File Number 1893 N-Channel Enhancement-Mode Power Field-Effect Transistors 3.0A and 3.54, 350V - 400V Ypston) = 1.00 and 1.50 Features: m SOA is power-dissipation limited Nanosecond switching speeds w Linear transfer characteristics a@ High input impedance u Majority carrier device The IRFF330, IRFF331, IRFF332 and IRFF333 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRFF-types are supplied in the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. Absolute Maximum Ratings Standard Power MOSFETs IRFF330, IRFF331, IRFF332, IRFF333 N-CHANNEL ENHANCEMENT MODE Oo G s 92CS-33744 TERMINAL DIAGRAM TERMINAL DESIGNATION GATE SOURCE DRAIN (CASE) JEDEC TO-205AF Parameter IRFF330 IRFF331 IRFF332 IRFF333 Units Vo: Orain ~ Source Voltage ( 400 350 400 360 v Vv Orain Gate Voltage (Rgs = 20kN@ 400 350 400 350 v 'p @Te = 25C Continuous Drain Current 3.5 3.5 3.0 3.0 A tom. Pulsed Drain Current @) 14 14 12 12 A Vv Gate Source Voltage +20 Vv Pp @ To = 25C Max. Power Dissipation 25 {See Fig. 14} w : Linear Derating Factor 0.2 (Sae Fig. 14) wht lim Inductive Current, Clamped (See Fig. 15 and 16) L = 100. A 14 14 L 12 12 T. eratin; ion an Tatg storage Pomparsture Range ~55 10 160 C Leed Temperature 300 (0.063 in. (1.6mm) from case for 108) sc 3-289Standard Power MOSFETs IRFF330, IRFF331, IRFF332, IRFF333 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max. Units Test Conditions BVoss Drain Source Breakdown Voltage IRFF330 _ _ = IRFF332 400 v Ves = OV IRFF331 - IRFF333 350 - - v Ip = 250uA VGSith) Gete Threshold Voltage ALL 2.0 | 40 v Vog = Vas 'p = 250uA 'gss Gate Source Leakage Forward ALL - - 100 nA Ves = 20V Igss Gate Source Leakage Reverse ALL - - -100 nA Ves = ~20V loss Zero Gate Voltage Drain Current ALL = - 250 BA Vps = Max. Rating, Vag = OV - - 1000 pA Vos = Max. Rating x 0.8, Yes = OV, Te = 125C 'Dion} On-State Drain Current @ IRFF330 ] 45 _ _ A tRFF331 . Vv I R Vag = 10V DS > !Dion) * Rosion) max. VGS IRFF332 | 3 0 _ _ A IRFF333 . Rpsion) Static Drain ~ Source On-State IRFF330 _ Resistance @ IRFF331 0.8 | 1.0 a Vag = 10V, Ip = 2.08 IRFF332 | 101 15 a IRFF333 . . Sts Forward Transconductance @ ALL 2.0 3.5 = S (ur Vos? 'pion) * Ragion} max. 'p = _2.0A | Cigs Input Capacitance ALL - 700 _ pF Vag = OV. Vpg = 25V, f = 1.0MHz Coss __ Output Capacitance ALL - 150 = pF See Fig. 10 Cres Reverse Transfer Capacitance ALL - 40 = pF tgion) __ Turn-On Delay Time ALL - = 30 ns Vopo = 178V, Ip = 2.04, 2, = 152 ty Rise Time ALL - = 35 ns See Fig. 17 tatoff) Turn-Off Delay Time ALL - - 55 ns (MOSFET switching times are essentially tf Fall Time ALL _ ~ 35 ns independent of operating temperature.) Qg Total Gate Charge ALL _ 18 30 nc Ves = 10V, Ip =7.04, Vog = 0.8V Max. Rating. (Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is essentially i of op ing temperature.} Qos Gate-Source Charge ALL - YW 17 nc Qga Gate-Drain (Miller) Charge ALL - 7.0 1 nc Lp Internal Drain Inductance ALL - 5.0 - nH Measured from the Modified MOSFET drain lead, 5mm symbol showing the (0.2 in,} from header internal device to center of die. inductances. Lp Ls Internal Source Inductance ALL ~ 15 - nH Measured from the source lead, 5mm 6 {0.2 in.) from header Ls to source bonding pad. s Thermal Resistance | Rihyc _ Junction-to-Case ALL = I = | 5.0 I C/W | ] { RthuA dunction-to-Ambient ALL = [ = I 175 L CW Free Air Operation i Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRFF330 _ _ 3.5 A Modified MOSFET symbol (Body Diode) IAFF331 . showing the integral IRFF332 reverse P-N junction rectifier. we3a3{ | ~ | 30 | A Ism Pulse Source Current IRFF330 _ _ s (Body Diods) @ IRFE331 14 A IRFF332 inrr333| ~ | | 2 | A . Vsp Diode Forward Voltage @ IRFF330 _ _ = = IRFF331 1.6 v To = 25C, ig = 3.54, Vag = OV IRFF332 - = _ inFFaaa | - | 15 v Te = 25C, Ig = 3.0A, Veg = OV try Reverse Recovery Time ALL = 600 _ ns Ty = 150C, Ip = 3.54, dip/dt = 100A/ys Orr Reverse Recovered Charge ALL - 4.0 - ze Ty = 150C, ip = 3.5A, dip/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @Ty = 25C to 160C. 3-290 @Pulse Test: Pulse width < 30Qus, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5).Standard Power MOSFETs Ip, DRAIN CURRENT (AMPERES) Fig. 1 - Typical output characteristics. w tg, DRAIN CURRENT {AMPERES} n Fig. 3 - Typical saturation characteristics. x = 2 a S 2 S a 0,02 Zhaclt/ yay. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) s & 0.01 10-8 50 100 150 200 250 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) 2 4 6 a Vos, OAAIN-TO-SOURCE VOLTAGE (VOLTS} 2 5 igs) 2 5 300 10 19-3 IRFF330, IRFF331, IRFF332, IRFF333 ip, DRAIN CURRENT (AMPERES) wo2 2 80 us PULSE Vos > pion) * Raston} max. = 17500 Tye Tye Ip, QRAIN CURRENT (AMPERES) 9 | 2 3 4 6 7 Vgs, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 2 - Typical transfer characteristics. TION IN THIS AREA 20 LIMITED 8Y Rogion) Qs 0.2 o4 Te = 25C poste Ty= 18006 MAX. Rinse = 5.0 KW o.o2{_t SINGLE PULSE IRFF331, IRFF330, 332 10 2 5 10 20 60 100 200 500 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 4 - Maximum safe operating area. PL tym Q>| 1, DUTY FACTOR, O= t . 2. PER UNIT BASE = Ringe 6.0 DEG. CW. 3. Tym - To = Pom 2tnucit). 6 101 2 6 1.0 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 - Maximum effective transient thermal impedance, junction-to-case vs. pulse duration. 3-291Standard Power MOSFETs IRFF330, IRFF331, IRFF332, IRFF333 10 3. R on Ty 150C 6 Ty -850C s Tye 3 4 Tt SET = 150C js. TRANSCONDUCTANCE (SIEMENS) lpg. REVERSE DRAIN CURRENT (AMPERES) ny Vos > Vo(on) * Rosian) max. 80 ps PULSE TEST Ty = 259C 10 Q 2 4 6 8 10 0 1 2 3 4 Ip, DRAIN CURRENT (AMPERES) Vso. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 6 - Typical transconductance vs. drain current. Fig. 7 - Typical source-drain diode forward voltage. 125 VAG 2 mn (NORMALIZED) es wo a 0.86 BVpsg, DRAIN TO SOURCE BREAKDOWN VOLTAGE (NORMALIZED) Ros(on}. DRAIN-TO-SOURCE ON RESISTANCE 076 -40 0 40 80 420 160 , -40 o 40 80 120 160 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 - Breakdown voltage vs. temperature. Fig. 9 - Normalized on-resistance vs. temperature. 2000 Ves = '" 1 Mae 1600 Cigg * Cog + Cyd, Cag SHORTED 2 Crea * Cog 8 Co = g Cou" Sa* tb g < wy 1200 mq + Sad 5 = > z 3 < 3 = & 600 8 o 2 w < 400 & Ig = 7A FOR TEST CIRCUIT SEE FIGURE 18 a 10 20 30 40 50 9 8 16 24 32 40 Vps, DRAIN-TO-SOURCE VOLTAGE {VOLTS} Oy, TOTAL GATE CHARGE (nC) Fig. 10 - Typical capacitance vs. drain-to-source voltage. Fig. 11 - Typical gate charge vs. gate-to-source voltage. 3-292Ves= / L. n Ves * 20v] Z Rosion) MEASUREO WITH CURRENT PULSE OF 2.0 us DURATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us PULSE IS MINIMAL.) 1 1 Jd. rt 0 5 10 15 20 rh) 30 Ig. GRAIN CURRENT (AMPERES) Fig. 12 - Typical on-resistance vs. drain current. Roston). ORAIN-TO-SOURCE ON RESISTANCE (OHMS) Pp, POWER DISSIPATION (WATTS} 0 20 40 60 a0 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 - Power vs. temperature derating curve. Vop = 175V 502 PRE = 1 kHz Vp tos Vas TO SCOPE rpotcrc7 +o Fig. 17 - Switching time test circuit. Standard Power MOSFETs IRFF330, IRFF331, IRFF332, IRFF333 4 e w 2 = i= = IRFF330, 331 2 = = aw 2 (REF332, 393 8 , a 3 s 1 0 25 50 8 100 125 150 1g, DRAIN CURRENT (AMPERES) Fig. 13 - Maximum drain current vs. case temperature. VARY ty TO OBTAIN REQUIRED PEAK I, ouT Ves* Wy os " )=058Vpss Ec = 0.75 BVogs Fig. 15 - Clamped inductive test circuit. Fig. 16 - Clamped inductive waveforms. o ps (ISOLATED SUPPLY) CURRENT REGULATOR SAME TYPE AS DUT | O2uf => 12V BATTERY L -Vos Ig \p CURRENT ~ CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 - Gate charge test circuit. 3-293