2N5911/5912
Vishay Siliconix
Document Number: 70255
S-04031—Rev. D, 04-Jun-01 www.vishay.com
8-1
Matched N-Channel JFET Pairs
PRODUCT SUMMARY
Part Number VGS(off) (V) V(BR)GSS Min (V) gfs Min (mS) IG Typ (pA) jVGS1 – VGS2j Max (mV)
2N5911 1 to –5 –25 5 –1 10
2N5912 –1 to –5 –25 5 –1 15
FEATURES BENEFITS APPLICATIONS
DTwo-Chip Design
DHigh Slew Rate
DLow Offset/Drift Voltage
DLow Gate Leakage: 1 pA
DLow Noise
DHigh CMRR: 85 dB
DMinimum Parasitics Ensuring Maximum
High-Frequency Performance
DImproved Op Amp Speed, Settling Time Accuracy
DMinimum Input Error/Trimming Requirement
DInsignificant Signal Loss/Error Voltage
DHigh System Sensitivity
DMinimum Error with Large Input Signal
DWideband Differential Amps
DHigh-Speed, Temp-Compensated,
Single-Ended Input Amps
DHigh Speed Comparators
DImpedance Converters
DESCRIPTION
The 2N5911/5912 are matched pairs of JFETs mounted in a
TO-78 package. This two-chip design reduces parasitics and
gives better performance at high frequencies while ensuring
extremely tight matching.
The hermetically-sealed TO-78 package is available with full
military screening per MIL-S-19500 (see Military Information).
For similar products see the SO-8 packaged
SST440/SST441, the TO-71 packaged U440/U441, the
low-noise SST/U401 series, and the low-leakage U421/423
data sheets.
TO-78
Top View
G1
S1
D1
G2
D2
S2
Case
1
2
3
7
6
5
4
ABSOLUTE MAXIMUM RATINGS
Gate-Drain, Gate-Source Voltage –25 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate-Gate Voltage "80 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate Current 50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead Temperature (1/16” from case for 10 sec.) 300_C. . . . . . . . . . . . . . . . . . .
Storage Temperature –65 to 200_C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Junction Temperature –55 to 150_C. . . . . . . . . . . . . . . . . . . . . . . . . .
Power Dissipation : Per Sidea367 mW. . . . . . . . . . . . . . . . . . . . . . . .
Totalb500 mW. . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes
a. Derate 3 mW/_C above 25_C
b. Derate 4 mW/_C above 25_C
For applications information see AN102.
2N5911/5912
Vishay Siliconix
www.vishay.com
8-2 Document Number: 70255
S-04031Rev. D, 04-Jun-01
SPECIFICATIONS (TA = 25_C UNLESS OTHERWISE NOTED)
Limits
2N5911 2N5912
Parameter Symbol Test Conditions TypaMin Max Min Max Unit
Static
Gate-Source
Breakdown Voltage V(BR)GSS IG = 1 mA, VDS = 0 V 35 25 25 V
Gate-Source Cutoff Voltage VGS(off) VDS = 10 V, ID = 1 nA 3.5 1515V
Saturation Drain CurrentbIDSS VDS = 10 V, VGS = 0 V 15 7 40 7 40 mA
VGS = 15 V, VDS = 0 V 1100 100 pA
Gate Reverse Current IGSS TA = 150_C2250 250 nA
VDG = 10 V, ID = 5 mA 1100 100 pA
Gate Operating Current IGTA = 125_C0.3 100 100 nA
Gate-Source Voltage VGS VDG = 10 V, IG = 5 mA 1.5 0.3 40.3 4
Gate-Source
Forward VoltagecVGS(F) IG = 1 mA, VDS = 0 V 0.7 V
Dynamic
Common-Source
Forward T ransconductance gfs VDG = 10 V, ID = 5 mA 6 5 10 5 10 mS
Common-Source
Output Conductance gos
VDG = 10 V, ID = 5 mA
f = 1 kHz 70 100 100 mS
Common-Source
Forward T ransconductance gfs VDG = 10 V, ID = 5 mA 5.8 5 10 5 10 mS
Common-Source
Output Conductance gos
VDG = 10 V, ID = 5 mA
f = 100 MHz 90 150 150 mS
Common-Source
Input Capacitance Ciss VDG = 10 V, ID = 5 mA 3 5 5
Common-Source Reverse
T ransfer Capacitance Crss
VDG = 10 V, ID = 5 mA
f = 1 MHz 1 1.2 1.2 pF
Equivalent Input
Noise Voltage enVDG = 10 V, ID = 5 mA
f = 10 kHz 4 20 20 nV
Hz
Noise Figure NF RG = 100 kW0.1 1 1 dB
Matching
Differential
Gate-Source Voltage |VGS1 VGS2|VDG = 10 V, ID = 5 mA 4 10 15 mV
Gate-Source Voltage
Differential Change
with Temperature
D|VGS1 VGS2|
DTVDG = 10 V, ID = 5 mA
TA = 55 to 125_C15 20 40 mV/_C
Saturation Drain
Current Ratio IDSS1
IDSS2 VDS = 10 V, VGS = 0 V 0.98 0.95 1 0.95 1
T ransconductance Ratio gfs1
gfs2 VDS = 10 V, ID = 5 mA
f = 1 kHz 0.98 0.95 1 0.95 1
Differential Gate Current |IG1IG2|VDG = 10 V, ID = 5 mA, TA = 125_C0.005 20 20 nA
Common Mode
Rejection RatiocCMRR VDG = 5 to 10 V, ID = 5 mA 85 dB
Notes
a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. NZF
b. Pulse test: PW v300 ms duty cycle v3%.
c. This parameter not registered with JEDEC.
2N5911/5912
Vishay Siliconix
Document Number: 70255
S-04031Rev. D, 04-Jun-01 www.vishay.com
8-3
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
50
01082
40
10
0
20
16
4
0
30
20
12
8
460 4 16 20812
Drain Current and Transconductance
vs. Gate-Source Cutoff Voltage
VGS(off) Gate-Source Cutoff Voltage (V)
IDSS @ VDS = 10 V, VGS = 0 V
gfs @ VDS = 10 V, VGS = 0 V
f = 1 kHz
gfs
IDSS
Gate Leakage Current
VDG Drain-Gate Voltage (V)
0.1 pA
10 pA
1 pA
IG(on) @ ID
IGSS @ 25_C
TA = 125_C
10 mA 1 mA
TA = 25_C
IGSS @ 125_C
1 mA
ID = 10 mA
Gate Leakage
IG
10
068210
8
6
2
0
4
4
Output Characteristics
VDS Drain-Source Voltage (V)
Drain Current (mA)
ID
VGS = 0 V
0.2 V
0.4 V
0.6 V
0.8 V
1.0 V
1.2 V
VGS(off) = 2 V
5
0 0.2 0.8 1
4
1
0
2
3
0.4 0.6
Output Characteristics
VDS Drain-Source Voltage (V)
Drain Current (mA)
ID
0.2 V
0.4 V
0.6 V
0.8 V
1.0 V
1.2 V
VGS = 0 V
VGS(off) = 2 V
15
0 0.2 0.8 1
12
3
0
9
6
0.4 0.6
Output Characteristics
VDS Drain-Source Voltage (V)
Drain Current (mA)
ID
VGS = 0 V
1.5 V
0.5 V
2.5 V
1.0 V
3.0 V
3.5 V
2.0 V
VGS(off) = 5 V
30
08210
24
6
0
18
12
46
Output Characteristics
VDS Drain-Source Voltage (V)
Drain Current (mA)
ID
VGS = 0 V
0.5 V
2.5 V
2.0 V
3.0 V
3.5 V
1.0 V
1.5 V
VGS(off) = 5 V
100 pA
1 nA
10 nA
100 nA
gfs Forward Transconductance (mS)
IDSS Saturation Drain Current (mA)
2N5911/5912
Vishay Siliconix
www.vishay.com
8-4 Document Number: 70255
S-04031Rev. D, 04-Jun-01
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
10
00.4 1.6 2
8
2
0
10
01.2 1.60.4 2
8
4
2
0
6
4
6
0.8 1.2
0.8
30
0451
24
6
0
18
12
23
10
5410
8
2
0
6
4
23
Transfer Characteristics
VGS Gate-Source Voltage (V)
Drain Current (mA)
ID
TA = 55_C
125_C
Transconductance vs. Gate-Source Voltage
VGS Gate-Source Voltage (V)
TA = 55_C
125_C
Transfer Characteristics
TA = 55_C
125_C
VGS Gate-Source Voltage (V)
TA = 55_C
Transconductance vs. Gate-Source Voltage
Drain Current (mA)
ID
VGS Gate-Source Voltage (V)
125_C
1100.1
50
40
20
10
0
30
ID Drain Current (mA)
AV+gfs RL
1)RLgos
RL+10 V
ID
Assume VDD = 15 V, VDS = 5 V
VGS(off) = 2 V
AV Voltage Gain
Circuit Voltage Gain vs. Drain Current
1 10 100
200
160
80
40
0
120
VGS(off) = 2 V
TA = 25_C
On-Resistance vs. Drain Current
ID Drain Current (mA)
VDS = 10 V
f = 1 kHz
VGS(off) = 2 V VDS = 10 V VGS(off) = 5 V VDS = 10 V
VGS(off) = 2 V VGS(off) = 5 VVDS = 10 V
f = 1 kHz
5 V
25_C25_C
25_C25_C
VGS(off) = 5 V
gfs Forward Transconductance (mS)
rDS(on) Drain-Source On-Resistance ( Ω ) gfs Forward Transconductance (mS)
2N5911/5912
Vishay Siliconix
Document Number: 70255
S-04031Rev. D, 04-Jun-01 www.vishay.com
8-5
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
10
016 204
8
2
0
5
012 20164
4
2
1
0
6
4
3
812 8
100
10
1
0.1 100 1000
100
10
1
0.1
100 1000
Common-Source Input Capacitance
vs. Gate-Source Voltage
0 V
f = 1 MHz
VGS Gate-Source Voltage (V)
10 V
Common-Source Reverse Feedback
Capacitance vs. Gate-Source Voltage
0 V
f = 1 MHz
VGS Gate-Source Voltage (V)
Reverse Feedback Capacitance (pF)Crss
10 V
(mS)
TA = 25_C
VDS = 10 V
ID = 10 mA
gig
big
Input Admittance
f Frequency (MHz)
gis
bis
f Frequency (MHz)
(mS)
TA = 25_C
VDS = 10 V
ID = 10 mA
bfg
Forward Admittance
bfs gfs
Input Capacitance (pF)Ciss
200 500 200 500
10
1
0.1
0.01 100 1000
100
10
1
0.1
100 1000
(mS)
TA = 25_C
VDS = 10 V
ID = 10 mA
brg
grg grg
Reverse Admittance
f Frequency (MHz)
brs
grs
(mS)
TA = 25_C
VDS = 10 V
ID = 10 mA
gog, gos
bog, bos
Output Admittance
f Frequency (MHz)
200 500 200 500
VDS = 5 V VDS = 5 V
gfg
2N5911/5912
Vishay Siliconix
www.vishay.com
8-6 Document Number: 70255
S-04031Rev. D, 04-Jun-01
TYPICAL CHARACTERISTICS (TA = 25_C UNLESS OTHERWISE NOTED)
10 100 1 k 100 k10 k
50
40
10
0
150
120
90
30
00.1 1 10
60
30
20
Equivalent Input Noise Voltage vs. Frequency
ID = 1 mA
VDS = 10 V
f Frequency (Hz)
Output Conductance vs. Drain Current
ID Drain Current (mA)
TA = 55_C
125_C
200
01082
160
40
00.1 110
10
8
2
0
200
160
120
40
0
120
80 80
46
6
4
On-Resistance and Output Conductance
vs. Gate-Source Cutoff Voltage
VGS(off) Gate-Source Cutoff Voltage (V)
rDS @ ID = 1 mA, VGS = 0 V
gos @ VDS = 10 V, VGS = 0 V
f = 1 kHz
rDS
gos
Common-Source Forward Transconductance
vs. Drain Current
ID Drain Current (mA)
TA = 55_C
125_C
10 mA
VDS = 10 V
f = 1 kHz
VGS(off) = 5 V
VDS = 10 V
f = 1 kHz
VGS(off) = 5 V
25_C
25_C
en Noise Voltage nV / Hz
gos Output Conductance (µS)
gos Output Conductance (µS)
gfs Forward Transconductance (mS)
rDS(on) Drain-Source On-Resistance ( Ω )
Document Number: 91000 www.vishay.com
Revision: 18-Jul-08 1
Disclaimer
Legal Disclaimer Notice
Vishay
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.