©2002 Fairchild Semiconductor Corporation
Septembe r 2002
FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
FDD2572 / FDU2572
N-Channel PowerTrench® MOSFET
150V, 29A, 54m
Features
•r
DS(ON) = 45m (Typ.), VGS = 1 0V, ID = 9A
•Q
g(tot) = 26nC (Typ.), VGS = 10V
Low Miller Charge
•Low Q
RR Body Diode
UIS Capability (Single Pulse and Repetitive Pulse)
Qualified to AEC Q101
Formerly developmental type 82860
Applications
DC/DC converters and Off-Line UPS
Distributed Power Architectu res and VRMs
Primary Switch for 24V and 48V Systems
High Voltage Synch ronous Recti fier
Direct Injection / Diesel Injection Systems
42V Automotive Load Co ntrol
Electr oni c Valve Train Systems
MOSFET Maximum Ratings TC = 25°C unl ess otherwise noted
Thermal C hara cterist ics
Thi s produ ct has bee n desi gned to mee t the ex treme te st condi ti ons an d environme nt de mande d by the au tomot ive indust ry. For a
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems
certification.
Symbol Parameter Ratings Units
VDSS Drain to Source Voltage 150 V
VGS Gate to Sourc e Voltage ±20 V
ID
Drain C urr e nt 29 A
Continuous (TC = 25oC, VGS = 10V)
Continuous (TC = 100oC, VGS = 1 0V) 20 A
Continuous (Tamb = 25oC, VGS = 10V, RθJA = 5 2oC/W) 4
Pulsed Figure 4 A
EAS Single Pulse Avalanche Energy (Note 1) 36 mJ
PDPower dissip atio n 135 W
Derate above 25oC0.9W/
oC
TJ, TSTG Operating and Stor age Temperature -55 to 175 oC
RθJC Thermal Resistance Junct ion to Case TO-251, TO-252 1.11 oC/W
RθJA Thermal Resistance Junction to Ambient TO-251, TO-252 100 oC/W
RθJA Thermal R esistance Ju ncti on t o Ambien t TO-252, 1in2 co pper pad area 52 oC/W
S
G
D
GATE
(FLANGE)
DRAIN
SOURCE
TO-252AA
FDD SERIES
TO-251AA
FDU SERIES
(FLANGE)
DRAIN GATE
DRAIN
SOURCE
©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
Package Marking and Ordering Information
Electrical Characteristics TC = 25°C unless otherwise noted
Off Characteristics
On Characteristics
Dynamic Characteristic s
Resistive Switching Characteristics (VGS = 10V)
Drain-Source Diode Character istics
Notes:
1: Starting TJ = 25°C, L = 0.2mH, IAS = 19A.
Device Marking Device Package Reel Size Tape Width Quantity
FDD2572 FDD2572 TO-252AA 330mm 16mm 2500 units
FDU25 72 FDU257 2 TO- 251A A Tube N/A 75 units
Symbo l Parame ter Test Cond itio ns Min Typ Max Unit s
BVDSS Drain to Source Breakd own Voltage ID = 250µA, VGS = 0V 150 - - V
IDSS Zero Gate Voltage Drain Current VDS = 120V - - 1 µA
VGS = 0V TC = 150o--250
IGSS Gate to Source Leakage Current VGS = ±20V - - ±100 nA
VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
rDS(ON) Drain to Source On Resist ance ID=9A, VGS=10V - 0.045 0.054 ID = 4A, VGS = 6V, - 0.050 0.075
ID=9A, VGS=10V, TC=175oC - 0.126 0.146
CISS Input Capacitance VDS = 25V, VGS = 0V,
f = 1MHz
-1770- pF
COSS Output Capacitance - 183 - pF
CRSS Reverse Transfer Capacitance - 40 - pF
Qg(TOT) Tota l G ate Ch arg e at 10 V VGS = 0V to 10V
VDD = 75V
ID = 9A
Ig = 1.0m A
-2634nC
Qg(TH) Threshold Gate Charge VGS = 0V to 2V - 3.3 4.3 nC
Qgs Gate to Source Gate Charge - 8 - nC
Qgs2 Gate Char ge Threshold to Plateau - 5 - nC
Qgd Gate to Drain “Miller” Charge - 6 - nC
tON Turn-On Time
VDD = 75V, ID = 9A
VGS = 10V, RGS = 11.0
--36ns
td(ON) Turn-On Delay Time - 11 - ns
trRise Time - 14 - ns
td(OFF) Turn-Off Delay Time - 31 - ns
tfFall Time - 14 - ns
tOFF Turn-Off Time - - 66 ns
VSD Source to Dra in Diode Vol tage ISD = 9A - - 1. 25 V
ISD = 4A - - 1.0 V
trr Rev erse Recov ery Time ISD = 9A , dISD/d t =100A/µs- -74ns
QRR Reverse Recovered Charge ISD = 9 A, dISD/dt =100A/µs - - 169 nC
©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
Typical Characteristics TC = 25°C unless otherwi s e note d
Figure 1. Normalized Power Diss ipation vs
Ambient Temperature Figure 2. Maximu m Continuous Drain Curr ent vs
Case Temperature
Figure 3. Normalized M aximum Tr ansient Thermal Impedance
Figure 4. Peak Current Capability
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00255075100 175
0.2
0.4
0.6
0.8
1.0
1.2
125 150 0
5
10
15
20
25
30
35
40
25 50 75 100 125 150 175
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
VGS = 10V
0.01
0.1
1.0
10-4 10-3 10-2 10-1 100101
2.0
10-5
t, RECTANG ULAR PULSE DURATI ON (s)
ZθJC, NORMALIZED
THERMAL IMPEDANCE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
0.5
0.2
0.1
0.05
0.01
0.02
DUTY CYCLE - DESCENDING ORDER
SINGLE PULSE
100
10-5 10-4 10-3 10-2 10-1 100101
20
500
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
VGS = 10V
TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
Figure 5. Forward Bi as Safe Oper ati ng Area NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclam ped Inductive Switchi ng
Capability
Figure 7. Transfer Charact eristic s Figure 8. Satur ation Character istics
Figur e 9 . Dr ain t o So urce On Resis tance v s Dr ain
Current Figure 10. Normalized Drai n to Source On
Resist ance vs Junction Temperature
Typical Characteristics TC = 2 5°C unless otherwis e noted
0.1
1
10
100
1000
1 10 100 200
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAG E (V)
TJ = MAX RATED
TC = 25oC
SINGLE PULSE
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
10µs
10ms
1ms
DC
100µs
0.1
1
10
100
0.001 0.01 0.1 1
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVAL ANCHE (ms)
STARTING TJ = 25oC
STARTING TJ = 150oC
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
0
10
20
30
40
50
60
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
TJ = 175oC
TJ = 25oC
TJ = -55oC
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
0
10
20
30
40
50
60
012345
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 6V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 5V
TC = 25oC
VGS = 7V
VGS = 10V
40
50
55
60
0102030
45
ID, DRAIN CURRENT (A)
VGS = 6V
VGS = 10V
DRAIN TO SOURCE ON RESISTANCE (m )
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0
0.5
1.0
1.5
2.0
2.5
3.0
-80 -40 0 40 80 120 160 200
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
VGS = 10V, ID =9A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
Figur e 11. Normalized Gate Thre shold Voltage vs
Junction Temperature Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
Figure 13. Capacitance vs Drain to Source
Voltage Figure 1 4. Gate Charge Waveforms for Constant
Gate Cur rents
Typical Characteristics TC = 2 5°C unless otherwis e noted
0.4
0.6
0.8
1.0
1.2
1.4
-80 -40 0 40 80 120 160 200
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
THRESHOLD VOLTAGE
0.9
1.0
1.1
1.2
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
ID = 250µA
BREAKDOWN VOLTAGE
10
100
1000
0.1 1 10 150
1000
C, CAPACITANCE (pF)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
COSS CDS + CGD
CRSS = CGD
VDS, DRAIN TO SOURCE VOLTAGE (V)
0
2
4
6
8
10
0 5 10 15 20 25 30
VGS, GATE TO SOURCE VOLTAGE (V)
Qg, GATE CHARGE (nC)
VDD = 75V
ID = 9A
ID = 4A
WAVEFORMS IN
DESCENDING ORDER:
©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
Test Circuits and Waveforms
Figure 15. Unclamped Energy Test Circuit Fi gure 16. Unclamped Energy Waveforms
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
Figure 19. Switching Time Test Ci rcuit Figure 20. Switching Time Waveforms
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
VGS +
-
VDS
VDD
DUT
Ig(REF)
L
VDD
Qg(TH)
VGS = 2V
Qg(TOT)
VGS = 10V
VDS
VGS
Ig(REF)
0
0
Qgs Qgd
Qgs2
VGS
RL
RGS
DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%50%
10% PULSE WI DT H
VGS
0
0
©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maxi mum al lowab le devi ce powe r di ssipat ion, PDM, in an
application. Therefore the applications ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
s erves as the basis for establishing the r ating of the part.
In using surface mount devices such as the TO-252
package, the environment in which it is applied will have a
significant influence on the parts current and maximum
power dissipation ratings. Precise determination of PDM is
c omplex and influenced by many factors:
1. Mounting pa d area onto which the d evice is attached an d
wh ethe r the re is copp er o n on e sid e or bot h si des o f the
board.
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board or ienta tion.
6. For non steady state applications, the pulse width, the
duty cycle and the transient ther mal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designers preliminary application evaluation. Figure 21
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
posit i on ed FR-4 bo ard with 1 oz c opp er aft er 100 0 se c on ds
of stea dy st ate powe r w ith n o air flow . Th is gr aph prov ides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2 or 3. Equation 2 is used for copper area defined
in inches square and equation 3 is for area in centimeter
square. The area, in square inches or square centimeters is
the top copper area including the gate and source pads.
(EQ. 1)
PDM
TJM TA
()
RθJA
-----------------------------=
Area in Inches Squared
(EQ. 2)
RθJA 33.32 23.84
0.268 Area+()
-------------------------------------+
=
(EQ. 3)
RθJA 33.32 154
1.73 Area+()
----------------------------------+
=
Area in Centimeters Squared
25
50
75
100
125
0.01 0.1 1 10
Figure 21. Thermal Resistance vs Mounting
Pad Area
RθJA = 33.32+ 23.84/(0.268+Area) EQ.2
RθJA (oC/W)
AREA, TOP COPPER AREA in2 (cm2)
RθJA = 33.32+ 154/(1.73+Area) EQ.3
(0.645) (6.45) (64.5)(0.0645)
©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
PSPICE El ectrical M ode l
.SUBCKT FDD2572 2 1 3 ; rev April 2002
C A 12 8 5. 5e-10
Cb 1 5 14 7. 4e-10
Cin 6 8 1.7e-9
D bo dy 7 5 Dbod yMOD
Dbreak 5 11 Dbreak MOD
Dplc ap 10 5 Dpl capMO D
Ebreak 11 7 17 18 160
Ed s 14 8 5 8 1
Eg s 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtem p 20 6 18 22 1
It 8 17 1
Lgate 1 9 1.21e -9
Ldrai n 2 5 1.0e-9
Lsource 3 7 4.45e-9
RLgate 1 9 12. 1
R Ld rain 2 5 10
RLsource 3 7 44. 5
Mm e d 16 6 8 8 Mm edMOD
Mstro 16 6 8 8 Mst roM OD
Mwe ak 16 21 8 8 MweakMOD
Rbreak 17 18 Rbreak M O D 1
Rdrain 50 16 RdrainMOD 35e-3
Rgate 9 20 1. 6
RSLC1 5 51 R SLCMOD 1. 0e-6
RSLC2 5 50 1.0e3
Rsource 8 7 RsourceMOD 3.0e-3
Rvthres 22 8 R vt hresM OD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
Vbat 22 19 DC 1
ESL C 51 50 VAL UE = {(V (5,51)/ A BS( V (5,51)))*(P WR(V (5,51)/ (1e-6* 52), 3))}
.MODEL DbodyMOD D (IS=6.0E-11 N=1.14 RS=3.9e-3 TRS1=3.5e-3 TRS2=3.0e-6
+ CJO=1. 1e-9 M =0.63 TT= 6. 2e-8 X T I=4.5 )
.MO DE L DbreakM OD D (RS= 10 T RS 1=5.0e- 3 T RS2=-5. 0e-6)
.MODEL DplcapMOD D (CJO=3.5e-10 IS=1.0e-30 N=10 M=0.65)
.MO DE L M m edM OD NMOS (VT O=3.55 KP=3 IS=1e-40 N=1 0 T OX=1 L=1u W=1u RG=1.6 )
.MO DE L M st roMOD NM OS (VTO=4. 0 KP= 25 I S=1e-30 N=10 TOX = 1 L=1u W=1u)
.MO DE L M weakMO D NM OS (VT O=2.95 K P=0. 05 IS= 1e-30 N=10 T OX = 1 L=1u W=1u RG=16 RS=0. 1)
.MO DE L RbreakMOD RES (T C1=1.15e-3 TC2=-9.5 e-7)
.MO DE L Rdrai nM O D RE S (TC1=9. 0 e-3 TC2=2. 5e-5)
.MODEL RSLCMOD RES (TC1=3.0e-3 TC2=2.5e-6)
.MO DE L Rsourc eM OD RES (TC1=4.0 e-3 TC 2=1.0 e-6)
.MO DE L Rvt hresM OD RE S (T C1=-4.1e-3 TC2=-1.0 e-5)
.MO DE L Rvt empMOD RE S (TC1=-4.0e -3 T C2=1.0e -6)
.M ODEL S1AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 5. 0 VOFF =-3 .5 )
.M ODEL S1BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 3. 5 VOFF =-5 .0 )
.M ODEL S2AMOD VSWITC H (RON= 1e- 5 ROFF =0. 1 VON=- 0. 5 VOF F=0.3)
.M ODEL S2BMOD VSWITC H (RON= 1e- 5 ROFF =0. 1 VON=0 .3 VOFF= -0.5)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IE EE P ower Elect roni cs Speci al i st Conf erence Recor ds, 1991, writte n by Wil liam J. Hepp and C. Frank
Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
SABER Electrical Model
REV Apri l 200 2
ttemplate FDD257 2 n2,n1, n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=6.0e-11,nl=1.14,rs=3.9e-3,trs1=3.5e-3,trs2=3.0e-6,cjo=1.1e-9,m=0.63,tt=6.2e-8,xti=4.5)
dp.. m odel dbreakmod = (rs=10,trs 1=5.0e- 3,tr s2=-5.0e-6)
dp..model dplcapmod = (cjo=3.5e-10,isl=10.0e-30,nl=10,m=0.65)
m..model mmedmod = (type=_n,vto=3.55,kp=3,is=1e-40, tox=1)
m..model mstrongmod = (type=_n,vto=4.0,kp=25,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=2.95,kp=0.05,is=1e-30, tox=1,rs=0.1)
sw_v cs p.. mo del s1amod = (ron=1e-5, roff= 0. 1,vo n=-5. 0,voff = -3.5 )
sw_v cs p.. mo del s1bmod = (ron=1e-5, roff= 0. 1,vo n=-3. 5,voff = -5.0 )
sw_v cs p.. mo del s2amod = (ron=1e-5, rof f=0. 1,vo n=-0. 5, vof f=0. 3)
sw_v cs p.. mo del s2bmod = (ron=1e-5, rof f=0. 1,vo n=0.3 ,v off= -0. 5)
c . ca n1 2 n8 = 5.5e -10
c.cb n15 n14 = 7.4e- 10
c.c in n6 n8 = 1.7e-9
dp.dbody n7 n5 = mod el =dbodymod
dp.dbreak n5 n11 = m odel =dbreak m od
dp.dplcap n10 n5 = model =dpl ca pm od
spe. ebreak n11 n7 n17 n18 = 160
spe. eds n14 n8 n5 n8 = 1
spe. egs n13 n8 n6 n8 = 1
spe. esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe. evte mp n20 n6 n18 n22 = 1
i.it n8 n17 = 1
l.lg ate n1 n9 = 1.21e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 4.45e-9
res. rl gate n1 n9 = 12.1
res. rl drai n n2 n5 = 10
res. rl source n3 n7 = 44. 5
m.mmed n16 n6 n8 n8 = model =m m edm od, l=1u, w=1 u
m.ms t rong n16 n6 n8 n8 = m odel= m strongmo d, l=1u, w=1u
m.mw eak n16 n21 n8 n8 = mo del =m weakmod, l=1u, w=1u
res. rbreak n17 n18 = 1, tc1=1. 15e-3, tc2 =-9.5e-7
res. rdrai n n50 n16 = 35e-3, tc 1=9.0 e-3,tc2=2.5 e-5
r e s .rgat e n9 n2 0 = 1.6
res. rslc1 n5 n51 = 1. 0e-6, tc1 = 3. 0e-3,tc2=2. 5e-6
res. rslc2 n5 n50 = 1. 0e3
res. rsource n8 n7 = 3.0e-3, tc1 = 4. 0e-3,tc2=1.0 e-6
res. rvth res n22 n8 = 1, tc1=- 4.1e-3,tc 2=-1.0e-5
res.rvtemp n18 n19 = 1, tc1=-4.0e-3,tc2=1.0e-6
sw_v cs p.s1 a n6 n12 n13 n8 = model =s1amod
sw_v cs p.s1 b n13 n12 n13 n8 = m odel= s1 bm od
sw_v cs p.s2 a n6 n15 n14 n13 = m odel= s2 am od
sw_v cs p.s2 b n13 n15 n14 n13 = model =s2bm od
v.vbat n22 n19 = dc =1
equations {
i (n51->n50) +=iscl
iscl : v (n51, n50) = ((v(n5, n51)/ (1e-9+abs(v (n5,n 51))))*((abs(v (n5,n 51)*1e6/52))** 3))}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK
DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
©2002 Fairchild Semiconductor Corporation FDD2572 / FDU2572 Rev. B
FDD2572 / FDU2572
SPICE Thermal Model
REV 2 6 April 2002
FDD2572
CTHERM1 TH 6 3.8e-3
CTH ERM2 6 5 4.0e-3
CTH ERM3 5 4 4.2e-3
CTH ERM4 4 3 4.3e-3
CTH ERM5 3 2 8.5e-3
CTH ERM6 2 T L 3.0e-2
RTHERM1 TH 6 5.5e-4
RTH ERM2 6 5 5.0e-3
RTH ERM3 5 4 4.5e-2
RTH ERM4 4 3 10.5e-2
RTH ERM5 3 2 3.7e-1
RTH ERM6 2 T L 3.8e-1
SABER Thermal Mod el
SABE R t herm al m odel F DD2572
template thermal_model th tl
the r m al_ c th , tl
{
cth er m.ctherm1 th 6 =3.8e -3
ctherm.ctherm2 6 5 =4.0e-3
ctherm.ctherm3 5 4 =4.2e-3
ctherm.ctherm4 4 3 =4.3e-3
ctherm.ctherm5 3 2 =8.5e-3
ctherm.ctherm6 2 tl =3.0e-2
rtherm.rtherm1 th 6 =5.5 e-4
r therm.rtherm2 6 5 =5.0e-3
r therm.rtherm3 5 4 =4.5e-2
r therm.rtherm4 4 3 =10.5 e-2
r therm.rtherm5 3 2 =3.7e-1
r therm.rtherm6 2 tl =3.8e -1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
Rev. I1
TRADEMARKS
The following are registered and unregistered trademarks Fairc hild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life su pport devices or systems are devi ces or systems
wh ich, (a) ar e int ende d fo r s urgic al i mpla nt into the body ,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Defini ti on of Terms
ACEx
ActiveArray
Bottomless
CoolFET
CROSSVOLT
DOME
EcoSPARK
E2CMOS
EnSigna
FACT
FACT Quiet Series
FAST®
FASTr
FRFET
GlobalOptoisolator
GTO
HiSeC
I2C
ImpliedDisconnect
ISOPLANAR
LittleFET
MicroFET
MicroPak
MICROWIRE
MSX
MSXPro
OCX
OCXPro
OPTOLOGIC®
OPTOPLANAR
PACMAN
POP
Power247
PowerTrench®
QFET
QS
QT Optoelectroni cs
Quie t Series
RapidConfigure
RapidConnect
SILENT SWITCHER®
SMART START
SPM
Stealth
SuperSOT-3
SuperSOT-6
SuperSOT-8
SyncFET
TinyLogic
TruTranslation
UHC
UltraFET®
VCX
A cross the board. Around the world.
T he Power Franchise
P rogrammable Acti ve Droop
Datasheet Identification Product Status Definition
Advance Informat ion Formativ e or In
Design This datasheet contains the design specifications f or
product development. Specifications may change in
any manner without notice.
Preliminary First Production This data s heet contain s preliminary data, and
supplementary data will be p ublished at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improv e
design.
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Semiconductor re serves the right to ma ke chan ges at
any time without notice in order to improve design.
Obsolete Not In P roduction This datas heet contain s specifications on a product
that has been discontinued b y Fa irchild s emicond uctor.
The datasheet is printed for reference information only.