DDR3 SDRAM VLP Mini-UDIMM
MT9JBF25672AKZ – 2GB
Features
DDR3 functionality and operations supported as
defined in the component data sheet
244-pin, unbuffered dual in-line, 82mm, very low
profile (17.9mm) memory module (VLP Mini-
UDIMM)
Fast data transfer rates: PC3-12800, PC3-10600,
PC3-8500, or PC3-6400
2GB (256 Meg x 72)
VDD = 1.5V ±0.075V
VDDSPD = +3.0V to +3.6V
Supports ECC error detection and correction
Nominal and dynamic on-die termination (ODT) for
data, strobe, and mask signals
Single rank
On-board I2C temperature sensor with integrated
serial presence-detect (SPD) EEPROM
8 internal device banks
Fixed burst chop (BC) of 4 and burst length (BL) of 8
via the mode register set (MRS)
Selectable BC4 or BL8 on-the-fly (OTF)
Gold edge contacts
Halogen-free
Fly-by topology
Terminated control, command, and address bus
Figure 1: 244-Pin VLP Mini-UDIMM
Module height: 17.9mm (0.705in)
Options Marking
Operating temperature
Commercial (0°C TA +70°C) None
Package
244-pin halogen-free VLP Mini-
UDIMM
Z
Frequency/CAS latency
1.25ns @ CL = 11 (DDR3-1600) -1G6
1.5ns @ CL = 9 (DDR3-1333) -1G4
1.87ns @ CL = 7 (DDR3-1066) -1G1
Table 1: Key Timing Parameters
Speed
Grade
Industry
Nomenclature
Data Rate (MT/s) tRCD
(ns)
tRP
(ns)
tRC
(ns)CL = 11 CL = 10 CL = 9 CL = 8 CL = 7 CL = 6 CL = 5
-1G6 PC3-12800 1600 1333 1333 1066 1066 800 667 13.125 13.125 48.125
-1G4 PC3-10600 1333 1333 1066 1066 800 667 13.125 13.125 49.125
-1G1 PC3-8500 1066 1066 800 667 13.125 13.125 50.625
-1G0 PC3-8500 1066 800 667 15 15 52.5
-80C PC3-6400 800 800 12.5 12.5 50
-80B PC3-6400 800 667 15 15 52.5
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Features
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 1Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Products and specifications discussed herein are subject to change by Micron without notice.
Table 2: Addressing
Parameter 2GB
Refresh count 8K
Row address 32K A[14:0]
Device bank address 8 BA[2:0]
Device configuration 2Gb (256 Meg x 8)
Column address 1K A[9:0]
Module rank address 1 S0#
Table 3: Part Numbers and Timing Parameters – 2GB Modules
Base device: MT41J256M8,1 2Gb DDR3 SDRAM
Part Number2
Module
Density Configuration
Module
Bandwidth
Memory Clock/
Data Rate
Clock Cycles
(CL-tRCD-tRP)
MT9JBF25672AKZ-1G6__ 2GB 256 Meg x 72 12.8 GB/s 1.25ns/1600 MT/s 11-11-11
MT9JBF25672AKZ-1G4__ 2GB 256 Meg x 72 10.6 GB/s 1.5ns/1333 MT/s 9-9-9
MT9JBF25672AKZ-1G1__ 2GB 256 Meg x 72 8.5 GB/s 1.87ns/1066 MT/s 7-7-7
Notes: 1. The data sheet for the base device can be found on Micron’s Web site.
2. All part numbers end with a two-place code (not shown) that designates component and PCB revisions.
Consult factory for current revision codes. Example: MT9JBF25672AKZ-1G4D1.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Features
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 2Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Pin Assignments and Descriptions
Table 4: Pin Assignments
244-Pin DDR3 Mini-UDIMM Front 244-Pin DDR3 Mini-UDIMM Back
Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol
1 VTT 31 DQ24 61 VDD 92 DQ40 123 VTT 153 DQ29 183 A3 214 DQ45
2 VREFDQ 32 DQ25 62 A2 93 DQ41 124 VSS 154 VSS 184 A1 215 VSS
3 VSS 33 VSS 63 VDD 94 VSS 125 DQ4 155 DM3 185 VDD 216 DM5
4 DQ0 34 DQS3# 64 CK1 95 DQS5# 126 DQ5 156 NC 186 CK0 217 NC
5 DQ1 35 DQS3 65 CK1# 96 DQS5 127 VSS 157 VSS 187 CK0# 218 VSS
6 VSS 36 VSS 66 VDD 97 VSS 128 DM0 158 DQ30 188 VDD 219 DQ46
7 DQS0# 37 DQ26 67 VREFCA 98 DQ42 129 NC 159 DQ31 189 VDD 220 DQ47
8 DQS0 38 DQ27 68 VDD 99 DQ43 130 VSS 160 VSS 190 EVENT# 221 VSS
9 VSS 39 VSS 69 NC 100 VSS 131 DQ6 161 CB4 191 A0 222 DQ52
10 DQ2 40 CB0 70 VDD 101 DQ48 132 DQ7 162 CB5 192 VDD 223 DQ53
11 DQ3 41 CB1 71 A10 102 DQ49 133 VSS 163 VSS 193 BA1 224 VSS
12 VSS 42 VSS 72 BA0 103 VSS 134 DQ12 164 DM8 194 VDD 225 DM6
13 DQ8 43 DQS8# 73 VDD 104 DQS6# 135 DQ13 165 NC 195 RAS# 226 NC
14 DQ9 44 DQS8 74 WE# 105 DQS6 136 VSS 166 VSS 196 CS0# 227 VSS
15 VSS 45 VSS 75 CAS# 106 VSS 137 DM1 167 CB6 197 VDD 228 DQ54
16 DQS1# 46 CB2 76 VDD 107 DQ50 138 NC 168 CB7 198 ODT0 229 DQ55
17 DQS1 47 CB3 77 NC 108 DQ51 139 VSS 169 VSS 199 A13 230 VSS
18 VSS 48 VSS 78 NC 109 VSS 140 DQ14 170 NC 200 VDD 231 DQ60
19 DQ10 49 NC 79 VDD 110 DQ56 141 DQ15 171 NC 201 NC 232 DQ61
20 DQ11 50 RESET# 80 NC 111 DQ57 142 VSS 172 NC 202 NC 233 VSS
21 VSS 51 CKE0 81 NC 112 VSS 143 DQ20 173 VDD 203 VSS 234 DM7
22 DQ16 52 VDD 82 VSS 113 DQS7# 144 DQ21 174 NC 204 DQ36 235 NC
23 DQ17 53 BA2 83 DQ32 114 DQS7 145 VSS 175 A14 205 DQ37 236 VSS
24 VSS 54 NC 84 DQ33 115 VSS 146 DM2 176 VDD 206 VSS 237 DQ62
25 DQS2# 55 VDD 85 VSS 116 DQ58 147 NC 177 A12 207 DM4 238 DQ63
26 DQS2 56 A11 86 DQS4# 117 DQ59 148 VSS 178 A9 208 NC 239 VSS
27 VSS 57 A7 87 DQS4 118 VSS 149 DQ22 179 VDD 209 VSS 240 VDDSPD
28 DQ18 58 VDD 88 VSS 119 SA0 150 DQ23 180 A8 210 DQ38 241 SA1
29 DQ19 59 A5 89 DQ34 120 SCL 151 VSS 181 A6 211 DQ39 242 SDA
30 VSS 60 A4 90 DQ35 121 SA2 152 DQ28 182 VDD 212 VSS 243 VSS
91 VSS 122 VTT 213 DQ44 244 VTT
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Pin Assignments and Descriptions
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 3Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Table 5: Pin Descriptions
Symbol Type Description
A[14:0] Input Address inputs: Provide the row address for ACTIVATE commands, and the column
address and auto precharge bit (A10) for READ/WRITE commands, to select one loca-
tion out of the memory array in the respective bank. A10 is sampled during a PRE-
CHARGE command to determine whether the PRECHARGE applies to one bank (A10
LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). If only one bank is to be pre-
charged, the bank is selected by BA. A12 is also used for BC4/BL8 identification as “BL on-
the-fly” during CAS commands. The address inputs also provide the op-code during the
mode register command set.
BA[2:0] Input Bank address inputs: BA[2:0] define the device bank to which an ACTIVATE, READ,
WRITE, or PRECHARGE command is being applied. BA[2:0] define which mode register
(MR0, MR1, MR2, and MR3) is loaded during the LOAD MODE command.
CK0, CK0# Input Clock: CK and CK# are differential clock inputs. All control, command, and address in-
put signals are sampled on the crossing of the positive edge of CK and the negative
edge of CK#.
CKE0 Input Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal
circuitry and clocks on the DRAM.
DM[8:0] Input Input data mask: DM is an input mask signal for write data. Input data is masked
when DM is sampled HIGH, along with the input data, during a write access. DM is sam-
pled on both edges of DQS. Although the DM pins are input-only, the DM loading is
designed to match that of the DQ and DQS pins.
ODT0 Input On-die termination: ODT enables (registered HIGH) and disables (registered LOW) ter-
mination resistance internal to the DRAM. When enabled in normal operation, ODT is
only applied to the following pins: DQ, DQS, DQS#, and DM. The ODT input will be ig-
nored if disabled via the LOAD MODE command.
RAS#, CAS#,
WE#
Input Command inputs: RAS#, CAS#, and WE# (along with S#) define the command being
entered.
RESET# Input
(LVCMOS)
Reset: RESET# is an active LOW CMOS input referenced to VSS. The RESET# input receiv-
er is a CMOS input defined as a rail-to-rail signal with DC HIGH 0.8 × VDD and DC LOW
0.2 × VDD.
S0# Input Chip select: S# enables (registered LOW) and disables (registered HIGH) the command
decoder.
SA[2:0] Input Serial address inputs: These pins are used to configure the temperature sensor/SPD
EEPROM address range on the I2C bus.
SCL Input Serial clock for temperature sensor/SPD EEPROM: SCL is used to synchronize com-
munication to and from the temperature sensor/SPD EEPROM.
CB[7:0] I/O Check bits: Data used for ECC.
DQ[63:0] I/O Data input/output: Bidirectional data bus.
DQS[8:0],
DQS#[8:0]
I/O Data strobe: DQS and DQS# are differential data strobes. Output with read data. Edge-
aligned with read data. Input with write data. Center-aligned with write data.
SDA I/O Serial data: SDA is a bidirectional pin used to transfer addresses and data into and out
of the temperature sensor/SPD EEPROM on the I2C bus.
EVENT# Output
(open drain)
Temperature event: The EVENT# pin is asserted by the temperature sensor when criti-
cal temperature thresholds have been exceeded.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Pin Assignments and Descriptions
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 4Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Table 5: Pin Descriptions (Continued)
Symbol Type Description
VDD Supply Power supply: 1.5V ±0.075V. The component VDD and VDDQ are connected to the mod-
ule VDD.
VDDSPD Supply Temperature sensor/SPD EEPROM power supply: +3.0V to +3.6V.
VREFCA Supply Reference voltage: Control, command, and address (VDD/2).
VREFDQ Supply Reference voltage: DQ, DM (VDD/2).
VSS Supply Ground.
VTT Supply Termination voltage: Used for control, command, and address (VDD/2).
NC No connect: These pins are not connected on the module.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Pin Assignments and Descriptions
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 5Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
DQ Map
Table 6: Component-to-Module DQ Map
Component
Reference
Number
Component
DQ Module DQ
Module Pin
Number
Component
Reference
Number
Component
DQ Module DQ
Module Pin
Number
U1 0 6 131 U2 0 18 28
1 1 5 1 21 144
2 3 11 2 23 150
3 5 126 3 17 23
4 2 10 4 22 149
5 4 125 5 16 22
6 7 132 6 19 29
7 0 4 7 20 143
U4 8 34 89 U5 0 50 107
9 37 205 1 53 223
10 39 211 2 55 229
11 33 84 3 49 102
12 38 210 4 54 228
13 32 83 5 48 101
14 35 90 6 51 108
15 36 204 7 52 222
U6 0 61 232 U7 0 45 214
1 62 237 1 46 219
2 56 110 2 40 92
3 59 117 3 43 99
4 60 231 4 44 213
5 63 238 5 47 220
6 57 111 6 41 93
7 58 116 7 42 98
U8 0 CB0 40 U9 0 29 153
1 CB1 41 1 30 158
2 CB2 46 2 24 31
3 CB3 47 3 27 38
4 CB4 161 4 28 152
5 CB5 162 5 31 159
6 CB6 167 6 25 32
7 CB7 168 7 26 37
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
DQ Map
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 6Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Table 6: Component-to-Module DQ Map (Continued)
Component
Reference
Number
Component
DQ Module DQ
Module Pin
Number
Component
Reference
Number
Component
DQ Module DQ
Module Pin
Number
U10 0 9 14
1 14 140
2 12 134
3 11 20
4 8 13
5 15 141
6 13 135
7 10 19
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
DQ Map
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 7Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Functional Block Diagram
Figure 2: Functional Block Diagram
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
U1
DM CS# DQ DQS#
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
U4
DM CS# DQ DQS#
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
U10
DM CS# DQ DQS#
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
U2
DM CS# DQ DQS#
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
U9
DM CS# DQ DQS#
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
U7
DM CS# DQ DQS#
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
U5
DM CS# DQ DQS#
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
U9
DM CS# DQ DQS#
DQS0#
DQS0
DM0
S0#
DQS1#
DQS1
DM1
DQS2#
DQS2
DM2
DQS3#
DQS3
DM3
DQS4#
DQS4
DM4
DQS5#
DQS5
DM5
DQS6#
DQS6
DM6
DQS7#
DQS7
DM7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
U8
DM CS# DQ DQS#
DQS8#
DQS8
DM8
BA[2:0]
A[14:0]
RAS#
CAS#
WE#
CKE0
ODT0
RESET#
BA[2:0]: DDR3 SDRAMs
A[14:0]: DDR3 SDRAMs
RAS#: DDR3 SDRAMs
CAS#: DDR3 SDRAMs
WE#: DDR3 SDRAMs
CKE0: DDR3 SDRAMs
ODT0: DDR3 SDRAMs
RESET#: DDR3 SDRAMs
DDR3 SDRAM X 9
CK0
CK0#
CK1
CK1#
VREFCA
VSS
DDR3 SDRAMs
DDR3 SDRAMs
VDD
DDR3 SDRAMs
VDDSPD SPD EEPROM
VTT
DDR3 SDRAMs
DDR3 SDRAMs
VREFDQ
Clock, control, command, and address line terminations:
CKE0, A[14:0],
RAS#, CAS#, WE#,
ODT0, BA[2:0], S0#
DDR3
SDRAM
VTT
CK
CK#
DDR3
SDRAM
VDD
ZQ
VSS
ZQ
VSS
ZQ
VSS
ZQ
VSS
ZQ
VSS
ZQ
VSS
ZQ
VSS
ZQ
VSS
ZQ
VSS
A0
Temperature
sensor/
SPD EEPROM
A1 A2
SA0 SA1
SDA
SCL
EVT
U3
EVENT#
SA2
Note: 1. The ZQ ball on each DDR3 component is connected to an external 240Ω ±1% resistor
that is tied to ground. It is used for the calibration of the component’s ODT and output
driver.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Functional Block Diagram
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 8Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
General Description
DDR3 SDRAM modules are high-speed, CMOS dynamic random access memory mod-
ules that use internally configured 8-bank DDR3 SDRAM devices. DDR3 SDRAM mod-
ules use DDR architecture to achieve high-speed operation. DDR3 architecture is
essentially an 8n-prefetch architecture with an interface designed to transfer two data
words per clock cycle at the I/O pins. A single read or write access for the DDR3 SDRAM
module effectively consists of a single 8n-bit-wide, one-clock-cycle data transfer at the
internal DRAM core and eight corresponding n-bit-wide, one-half-clock-cycle data trans-
fers at the I/O pins.
DDR3 modules use two sets of differential signals: DQS, DQS# to capture data and CK
and CK# to capture commands, addresses, and control signals. Differential clocks and
data strobes ensure exceptional noise immunity for these signals and provide precise
crossing points to capture input signals.
Fly-By Topology
DDR3 modules use faster clock speeds than earlier DDR technologies, making signal
quality more important than ever. For improved signal quality, the clock, control, com-
mand, and address buses have been routed in a fly-by topology, where each clock,
control, command, and address pin on each DRAM is connected to a single trace and
terminated (rather than a tree structure, where the termination is off the module near
the connector). Inherent to fly-by topology, the timing skew between the clock and DQS
signals can be easily accounted for by using the write-leveling feature of DDR3.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
General Description
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 9Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Electrical Specifications
Stresses greater than those listed may cause permanent damage to the module. This is a
stress rating only, and functional operation of the module at these or any other condi-
tions outside those indicated in each device’s data sheet is not implied. Exposure to
absolute maximum rating conditions for extended periods may adversely affect reliability.
Table 7: Absolute Maximum Ratings
Symbol Parameter Min Max Units
VDD VDD supply voltage relative to VSS –0.4 +1.975 V
VIN, VOUT Voltage on any pin relative to VSS –0.4 +1.975 V
Table 8: Operating Conditions
Symbol Parameter Min Nom Max Units Notes
VDD VDD supply voltage 1.425 1.5.64 1.575 V
VREFCA(DC) Input reference voltage command/address bus 0.49 × VDD 0.5 × VDD 0.51 × VDD V
VREFDQ(DC) I/O reference voltage DQ bus 0.49 × VDD 0.5 × VDD 0.51 × VDD V
IVTT Termination reference current from VTT –600 +600 mA
VTT Termination reference voltage (DC) –
command/address bus
0.49 × VDD -
20mV
0.5 × VDD 0.51 × VDD +
20mV
V 1
IIInput leakage current;
Any input 0V VIN VDD; VREF in-
put 0V VIN 0.95V (All other pins
not under test = 0V)
Address
inputs,
RAS#,CAS#,
WE#, S#,
CKE, ODT,
BA, CK, CK#
–18 0 +18 µA
DM –2 0 +2
IOZ Output leakage current;
0V VOUT VDD; DQ and ODT are
disabled; ODT is HIGH
DQ, DQS,
DQS#
–5 0 +5 µA
IVREF VREF supply leakage current;
VREFDQ = VDD/2 or VREFCA = VDD/2
(All other pins not under test = 0V)
–9 0 +9 µA
TAModule ambient operating temperature 0 +70 °C 2, 3
TCDDR3 SDRAM component case operating temper-
ature
0+95 °C 2, 3, 4
Notes: 1. VTT termination voltage in excess of the stated limit will adversely affect the command
and address signals’ voltage margin and will reduce timing margins.
2. TA and TC are simultaneous requirements.
3. For further information, refer to technical note TN-00-08: “Thermal Applications,”
available on Micron’s Web site.
4. The refresh rate is required to double when 85°C < TC 95°C.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Electrical Specifications
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 10 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
DRAM Operating Conditions
Recommended AC operating conditions are given in the DDR3 component data sheets.
Component specifications are available on Micron’s Web site. Module speed grades cor-
relate with component speed grades, as shown below.
Table 9: Module and Component Speed Grades
DDR3 components may exceed the listed module speed grades; module may not be available in all listed speed grades
Module Speed Grade Component Speed Grade
-1G6 -125
-1G4 -15E
-1G1 -187E
-1G0 -187
-80C -25E
-80B -25
Design Considerations
Simulations
Micron memory modules are designed to optimize signal integrity through carefully de-
signed terminations, controlled board impedances, routing topologies, trace length
matching, and decoupling. However, good signal integrity starts at the system level. Mi-
cron encourages designers to simulate the signal characteristics of the system’s memo-
ry bus to ensure adequate signal integrity of the entire memory system.
Power
Operating voltages are specified at the DRAM, not at the edge connector of the module.
Designers must account for any system voltage drops at anticipated power levels to en-
sure the required supply voltage is maintained.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Electrical Specifications
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 11 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
IDD Specifications
Table 10: DDR3 IDD Specifications and Conditions – 2GB
Values are for the MT41J256M8 DDR3 SDRAM only and are computed from values specified in the 2Gb (256 Meg x 8)
component data sheet, Die Rev D
Parameter Symbol 1600 1333 1066 Units
Operating current 0: One bank ACTIVATE-to-PRECHARGE IDD0 TBD 810 720 mA
Operating current 1: One bank ACTIVATE-to-READ-to-PRE-
CHARGE
IDD1 TBD 1035 900 mA
Precharge power-down current: Slow exit IDD2P0 TBD 108 108 mA
Precharge power-down current: Fast exit IDD2P1 TBD 315 270 mA
Precharge quiet standby current IDD2Q TBD 585 495 mA
Precharge standby current IDD2N TBD 585 495 mA
Precharge standby ODT current IDD2NT TBD 765 675 mA
Active power-down current IDD3P TBD 405 360 mA
Active standby current IDD3N TBD 675 540 mA
Burst read operating current IDD4R TBD 1800 1440 mA
Burst write operating current IDD4W TBD 2160 1800 mA
Refresh current IDD5B TBD 2295 2205 mA
Self refresh temperature current: MAX TC = 85°C IDD6 TBD 81 81 mA
Self refresh temperature current (SRT-enabled): MAX TC =
95°C
IDD6ET TBD 108 108 mA
All banks interleaved read current IDD7 TBD 3285 2880 mA
Reset current IDD8 TBD 126 126 mA
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Electrical Specifications
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 12 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Temperature Sensor with Serial Presence-Detect EEPROM
The temperature from the integrated thermal sensor is monitored and converts into a
digital word via the I2C bus. System designers can use the user-programmable registers
to create a custom temperature-sensing solution based on system requirements. Pro-
gramming and configuration details comply with JEDEC standard No. 21-C page 4.7-1,
“Definition of the TSE2002av, Serial Presence Detect with Temperature Sensor.”
Serial Presence-Detect EEPROM Operation
DDR3 SDRAM modules incorporate serial presence-detect. The SPD data is stored in a
256-byte EEPROM. The first 128 bytes are programmed by Micron to comply with JE-
DEC standard JC-45, “Appendix X: Serial Presence Detect (SPD) for DDR3 SDRAM
Modules.” These bytes identify module-specific timing parameters, configuration infor-
mation, and physical attributes. User-specific information can be written into the
remaining 128 bytes of storage. READ/WRITE operations between the system (master)
and the EEPROM (slave) device occur via an I2C bus. Write protect (WP) is connected to
VSS, permanently disabling hardware write protect. For further information please refer
to Micron technical note TN-04-42, "Memory Module Serial Presence-Detect."
Table 11: Temperature Sensor with Serial Presence-Detect EEPROM Operating Conditions
Parameter/Condition Symbol Min Max Units
Supply voltage VDDSPD +3.0 +3.6 V
Supply current: VDD = 3.3V IDD +2.0 mA
Input high voltage: Logic 1; SCL, SDA VIH +1.45 VDDSPD + 1 V
Input low voltage: Logic 0; SCL, SDA VIL +0.55 V
Output low voltage: IOUT = 2.1mA VOL +0.4 V
Input current IIN –5.0 +5.0 µA
Temperature sensing range –40 +125 °C
Temperature sensor accuracy (initial release) –2.0 +2.0 °C
Temperature sensor accuracy (class B) –1.0 +1.0 °C
Table 12: Sensor and EEPROM Serial Interface Timing
Parameter/Condition Symbol Min Max Units
Time bus must be free before a new transition can
start
tBUF 4.7 µs
SDA fall time tF 20 300 ns
SDA rise time tR1,000 ns
Data hold time tHD:DAT 200 900 ns
Start condition hold time tH:STA 4.0 µs
Clock HIGH period tHIGH 4.0 50 µs
Clock LOW period tLOW 4.7 µs
SCL clock frequency tSCL 10 100 kHz
Data setup time tSU:DAT 250 ns
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 13 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Table 12: Sensor and EEPROM Serial Interface Timing (Continued)
Parameter/Condition Symbol Min Max Units
Start condition setup time tSU:STA 4.7 µs
Stop condition setup time tSU:STO 4.0 µs
EVENT# Pin
The temperature sensor also adds the EVENT# pin (open drain). Not used by the SPD
EEPROM, EVENT# is a temperature sensor output used to flag critical events that can
be set up in the sensor’s configuration register.
EVENT# has three defined modes of operation: interrupt mode, compare mode, and
critical temperature mode. The open-drain output of EVENT# under the three separate
operating modes is illustrated below. Event thresholds are programmed in the 0x01 reg-
ister using a hysteresis. The alarm window provides a comparison window, with upper
and lower limits set in the alarm upper boundary register and the alarm lower boun-
dary register, respectively. When the alarm window is enabled, EVENT# will trigger
whenever the temperature is outside the MIN or MAX values set by the user.
The interrupt mode enables software to reset EVENT# after a critical temperature thresh-
old has been detected. Threshold points are set in the configuration register by the user.
This mode triggers the critical temperature limit and both the MIN and MAX of the tem-
perature window.
The compare mode is similar to the interrupt mode, except EVENT# cannot be reset by
the user and only returns to the logic HIGH state when the temperature falls below the
programmed thresholds.
Critical temperature mode triggers EVENT# only when the temperature has exceeded
the programmed critical trip point. When the critical trip point has been reached, the
temperature sensor goes into comparator mode, and the critical EVENT# cannot be
cleared through software.
SM Bus Slave Subaddress Decoding
The temperature sensor’s physical address differs from the SPD EEPROM’s physical ad-
dress: binary 0011 for A0, A1, A2, and RW#, where A2, A1, and A0 are the three slave
subaddress pins and the RW# bit is the READ/WRITE flag.
If the slave base address is fixed for the temperature sensor/SPD EEPROM, then the
pins set the subaddress bits of the slave address, enabling the devices to be located any-
where within the eight slave address locations. For example, they could be set from 30h
to 3Eh.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 14 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Figure 3: EVENT# Pin Functionality
Time
Temperature
Critical
Alarm window (MAX)
Alarm window (MIN)
EVENT#
interrupt mode
EVENT#
comparator mode
EVENT#
critical temperature only mode
Clears event
Hysteresis affects
these trip points
Table 13: Temperature Sensor Registers
Name Address Power-on Default
Pointer register Not applicable Undefined
Capability register 0x00 0x0001
Configuration register 0x01 0x0000
Alarm temperature upper boundary register 0x02 0x0000
Alarm temperature lower boundary register 0x03 0x0000
Critical temperature register 0x04 0x0000
Temperature register 0x05 Undefined
Pointer Register
The pointer register selects which of the 16-bit registers is being accessed in subsequent
READ and WRITE operations. This register is a write-only register.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 15 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Table 14: Pointer Register Bits 0–7
Bit
76543210
0 0 0 0 Register
select
Register
select
Register
select
Register
select
Table 15: Pointer Register Bits 0–2 Descriptions
Bit
Register2 1 0
0 0 0 Capability register
0 0 1 Configuration register
0 1 0 Alarm temperature upper boundary register
0 1 1 Alarm temperature lower boundary register
1 0 0 Critical temperature register
1 0 1 Temperature register
Capability Register
The capability register indicates the features and functionality supported by the temper-
ature sensor. This register is a read-only register.
Table 16: Capability Register (Address: 0x00)
Bit
15 14 13 12 11 10 9 8
RFU RFU RFU RFU RFU RFU RFU RFU
Bit
76543210
RFU RFU RFU Temperature resolution Wider range Precision Has alarm
and critical
temperature
Table 17: Capability Register Bit Description
Bit Description
0 Basic capability
1: Has alarm and critical trip point capabilities
1 Accuracy
0: ±2°C over the active range and ±3°C over the monitor range
1: ±1°C over the active range and ±2°C over the monitor range
2 Wider range
0: Temperatures lower than 0°C are clamped to a binary value of 0
1: Temperatures below 0°C can be read
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 16 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Table 17: Capability Register Bit Description (Continued)
Bit Description
4:3 Temperature resolution
00: 0.5°C LSB
01: 0.25°C LSB
10: 0.125°C LSB
11: 0.0625°C LSB
15:5 0: Must be set to zero
Configuration Register
Table 18: Configuration Register (Address: 0x01)
Bit
15 14 13 12 11 10 9 8
RFU RFU RFU RFU RFU Hysteresis Shutdown
mode
Bit
76543210
Critical lock
bit
Alarm lock bit Clear event Event output
status
Event output
control
Critical event
only
Event polarity Event mode
Table 19: Configuration Register Bit Descriptions
Bit Description Notes
0 Event mode
0: Comparator mode
1: Interrupt mode
Event mode cannot be changed if either of the lock
bits is set.
1 EVENT# polarity
0: Active LOW
1: Active HIGH
EVENT# polarity cannot be changed if either of the
lock bits is set.
2 Critical event only
0: EVENT# trips on alarm or critical temperature event
1: EVENT# trips only if critical temperature is reached
3 Event output control
0: Event output disabled
1: Event output enabled
4 Event status
0: EVENT# has not been asserted by this device
1: EVENT# is being asserted due to an alarm window
or critical temperature condition
This is a read-only field in the register. The event caus-
ing the event can be determined from the read tem-
perature register.
5 Clear event
0: No effect
1: Clears the event when the temperature sensor is in
the interrupt mode
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 17 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Table 19: Configuration Register Bit Descriptions (Continued)
Bit Description Notes
6 Alarm window lock bit
0: Alarm trips are not locked and can be changed
1: Alarm trips are locked and cannot be changed
7 Critical trip lock bit
0: Critical trip is not locked and can be changed
1: Critical trip is locked and cannot be changed
8 Shutdown mode
0: Enabled
1: Shutdown
The shutdown mode is a power-saving mode that dis-
ables the temperature sensor.
10:9 Hysteresis enable
00: Disable
01: Enable at 1.5°C
10: Enable at 3°C
11: Enable at 6°C
When enabled, a hysteresis is applied to temperature
movement around the trip points (see Figure 4
(page 19)). As an example, if the hysteresis register
is enabled to a delta of 6°C, the preset trip points will
toggle when the temperature reaches the program-
med value. These values will reset when the tempera-
ture drops below the trip points minus the set
hysteresis level. In this case, this would be critical tem-
perature minus 6°C.
The hysteresis is applied to both the above alarm win-
dow and the below alarm window bits found in the
read-only temperature register (see Table 20
(page 19)). EVENT# is also affected by this register.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 18 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Figure 4: Hysteresis Applied to Temperature Around Trip Points
TH1
TL2
TH - Hyst3
TL - Hyst
Below window bit
Above window bit
Notes: 1. TH is the value set in the alarm temperature upper boundary trip register.
2. TL is the value set in the alarm temperature lower boundary trip register.
3. Hyst is the value set in the hysteresis bits of the configuration register.
Table 20: Hysteresis Applied to Alarm Window Bits in the Temperature Register
Condition
Below Alarm Window Bit Above Alarm Window Bit
Temperature
Gradient Critical Temperature
Temperature
Gradient Critical Temperature
Sets Falling TL - Hyst Rising TH
Clears Rising TLFalling TH - Hyst
Temperature Format
The temperature trip point registers and temperature readout register use a 2’s comple-
ment format to enable negative numbers. The least significant bit (LSB) is equal to
0.0625°C or 0.25°C, depending on which register is referenced. For example, assuming
an LSB of 0.0625°C:
A value of 0x018C would equal 24.75°C
A value of 0x06C0 would equal 108°C
A value of 0x1E74 would equal –24.75°C
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 19 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Temperature Trip Point Registers
The upper and lower temperature boundary registers are used to set the maximum and
minimum values of the alarm window. LSB for these registers is 0.25°C. All RFU bits in
the register will always report zero.
Table 21: Alarm Temperature Lower Boundary Register (Address: 0x02)
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 MSB LSB RFU RFU
Alarm window upper boundary temperature
Table 22: Alarm Temperature Lower Boundary Register (Address: 0x03)
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 MSB LSB RFU RFU
Alarm window lower boundary temperature
Critical Temperature Register
The critical temperature register is used to set the maximum temperature above the
alarm window. The LSB for this register is 0.25°C. All RFU bits in the register will always
report zero.
Table 23: Critical Temperature Register (Address: 0x04)
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 MSB LSB RFU RFU
Critical temperature trip point
Temperature Register
The temperature register is a read-only register that provides the current temperature
detected by the temperature sensor. The LSB for this register is 0.0625°C with a resolu-
tion of 0.0625°C. The most significant bit (MSB) is 128°C in the readout section of this
register.
The upper three bits of the register are used to monitor the trip points that are set in the
previous three registers.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 20 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Table 24: Temperature Register (Address: 0x05)
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Above
critical
trip
Above
alarm
window
Below
alarm
window
MSB LSB
Temperature
Table 25: Temperature Register Bit Descriptions
Bit Description
13 Below alarm window
0: Temperature is equal to or above the lower boundary
1: Temperature is below alarm window
14 Above alarm window
0: Temperature is equal to or below the upper boundary
1: Temperature is above alarm window
15 Above critical trip point
0: Temperature is below critical trip point
1: Temperature is above critical trip point
Serial Presence-Detect Data
For the latest serial presence-detect data, refer to Micron's SPD page:
www.micron.com/SPD.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Temperature Sensor with Serial Presence-Detect EEPROM
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 21 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.
Module Dimensions
Figure 5: 244-Pin DDR3 VLP MiniUDIMM
82.15 (3.234)
81.85 (3.222)
Front view
17.91 (0.705)
17.89 (0.704)
10.0 (0.394)
TYP
1.0 (0.039)
TYP
45° X4
1.0 (0.039) R
X2
0.5 (0.02) R
1.8 (0.071) D
X2
6.0 (0.236)
TYP
2.0 (0.079)
TYP
78.0 (3.071)
TYP
0.6 (0.024)
TYP
0.45 (0.018)
TYP
Pin 1 Pin 122
43.9 (1.73)
TYP
Back view
3.3 (0.13)
TYP
3.6 (0.142) TYP
33.6 (1.323)
TYP
38.4 (1.512)
TYP
3.2 (0.126)
TYP
3.80 (0.15)
MAX
1.1 (0.043)
0.9 (0.035)
Pin 244 Pin 123
U1 U2
U3
U4 U5
U6 U7 U8 U9 U10
Notes: 1. All dimensions are in millimeters (inches); MAX/MIN or typical (TYP) where noted.
2. The dimensional diagram is for reference only.
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
www.micron.com/productsupport Customer Comment Line: 800-932-4992
Micron and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.
Although considered final, these specifications are subject to change, as further product development and data characterization some-
times occur.
2GB (x72, ECC, SR) 244-Pin DDR3 SDRAM VLP Mini-UDIMM
Module Dimensions
PDF: 09005aef83e0c154
JBF9C256x72AKZ.pdf - Rev. A 02/10 22 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2010 Micron Technology, Inc. All rights reserved.