2SJ181(L), 2SJ181(S)
Silicon P-Channel MOS FET
ADE-208-1183 (Z)
1st. Edition
Mar. 2001
Application
High speed power switching
Features
Low on-resistance
High speed switching
Low drive current
No secondary breakdown
Suitable for switching regulator and DC-DC converter
Outline
123
123
4
4
DPAK-1
1. Gate
2. Drain
3. Source
4. Drain
D
G
S
2SJ181(L), 2SJ181(S)
2
Absolute Maximum Ratings (Ta = 25°C)
Item Symbol Ratings Unit
Drain to source voltage VDSS –600 V
Gate to source voltage VGSS ±15 V
Drain current ID–0.5 A
Drain peak current ID(pulse)*1–1.0 A
Body to drain diode reverse drain current IDR –0.5 A
Channel dissipation Pch*220 W
Channel temperature Tch 150 °C
Storage temperature Tstg –55 to +150 °C
Notes: 1. PW 10 µs, duty cycle 1%
2. Value at TC = 25°C
Electrical Characteristics (Ta = 25°C)
Item Symbol Min Typ Max Unit Test conditions
Drain to source breakdown
voltage V(BR)DSS –600 V ID = –10 mA, VGS = 0
Gate to source breakdown
voltage V(BR)GSS ±15 V IG = ±100 µA, VDS = 0
Gate to source leak current IGSS ±10 µA VGS = ±12 V, VDS = 0
Zero gate voltage drain current IDSS –100 µA VDS = –500 V, VGS = 0
Gate to source cutoff voltage VGS(off) –2.0 –4.0 V ID = –1 mA, VDS = –10 V
Static drain to source on state
resistance RDS(on) —1525 I
D
= –0.3 A, VGS = –10 V*1
Forward transfer admittance |yfs| 0.3 0.45 S ID = –0.3 A, VDS = –20 V*1
Input capacitance Ciss 220 pF VDS = –10 V, VGS = 0,
Output capacitance Coss 55 pF f = 1 MHz
Reverse transfer capacitance Crss 13 pF
Turn-on delay time td(on) —7 —nsI
D
= –0.3 A, VGS = –10 V,
Rise time tr 20 ns RL = 100
Turn-off delay time td(off) —35—ns
Fall time tf—35—ns
Body to drain diode forward
voltage VDF –0.85 V IF = –0.5 A, VGS = 0
Body to drain diode reverse
recovery time trr 230 ns IF = –0.5 A, VGS = 0,
diF/dt = 50 A/µs
Note: 1. Pulse test
2SJ181(L), 2SJ181(S)
3
40
30
20
10
0
Channel Dissipation Pch (W)
50 100 150 200
Case Temperature Tc (°C)
Power vs. Temperature Derating
Drain to Source Voltage V (V)
DS
Drain Current I (A)
D
Maximum Safe Operation Area
–10 –20 –50 –100 –200 –500 –1000
–10
–3
–1
–0.3
–0.1
–0.03
–0.01
Operation in
this area is
limited by RDS(on)
Ta = 25 °C
10 µs
DC Operation (Tc = 25 °C)
1 ms
100 µs
PW = 10 ms (1shot)
–1.0
–0.8
–0.6
–0.4
–0.2
0Drain to Source Voltage V (V)
DS
Drain Current I (A)
D
Typical Output Characteristics
–10 –20 –30 –40 –50
–10 V
–5 V
Pulse Test
V = –4 V
GS
–4.5 V
–6 V
–0.5
–0.4
–0.3
–0.2
–0.1
0Gate to Source Voltage V (V)
GS
Drain Current I (A)
D
Typical Transfer Characteristics
–2 –4 –6 –8 –10
Tc = –25 °C
75 °C 25 °C
V = –20 V
Pulse Test
DS
2SJ181(L), 2SJ181(S)
4
–20
–16
–12
–8
–4
0 –4 –8 12 –16 –20
Gate to Source Voltage V (V)
GS
Pulse Test
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
V (V)
DS(on)
Drain to Source Saturation Voltage
–0.1 A
–0.2 A
D
I = –0.5 A
Drain Current I (A)
D
Drain to Source On State Resistance
R ( )
DS(on)
Static Drain to Source on State Resistance
vs. Drain Current
500
200
100
20
50
10
5
–0.02 –0.05 –0.1 –0.2 –0.5 –1 –2
–15 V
V = –10 V
GS
Pulse Test
40
32
24
16
8
–40 0 40 80 120 160
Case Temperature Tc (°C)
0
R ( )
DS(on)
Static Drain to Source on State Resistance
Static Drain to Source on State Resistance
vs. Temperature
GS
Pulse Test
V = –10 V
–0.1 A
–0.2 A
D
I = –0.5 A
2SJ181(L), 2SJ181(S)
5
Drain Current I (A)
D
Forward Transfer Admittance |y | (S)
fs
Forward Transfer Admittance vs.
Drain Current
2
1
0.2
0.5
0.1
0.02
0.05
–0.05 –0.1 –0.2 –0.5 –1 –2 –5
V = –20 V
Pulse Test
DS
Tc = –25 °C
75 °C
25 °C
Reverse Drain Current I (A)
DR
Reverse Recovery Time trr (ns)
Body–Drain Diode Reverse
Recovery Time
1000
200
500
100
20
50
10
–0.05 –0.1 –0.2 –0.5 –1 –2 –5
di / dt = 100 A / µs
V = 0, Ta = 25 °C
GS
0 –10 –20 –30 -40 –50
Capacitance C (pF)
Drain to Source Voltage V (V)
DS
Typical Capacitance vs.
Drain to Source Voltage
Ciss
Coss
Crss
V = 0
f = 1 MHz
GS
1000
300
100
30
10
3
1
2SJ181(L), 2SJ181(S)
6
0
–200
–400
–600
–800
0Gate Charge Qg (nc)
Drain to Source Voltage V (V)
DS
0
–4
–8
–12
–16
–20–1000
Gate to Source Voltage V (V)
GS
Dynamic Input Characteristics
4 8 12 16 20
DS
V
GS
V
I = –0.5 A
D
V = –100 V
–250 V
–400 V
DD
V = –100 V
–250 V
–400 V
DD
500
200
100
50
20
10
5
Drain Current I (A)
D
Switching Time t (ns)
Switching Characteristics
–0.05 –0.1 –0.2 –0.5 –1 –2 –5
tf
r
t
d(off)
t
d(on)
t
V = –10 V, V = –30 V
PW = 5 µs, duty < 1 %
GS DD
2SJ181(L), 2SJ181(S)
7
–1.0
–0.8
–0.6
–0.4
–0.2
0
Source to Drain Voltage V (V)
SD
Pulse Test
0, 5 V
Reverse Drain Current I (A)
DR
Reverse Drain Current vs.
Source to Drain Voltage
–0.2 –0.4 –0.6 –0.8 –1.0
V = –10 V
GS
3
1
0.3
0.1
0.03
0.01
10 µ 100 µ 1 m 10 m
Pulse Width PW (S)
Normalized Transient Thermal Impedance
100 m 1 10
s (t)
γ
DM
P
PW
T
D = PW
T
ch – c(t) = s (t) • ch – c
ch – c = 6.25 °C/W, Tc = 25 °C
θ γ θ
θ
D = 1
0.5
0.2
0.01
0.02
0.1
0.05
1 shot Pulse
Tc = 25°C
Normalized Transient Thermal Impedance vs. Pulse Width
2SJ181(L), 2SJ181(S)
8
Vin Monitor
D.U.T.
Vin
–10 V
RL
V
= –30 V
DD
tr
td(on)
Vin
90% 90%
10%
10%
Vout
td(off)
Vout
Monitor
50
90%
10%
tf
Switching Time Test Circuit Waveforms
2SJ181(L), 2SJ181(S)
9
Package Dimensions
Hitachi Code
JEDEC
EIAJ
Mass
(reference value)
DPAK (L)-(1)
Conforms
0.42 g
6.5 ± 0.5 2.3 ± 0.2
0.55 ± 0.1
1.2 ± 0.3
0.55 ± 0.1
5.5 ± 0.5 1.7 ± 0.5
16.2 ± 0.5
3.1 ± 0.5
5.4 ± 0.5
1.15 ± 0.1
2.29 ± 0.5 2.29 ± 0.5
0.8 ± 0.1
As of January, 2001
Unit: mm
2SJ181(L), 2SJ181(S)
10
Hitachi Code
JEDEC
EIAJ
Mass
(reference value)
DPAK (S)-(1),(2)
Conforms
0.28 g
As of January, 2001
Unit: mm
6.5 ± 0.5
5.4 ± 0.5 2.3 ± 0.2
0.55 ± 0.1
0 – 0.25
0.55 ± 0.1
1.7 ± 0.5
5.5 ± 0.5
2.5 ± 0.5
1.15 ± 0.1
0.8 ± 0.1
2.29 ± 0.5
2.29 ± 0.5
1.2 Max
(4.9)
(5.3)
2SJ181(L), 2SJ181(S)
11
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
URL NorthAmerica : http://semiconductor.hitachi.com/
Europe : http://www.hitachi-eu.com/hel/ecg
Asia : http://sicapac.hitachi-asia.com
Japan : http://www.hitachi.co.jp/Sicd/indx.htm
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straβe 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
For further information write to:
Colophon 2.0