down Input. When this pin is brought
high, the LTC2335-18 is powered down and subsequent
conversion requests are ignored. If this occurs during a
conversion, the device powers down once the conversion
completes. If this pin is brought high twice without an
intervening conversion, an internal global reset is initi-
ated, equivalent to a power-on-reset event. Logic levels
are determined by OVDD.
LVDS/CMOS (Pin 23): I/O Mode Select. Tie this pin to OVDD
to select LVDS I/O mode, or to ground to select CMOS I/O
mode. Logic levels are determined by OVDD.
CNV (Pin 24): Conversion Start Input. A rising edge on
this pin puts the internal sample-and-holds into the hold
mode and initiates a new conversion. CNV is not gated
by CS, allowing conversions to be initiated independent
of the state of the serial I/O bus.
BUSY (Pin 38): Busy Output. The BUSY signal indicates
that a conversion is in progress. This pin transitions low-
to-high at the start of each conversion and stays high until
the conversion is complete. Logic levels are determined
by OVDD.
VDDLBYP (Pin 40): Internal 2.5V Regulator Bypass Pin. The
voltage on this pin is generated via an internal regulator
operating off of VDD. This pin must be bypassed to GND
close to the pin with a 2.2μF ceramic capacitor. Do not
connect this pin to any external circuitry.
VDD (Pins 42, 43): 5V Power Supply. The range of VDD
is 4.75V to 5.25V. Connect Pins 42 and 43 together and
bypass the VDD network to GND with a shared 0.1μF
ceramic capacitor close to the pins.