LTC2606/LTC2616/LTC2626
14
26061626fc
For more information www.linear.com/LTC2606
operaTion
Chip Address
The state of CA0, CA1 and CA2 decides the slave address
of the part. The pins CA0, CA1 and CA2 can be each set
to any one of three states: VCC, GND or float. This results
in 27 selectable addresses for the part. The slave address
assignments are shown in Table1.
Table 1. Slave Address Map
CA2 CA1 CA0 A6 A5 A4 A3 A2 A1 A0
GND GND GND 0 0 1 0 0 0 0
GND GND FLOAT 0 0 1 0 0 0 1
GND GND VCC 0 0 1 0 0 1 0
GND FLOAT GND 0 0 1 0 0 1 1
GND FLOAT FLOAT 0 1 0 0 0 0 0
GND FLOAT VCC 0 1 0 0 0 0 1
GND VCC GND 0 1 0 0 0 1 0
GND VCC FLOAT 0 1 0 0 0 1 1
GND VCC VCC 0 1 1 0 0 0 0
FLOAT GND GND 0 1 1 0 0 0 1
FLOAT GND FLOAT 0 1 1 0 0 1 0
FLOAT GND VCC 0 1 1 0 0 1 1
FLOAT FLOAT GND 1 0 0 0 0 0 0
FLOAT FLOAT FLOAT 1 0 0 0 0 0 1
FLOAT FLOAT VCC 1 0 0 0 0 1 0
FLOAT VCC GND 1 0 0 0 0 1 1
FLOAT VCC FLOAT 1 0 1 0 0 0 0
FLOAT VCC VCC 1 0 1 0 0 0 1
VCC GND GND 1 0 1 0 0 1 0
VCC GND FLOAT 1 0 1 0 0 1 1
VCC GND VCC 1 1 0 0 0 0 0
VCC FLOAT GND 1 1 0 0 0 0 1
VCC FLOAT FLOAT 1 1 0 0 0 1 0
VCC FLOAT VCC 1 1 0 0 0 1 1
VCC VCC GND 1 1 1 0 0 0 0
VCC VCC FLOAT 1 1 1 0 0 0 1
VCC VCC VCC 1 1 1 0 0 1 0
GLOBAL ADDRESS 1 1 1 0 0 1 1
In addition to the address selected by the address pins,
the parts also respond to a global address. This address
allows a common write to all LTC2606, LTC2616 and
LTC2626 parts to be accomplished with one 3-byte write
transaction on the I2C bus. The global address is a 7-bit
on-chip hardwired address and is not selectable by CA0,
CA1 and CA2.
The addresses corresponding to the states of CA0, CA1
and CA2 and the global address are shown in Table1. The
maximum capacitive load allowed on the address pins
(CA0, CA1 and CA2) is 10pF, as these pins are driven
during address detection to determine if they are floating.
Write Word Protocol
The master initiates communication with the LTC2606/
LTC2616/LTC2626 with a START condition and a 7-bit
slave address followed by the Write bit (W) = 0. The
LTC2606/LTC2616/LTC2626 acknowledges by pulling
the SDA pin low at the 9th clock if the 7-bit slave address
matches the address of the parts (set by CA0, CA1 and
CA2) or the global address. The master then transmits
three bytes of data. The LTC2606/LTC2616/LTC2626
acknowledges each byte of data by pulling the SDA line
low at the 9th clock of each data byte transmission. After
receiving three complete bytes of data, the LTC2606/
LTC2616/LTC2626 executes the command specified in
the 24-bit input word.
If more than three data bytes are transmitted after a valid
7-bit slave address, the LTC2606/LTC2616/LTC2626 do
not acknowledge the extra bytes of data (SDA is high
during the 9th clock).
The format of the three data bytes is shown in Figure 3.
The first byte of the input word consists of the 4-bit com-
mand and four don’t care bits. The next two bytes consist
of the 16-bit data word. The 16-bit data word consists
of the 16-, 14- or 12-bit input code, MSB to LSB, fol-
lowed by 0, 2 or 4 don’t care bits (LTC2606, LTC2616 and
LTC2626 respectively).
A typical LTC2606 write transac-
tion is shown in Figure4.
The command assignments (C3-C0) are shown in Table2.
The first four commands in the table consist of write and
update operations. A write operation loads a 16-bit data
word from the 32-bit shift register into the input register.
In an update operation, the data word is copied from the
input register to the DAC register and converted to an ana-
log voltage at the DAC output. The update operation also
powers up the DAC if it had been in power-down mode. The
data path and registers are shown in the Block Diagram.