| A cM PS TYPE ep iM Vst Too }Avor | Vio 7 Sa Mio | Prox Vout] Vicm} Yior | dVio/ST go } AR | RR NUMBER R P P MAX MAX | MIN [MAX |MAX | MAX | MAX MIN | MAX] MAX} MAX MAX| MIN | MIN AMLH2301AD | ADU DGU; EXT +22V 70C | 88dB |7.5MY |250NA | SONA| SOOMWF 12V] 15V) 30| 30uV/C 3MA| 700B | 70dB AMLH2301AF | ADU DGU) EXT +22 70C | 88dB |7.SMV |250NA| SONA| SOOMWF 12V; 15| 30V| 30uV/C 3MA | 70dB| 7008 AMLH2311D | ADU DCP} EXT +18V 70C |100dB |7. SMV [250NA1 SONA| SOOMWF . 15V; 30V; SMA} AMLH2311F | ADU DCP) EXT +18V 70C |100dB )7.5MV |250NA| SONA] SOOMAF . 15V| 30V . SMA]. . AMLMLOLAD =| ADU GPU! EXT +22V 125C | 94dB}) 2MV} 75NA| 1ONA) SOOMWF 12) 1SV; 30) 15uV/C 3MA) 800B} 8008 AMLM101AF ADU GPU} EXT +22 125C| 94dB] 2MV| 75NA| LONA| SOOMWF 12V| 15} 30V| 15uV/C 3MA | 80dB) 80cB AMLM1O1AH = | ADU GPU| EXT +22 125C| 94dB} 2MV! 75NA} LONA| SOOMWF 12) 15V| 30| L5uV/c 3MA| 800B| 8008 AMLM101D ADU GPU] EXT +22V 125C | 94dB} SMV ]1.SuA |0. SUA! SOOMWF 12V) 15; 30} 15uVv/C 3MA| 70dB|) 70dB AMLMLOLF ADU GPU EXT +224 125) 94dB} SMV }1. Sua }0. Sud) SOOMWF 12Vi ASV) 30V) LSuV/C 3MA | 700B} 7008 AMLM1O1H ADU GPU! EXT +22V 125C | 94dB/ SMV |SOONA ;200NA| SOOMNF 12| 15} 30V} 15u/C 3MA | 700B{ 7008 AMLM102D ADU VFA INT +18V 125C} OdB} SMV 1ONA SOOMWF 10V 30uv/C 6MA 6008 AMLM1.02F ADU VFA) INT +18V 125C; OdBj SMV] 1ONA SOOMWF 10V 30uv/C 6MA 6008 AMLWLO2H ADU! VFA\ INT +18 125C| OdB} SMV} LONA) | SCOMWF 10 30u/C} . | GMA 60c8 AMLMLO6F ADU} CPR} EXT +15V 125C) 84dB) 2MV| 20UA| 3uA|600MNF 2.5V l0uV/C |L63MW . AMLM106H ADU, CPR] EXT +15V 125C} 84dB; 2MV} 20uA| 3uA}600MWF 2.5V 10uV/C |L63MW AMLM107D ADU GPK} INT +22 125C| 94dB| 2MV) 75NA] lONA| SOOMNF 12| 15) 30V} 1S5uV/C 3MA| 800B; 80dB AMLMLOTE ADU) GPK| INT +224 125C| 94dB| 2MV} 7SNA) LONA) SOOMWF 12) 15) 30V} 1SuV/C 3MA} 800B} 80cB AMLM107H ADU} GPK| INT +22 125} 94dB) 2MV! 75NA| 1ONA| SOOMWF 12V) 15V] 30) 15uv/C 3MA| 800B} 80cB AMLM108AD | ADU! SBA} EXT +20V 125C | 98dB |0.5MV) 2NA /0. 2NA| SOOMHF 13] 15) 1V] Su/C .6MA| 960B] 96dB AMLMLO8AF | ADU| SBA| EXT +20V 125C | 98dB |0.5SMV 1 2NA (0. 2NA| SOOMWF 13V) 1SV, IV} Suv/C .6MA | 960B] 9608 AMLMLOBAH =| ADU! SBA) EXT +204 125C | 98dB |0.SMV | 2NA [O. 2NA| SOOMWF 13V) 15) AV) Suv/e .6MA | 960B} 96dB AMLM108D ADU) SBA] EXT +20V 125C| 96dB) 2MV| 2NA (0. 2NA| SOOMWF 13V} 15V)1V} 15uv/C .6MA | 85qB} 8008 AMLM108F ADU) SBA] EXT +209 125C| 96dB] 2MV} 2NA|O.2NA| SOOMNF 13V) 15} 1] 15uv/C -6MA | 85dB} 8008 AMLM108H ADU! SBA] EXT +20V 125C| 96dB) 2MV| 2NA /0. 2NA| SOOMHF 13V| 15) 1| 15uv/C -6MA} 85dB| 80dB AMLM1100 ADU) VFA] INT +18V 125C; OdB) 4MV|) 3NA SOOMWF 10V} 15) 15} SOuv/C 6MA 7008 AMLM110F ADU) VFA} INT +18V 125C} OdB| 4MV; 3NA SOOMWF 10V) 15V) 15V] Souv/C 6MA 70qB AMLM110H ADU] VFA) INT +16V 125C| OdB) 4M) 3NA| . | SOOMNF 10V} 15) 15] SoQuv/C 6MA 70dB AMLM111D ADU} CPR EXT +18V 125C |100dB | 3MV /100NA | 1ONA| SOOMWF 15V] 30V . 6MA AMLML11F ADU) CPR] EXT +18V 125C |100dB | 3MV|100NA| 1ONA! SOOMWF 15V| 30V 6MA AMLMLL1H ADU CPR) EXT +18V 125C }100d8 | 3MV }LOONA} LONA) SOOMHF 1SV| 30V SMA AMLM1120 ADU} SBA; INT +20V 125C} 94dB] 2MVj} 2NA 0. 2NA| SOOMWF 13V| 14) 14] 15u/C -6MA} 85dB] 80dB AMLM112F ADU} SBA} INT +20V 125C | 94dB | 2MV| 2NA|0.2NA| SOOMAF 13V| 14V] 14| 15uv/C .6MA | 85dB/ 8008 AMLM112H ADU| SBA] INT +209 125C| 94dB) 2MV| 2NA sO. 2NA| SOOMWF 13V| 14) 14V} 15u/C .6MA | 850B) 800B AMLM1180 ADU XSR) INT +20V 125C| 94dB| 4MV (250NA | SONA) SOOMNF 12v) 15) WV . 8MA | 80dB | 70d8 AMLM118F ADU} XSR] INT +209 125C| 94dB] 4MV |250NA| SONA! SOOMWF 12) 15} 1V 8MA | 800B} 70dB AMLM118H ADUI XSR| INT +200 125C | 94dB| 4MV |250NA | SONA| SOOMWF 12v| 15) 1V 8MA | 80dB| 70dB AMLM119D ADU] DCP} INT +18V 125C | 80dB] 4MV|SOONA) 7SNA| SOOMWF 15]} SV 12MA| . AMLM1L9F ADU OCP INT +18 125C | 80dB} 4MV |SOONA) 7SNA} SCOMWF ASV) SV 12MA AMLM119H ADU; DCP) INT +18V 125C| 80dB) 4MV |SOONA| 7SNA| SOOMWF 15V| SV . 12MA] . AMLM124AD | ADU! QGK) INT +16V 125C|} 94dB| 2MV| SONA} 10NA)900MWF 16V) 16; 20uv/C 2MA | 700B} 65dB AMLM124D ADU] QGK} INT +16V 125C |} 94dB) SMVJ150NA} 30NA; . 16V| 16V} 35uV/C 2MA | 70dB} 6508 AMLML24AF | ADU! QGK| INT +16V 125C| 94dB | 2MV\ SONA} LONA, SC}OMMF 16V) 16V; 20uV/C 2MA | 70dB) 6508 AMLM124F ADU} QGK| INT +16V 125C | 94dB) SMV j/150NA/ 30NA|800MHF 16V]} 16V] 35uV/C 2MA | 70dB} 6SqB AMLM139AD =| ADU) QCP) EXT +18V 1250) 94dB} 2MV}100NA) 25NA] SOOMWF 18V) 18V 2MA AMLM139AF | ADU) QCP| EXT +18V 125C | 94dB| 2MV|100NA| 25NA| 800MHF 18V} 18V OMA AMLM139D ADU! QCP| EXT +18V 125C | 88dB | SMV {100NA| 25NA|9OOMKF 18V; 18V 2MA AMLM139F ADU} QCP} EXT +18V 125C | 88dB] SMV |100NA| 25NA| 8OOMWF . 18V| 18V 2MA) . AMLM1480 ADU) OGK} INT +22 125C | 94dB} SMV }1OONA} 25NA) 12) 22) 44 UMA | 70dB} 770 AMLM1490 ADU} GK} INT +22\, 125C} 94dB| 5MV|1O0NA | 25NA| 900MWF 12V| 22V) 44V . 1MA} 70dB) 770B AMLM201AD | ADU! GPU) EXT +22 85C| 94dB] 2MY| 75NA| 1LONA|SOOMWE 12V| 15V) 30] 15uV/C 3MA | 800B{ 808 AMLM201AF | ADU! GPU] EXT +22V 85C | 94dB) 2MV| 75NA} 10NA| SOOMNF 12V) 15V) 30) 15uV/C 3MA } 800B) 800B AMLM2O01AH =| ADU) GPUI EXT +224 85C| 94dB, 2MV| 75NA} LONA} SOOMHF 12} 1S) 30| 15uV/C 3MA}) 800B} 8008 AMLM201D ADU} GPU! EXT +22 85C | 8608 |7.5MV |1. SUA |0. SUA! SOOMWF 12) 15] 30] 30uv/C 3MA | 6508] 700B AMLM201F ADU} GPU! EXT +22 85C | 86dB |7. SMV }1.SuA |0. SuA| SOOMWF 12} 15} 30} 30uUV/C 3MA} 65dB; 70dB AMLM201H ADU} GPU} EXT +22V 85C | 86dB |7. SMV |1. SuA |0. SuA| SOOMNF 12V| 15V| 30| 30uVv/C 3MA | 65dB| 700B AM.M2020 ADU! VFA) INT +18 85C| OdB} LOMY| LSNA SGOMKEF 10V 60uV/C 6MA 60d8 AMLM202H ADU} VFA| INT +18V 85C; OdB) 10MV| 15NA| . | SQQMWF 10V 60uv/C |} . | 6MA 600B AMLM206H ADU} CPR} EXT +15V 85C | 84dB) 2MV) 20UA) 3uA) 600MNF 2.5V] . . | lOUV/C 163M). . . AMLM207D ADU} GPK} INT +22 85C| 94dB} 2MV| 75NA| 1LONA| SOOMWF 12; 1SV; 30| lSuW/c |. 3MA | 800B| 80dB AMLM207F ADU| GPK| INT +22 85C | 94dB| 2MV} 75NA| 1ONA/SOOMWF) SMA| 12V| 15V| 30V} 15u/C 3MA | 80dB1 80dBFor detailed explanations of column heading notations, see App. A. Also for ready references the more important abbreviations used in the column headings are listed below LEFT HAND PAGE APP = application {cades at APP E.} CMRR = comman mode rejection ratio CMP = compensation (frequency) dVig/d T= input offset voltage temperature drift GBP = gain bandwidth product |; = input bias current lq) = input dias offset current ly == quiescent supply current MFR = manufacturer {codes at App.C.} P; = quiescent power consumer PSRR = power supply rejection ratio Vig = common mode input voltage rating Vip = differential input voltage rating Vio = input offset voltage V, = de supply voltage RIGHT HAND PAGE Lead out coding summary (details at APP.G.} for different cases (APP.F.) A = gain adjust B == bias adjust c = case E = inverting input E+ = non-inverting ingut F.F* = input frequency compensation G == ground J = high level input K = output, open collector L = output, open emitter M = metal case N = Not connected Q = special terminal R.R* = outputs $ z= strobe T1* = offset balance + +ve de supply Y= ve de supply W = guard ring x + = blank position, no lead + = +ve supplementary dc supply = ve supplementary dc supply 6g" = output frequency compensation EUROPE USA ' CASE LOPLO( LD; LO FLD; LO; col LO LO] LO; LO] tof LO {Loy LO { tO! SuaBstt- SUBSTI. [S{ TYPE (APP Fh 1 2413) 4 6 | 6] 7] 819] 10) 11/1 12413] 14] 15] 16 TUTE TUTE S| NUMBER DIL-16/1C |V+119*1 |TALJE-1IE+] |[V- |T*2]R2 /+4 6*2) THQ) E-2/E+21T*Y N JRL . LH2301A0 0 |JAMLH2301AD FLP-16/3C |V#1Ia*1 |TALjE-1JE+] [V- |T*2IR2 |V+ o*2) T2| E-2|E+2|)T* N |R1 |AMISOIFC = |LH2301AF {0 |AMLH2301 AF DIL-16/1C Wei |L1 HE+1/E-1/V- |T*2/TS2|K2 |V+d L2 | E+2)-2/T*1/7S1 Kl jN |AM15000C = |LH23110 0 |AMLH2311D FLP-16/3C |V+1)L1 JE+1/E-11V- |T*2iTS21K2 |+a L2 | E+2)E-2]T*1)/TSY K1 |N |AMLSOOFC = |LH2311F 0 |AMLH2311F DIL-14/1C IN IN {FT {E- (E+ W- IN IN TFT R [Vt TF IN UN : UALO1AD LM101AD 0 }AMLM101AD FLP-10/3G IN. [FT |E- |E+ |V- [7* [R IV+ |F* | N SFC2101APM |LMLOLAF 10 |AMLMO1LAF TOS-8/1M |FT jE- JE+ |-MIT* IR jV+ Fed. : : a SFC2101A |LM101AH 1 |AMLM102AH DIL-14/1M|N JN IFT JE- JE+ |V- IN) JN |T*TR | + /F* IN IN UA101D LM101J14 = [0 |AMLM101D FLP-10/3G JN) [FT jE- |E+ |- |T* JR [V+ |F* YN SFC2101 APM |LM1O1F 10 |AMLMLOLF TO3-8/1M |FT JE- JE+ |V-MIT* JR [V+ |F* SFC2101A |LM101H 10 |AMLM101H DIL-14/1P IN JN IT |N JE+ |- IN JN JL TR |#/T* JN IN . Lw1020 p AMLM1020 FLP-10/3C IN |T |N JE+ {V- JL IR {Wt {T* IN 1O2(FLP} = {LM1LO2F AMLMLO2F TOS-8/1M |T JN {E+ {- fL JR ofe TF]. - fo. . |. : 102(TO5S} {LM102H 10 |AMLM1LO2H FLP-14/3C IN |G jE+ /E- IN jV- /S1 jS2 JR |N |V+ |N IN IN MLM106F LMLO6F 0 |AMLM106F TOS-8/1M |G jE+ |E- |-MjS1 |S2 |R > [V+ SNS2106L |LM106H 10 |AMLM1 O6H DIL-14/1C IN. JN JN [E- [E+ |V- IN IN IN TR V+ IN IN) IN MLM107D LM1070 10 |AMLM1070 FLP-10/3G IN IN |E- |E+ |[- JN IR |V+ JN JN MLM107F LM107F 0 |AM_M107F TOS-8/1M IN |E- |E+ |V-MIN |R jV+ |N : . : .[- . MLMLO7H LM107H 0 |AMLM107H DIL-14/1C IN JF |N {E- JE+ JN [- JN) JN TR | V+ |F* JN IN MLM108AD |LM1O8AD 10 /AMLM108AD FLP-10/3G iN IN JE- JE+ [IN |- [Ro |[V+ |F* | F MLM108AF = |LM1LO8AF 0 JAMLMLOBAF TOS-8/1M |F |E- |E+ |V-MIN JR [V+ [Fe] . : : ~ de] - MLM108AH = |LM1O8AH 10 JAMLM108AH DIL-14/1C |N |F IN |E- JE+ JN |- JN) JN [R | + |F* IN) IN MLM1O8D LMi08D 10 |AMLM108D FLP-10/3G IN IN |E- jE+ |N JV- [Ro |+ JF* LF MLM108F LM108F 0 |AMLM108F TO5-8/1M JF JE- JE+ {-MIN JR |V+ Ft |. ode ~ ped. MLM108H LM1L08H 0 | AMLM108H DIL-14/1C|N IN JT JN JE+ |- JN IN GL [R j+ ]T* IN| JN MLM1100 LM110D 0 }AMLM1.10D FLP-10/3G|N |T |N JE+ JV- JL JR j+ |T* IN MLML10F LM110F 0 }AMLM110F TOS-8/1M |T jN {E+ [V- IL FR |v+ JTF IL. -f-?>. >. ]. UA110M LML10H 0 {AMLM110H DIL-14/1C IN 1G [E+ JE- IN [V- |T |T*S|R | N [V+ JN IN IN MM111D LM1110 0 }AMLM1110 FLP-10/3G1G |E+ |E- |N |V- iT |T*S|N JR | V+ MLM111F LM111F 0 )AMLM111F T05-8/1M |G E+ |E- |V- |T {T*SIR- |V+ MLM111H LM111H 0 | AMLM111H DIL-14/1C\N |}T |W [E- {E+ |W* |- IN [IF {R |V+{T* IN) IN MLM1120 LM1120 0 JAMLM1120 FLP-10/3G|N |W JE~ JE+ [We |- JR ojV+ |T | T* MLM112F LM112F 0 | AMLM112F TOS-8/1M |/T JE- jE+ |- |F JR |v+ |T* |]. ~f. dt. ].- : LM112H 0 |AMLM112H DIL-14/1C IN IN JT*FJE- JE+ }- IN IN IF*TTR |V+ Je IN IN MLM118D LM118D 0 JAMLM118D FLP-10/3G|N |T*FJE- |E+ |- |F*TIR |v+ | |N MLM118F LM118F 0 |AMLM118F TOS-8/1M |T*FIE- JE+ |V- [F*T/R [V+ 16 : : : fed. MLM118H LM118H 0] AMLM118H DIL-14/1C IN IN |G1 JE+1]E-2/- |R2 jG2 |E+4 E-2)+ |R1 IN IN TDCO119DC {LM119D 0] AMLM119D FLP-10/3G/N JN [G1 JE+1JE-1/V- |R2 |G2 jE+4 E-2) V+ |R1 IN IN TOCO119DC |LM119F 0 |AMLM119F TOS-10/1M|R1 |G1 jE+1/E-1/V- |R2 [G2 |E+2jE-4 V+] . | 2 fe]. TOCO119CM |LM119H 0.) AMLM119H DIL-14/1P JR1 JE-1/E+1/V+ jE+2]/E-2/R2 |R3 jE-3) E+3)G | E+4 |E-4)R4 : LM124aD (0 | AMLM124AD DIL-14/1C (R1 JE-1/E+1/+ /E+2/E-2/R2 |R3 JE-3} E+31G |E+4 |E-41R4 MLM124L LM124D O}AMM124D FLP-14/3C |R1 JE-1j}E+1)/V+ |E+2(E-2/R2 |R3 |E-3) E+3)G | E+4 |E-4) R4 LM124AF O}AMLMI24AF FLP-14/3C JR1 jE-1LJE+1/V+ JE+2/E-2/R2 |R3 JE-3)E+3)/G JE+4 |E-4) R4 . LM124F O|AMLMI24F OIL-14/1C jR2 |R1 |V+ JE-1/E+1/E-2/+2/E+3jE-3] E-4)E+4/G R43 MLM139AD |LMW139A0 0) AMLM139AD FLP-14/3C RQ [RL | V+ |E-1JE+1/E-2}E+2/E+3/E-3) E-4/E+4)G = |R4 | R3 : LM139AF QO] AMLM139AF DIL-14/1C|R2 [RI [V+ JE-1jE+1)E-2/+2)E+3}E-3) E-4}E+41G R41 R3 LM1390 0} AMLM1390 FLP-14/3GjR2 {Rl {V+ [E-1jE+1]E-2/+2 |E+3/E-3) E-4)E+4/G R41 R3 LM139F 0] AMLM139F DIL-14/1C JRL fE-L/E+1 |+ {E+2/E-2/R2 {R3 |E-3] E+3) - [E+4 |E-4) R4 LM148D 0; AMLM1480 DIL-14/1C {RL {E-1IE+1/+ {E+2:E-2]R2 |R3 JE-3) E+3) V- /E+4 E-41R4 : 1M149D 0} AMLM] 49D DIL-14/1C|N [IN [FT |E- JE+ |V- JN IN [T*]R [V+ JF* IN IN UA201 AD LM201A0 0] AMLM201AD FLP-10/3G|N J|FT JE- |E+ |V- |T* [R |+ (F* (N SFC2201 APT | LM201 AF O| AMLM201 AF TOS-8/1M |FT JE- JE+ |V-MIT* [R jv+ |F* |. |: . . : UA201AH LM201 AH O}AMLM201AH DIL-14/1C)N IN |FT JE- JE+ |- IN JN |T* | R [V+ JF* IN IN UA201 AD LM201D 0] AM.M2010 FLP-10/3G|N JFT JE- JE+ |V- |T* IR |+ JF* | N MLM201F LM201F O;AMLM201F TOS-8/1M |FT |E- JE+ |V-Mj/T* |R |V+ JF* SFC2101A4 | LM201H O| AMLM201H DIL-14/1CIN JN {T JN [Et {- iN GN TL TR [V+ iT* INOIN : LM202D 0] AMLM202D TO5-8/1M |T [N JE+ |- |L TR |V+ IT* UA102M LM202H 0} AMLM202H TOS-8/1M |G JE+ [E- |V-MjS1 (S2 [IR [V+ | . -|- . . . SN52106L | LM206H 0] AMLM206H DIL-14/1C|N JN IN JE- JE+ |- IN IN [IN [R [V+ IN IN JN $N52107JA | LM207D 0} AMLM207D FLP-10/3G|N |N |E- jE+ |V- |N IR |+ IN [N SFC2207PT | LM207F 0] AMLM207FAppendix A The general layout plan of the information in the tables of this compendium should be immediately evident from the data tabulation explanatory chart set out overleaf. Supporting Appendices with additional information are: App.B Glossary of Opamp Terms App.C Tabulation Codes for Manufacturers App.D IC Manufacturers House Numbers App.E Tabulation Codes for Applications App.F Case Outline and Leadout Diagrams App.G = Codes for Leadout Connections Unit symbols used in the tables are: A = amperes C = centigrade dB = decibels G = gigaohms (megohms x 10?) GHZ = gigahertz (megahertz x 10) K = kilohms KHZ = kilohertz M = megohms MA =milliamperes,mA MAX = maximum MHZ = megahertz MIN = minimum MV =nmillivolts MWC = milliwatts, case at 25C MWEF = milliwatts, free air at 25C MWH = milliwatts, heat sink, 25C NA = = nanoamps(microamps x 1073) NV = nanovolts (microvoits x 107%) PA = = picoamps (microamps x 107!?) R = ohms T = teraohms (megohms x 10) Vv = volts WC = watts, case at25C WF = watts, free airat25C WH = watts, heatsink, 25C pA = microamps us = microseconds LV = microvolts uw = microwatts uWF = microwatts, free air at 25C Where a unit symbol appears in the middle of a value, it indicates the position of the decimal point, e.g. 3K3 =3-3K. Explanatory notes to tabulationsAppendix A M) AEC SLEW cM PS TYPE Fi; P}M| GBP | RATE | Vs' | Vs" | Top | Avot | Vio Ie ho Prot | lout | Vout] Vicm| Ving | dViodT | Pa lo RR RR | Rw NUMBER P P MIN MIN MAX |MAX|MAX] MIN | MAX 1] MAX [MAX | MAX MIN | MIN| MAX! MAX MAX MAX |MAX] MIN | MIN [MIN (EXAMPLE) LHOO22CH NAUFET|INT) .3MHZ] 1/uS/+22V]-22V) 85C| 97dB! 6MV| 25pA) SpA] SOOMWF] LOMA] 1OV! 15/ 30V| 15uV/C| 85MW! 3MA] 70dB] 700B)/0.17 TYPE No. * NUMERO- Ry MIN ALPHABETIC =MIN IN- LISTING PUT RESISTANCE MFR= MANUFACTURER PSRR MIN= CODED AS APP. C MIN. POWER SUPPLY REJECTION RATIO IN DB APP = APPLICATION CODED AS APP. E CMP = FREQUENCY COMPENSATION WITH INT =INTERNAL EXT = EXTERNAL CMRR MiN=MIN. COMMON MODE RE- JECTION RATIO IN DB lg MAX=MAX. QUIESCENT (NO SIGNAL, NO LOAD) GBP MIN=UNITY GAIN CURRENT CONSUMPTION IN MA BANDWIDTH PRODUCT, MIN; IN KHZ, MHZ, or GHZ PagMAX = MAX. QUIESCENT a (NO SIGNAL, NO LOAD} SLEW RATE, MIN. IN VOLTS POWER CONSUMPTION IN MW PER MICROSECOND. V/uS dV,9/dT MAX = MAX. INPUT Vs' MAX = MAX. PERMISSIBLE OFFSET VOLTAGE TEMPERATURE +VE OC SUPPLY VOLTAGE IN VOLTS, V DRIFT IN pV/C OR MV/C Vs. MAX=MAX PERMISSIBLE Viop MAX = MAX. PERMISSIBLE -VE DC SUPPLY VOLTAGE IN VOLTS, V DIFFERENTIAL INPUT VOLTAGE IN V. Vicm MAX = MAX. PERMISSIBLE COMMON-MODE INPUT VOLTAGE Top MAX = MAX. PERMISSIBLE OPERATIONAL c IN VOLTS, V AMBIENT TEMPERATURE IN Ayo. MIN = MIN. OPEN-LOOP VOLTAGE GAIN IN DB Vour MIN = GUARANTEED MIN, OUTPUT VOLTAGE, PEAK VALUE, IN VOLTS, V Vig MAX = MAX INPUT OFFSET VOLTAGE AT 25C IN MV or HV. lour MIN =GUARANTEED MINIMUM OUTPUT CURRENT, PEAK VALUE, IN MA OR pA. I, MAX = MAX. INPUT BIAS CURRENT AT 25C IN MA, vA. nA or pA Fre MAX = MAX. PERMISSIBLE ieee DISSIPATION IN W, mW, wW WITH F =FREE AIR 25 C=CASE 25C. H=HEATSINK 25C. lig MAX=MAX. INPUT OFFSET CURRENT AT 25C IN MA, pA, nA, OR pA INOTE: FOR FURTHER EXPLANATION * Rw EXPRESSED AS OHMS {R), KILOHMS (kK), OF SPECIAL TERMS SEE APP. B] MEGOHMS (M}, GIGAOQHMS (G) OR TERAOHMS {T}LEFT HAND PAGE For detailed explanations of column heading notations, see App. A. Also for ready references the more important abbreviations used in the column headings are listed below: APP = application (codes at APP.E.) CMRR = common mode rejection ratio CMP = compensation {frequency} dV,/dT = input offset voltage temperature drift = gain bandwidth product input bias current input bias offset current ly = quiescent supply current = manufacturer {codes at App.C.) Py, = quiescent power consumer PSRR = power supply rejection ratio = common mode input voltage rating = differential input voltage rating Vig = input offset voltage V, == de supply voltage GBP ae oil MFR View Ving RIGHT HAND PAGE Lead out coding summary (details at APP.G.) for different cases {APP.F.} A = gain adjust B = bias adjust C = case E = inverting input m + ! = Non-inverting input = input frequency compensation = ground = high level input = output, open collector Output, Open emitter = Metal case = Not connected special terminal R* = outputs = strobe ' = offset balance +ve de supply ve de supply guard ring = blank position, no lead +ve supplementary de supply ve supplementary de supply == output frequency compensation om = * I mowzezrrtn | <= < ll 4+ XSF + hou we dl Appendix A CASE LD} LO] LO} LO] LO] LO] LD] LD] LO] LO (APP F) 1 2)3 4 $1 6 7 8] 9410 LD 11 LD 12 LO 13 Lo 14 LO 1S LO 16 EUROPE USA ' SUBSTI- SUBSTI- S| TYPE TUTE TUTE S|} NUMBER TOS-8/1M |T |E- [E+ jV- |T* [Ro [V+ [N CASE = PACKAGE OF DIFFERENT TYPES CODED ACCORDING TO APP. F FIRST NUMBER INDICATES NUMBER OF LEAO POSITIONS EG DIL-14=14-LEAD DUAL-IN-LINE PACKAGE L101, LD2, ETC=LEAD NUMBERS WITH CONNECTIONS ACCORDING TO PAGE FOOTNOTE OR APP. G. LHOO22H = {0} LHOO22CH TYPE No. REPEATED ON R.H. MARGIN ISS =!SSUE NUMBER OF DATA ENTRY USA SUBSTITUTE = SUGGESTED ALTERNATIVE AVAILABLE IN USA. EURO SUBSTITUTE = PROELECTRON STANDARD OR OTHER TYPE AVAILABLE IN EUROPEADU ANG ANU BLG BLU BUG BUU CMG DAG DAU FAG FAU FEG FUJ HAG HAU HIJ ING INU ITG Advanced Micro Devices Inc., 901 Thompson PL, Sunnyvale, CA 94086, USA Analog Devices Ltd, Central Ave., East Molesey, KT8 SBR, Surrey, UK Analog Devices Inc., P.O. Box 280, Norwood, Mass., 02062 Bell & Howell Ltd, Lennox Road, Basingstoke, Hants, UK Bell & Howell (Control Products Divison), 706 Bostwick Ave, Bridgeport, Conn. 06605, USA Burr-Brown International Ltd, 17 Exchange Rd, Watford, WQD1 7EB, Herts., UK Burr-Brown Research Corp., P.O. Box 11400, Tucson, AZ. 85734, USA Computing Techniques Ltd, Brookers Rd, Billingshurst, Sussex, RH14 9RZ, UK Datel UK Ltd, Stephenson Close, Andover, Hants, UK Datel Systems Inc., 1020 Turnpike St., Canton, MA02021, USA Fairchild Camera & Instrument (UK) Ltd, 230 High St., Potters Bar, Herts., UK Fairchild Semiconductor 464 Ellis St., Mountain View, CA 94042, USA Ferranti Ltd, (Electronic Department), Gem Mill, Chadderton, Oldham, OLS BNP, UK Fujitsu Ltd, 1015 Kamikodanaka, Kawasaki, Japan Harris Semiconductor (Memec) Ltd, Portway _ Ind. The Firs, Whitchurch, Nr. Aylesbury, Bucks., HP22 4JU, UK Harris Semiconductor P.O. Box 883, Melbourne, FL,32901, USA Hitachi Ltd (Semiconductor and IC Div.), 1450 Josuihonimachi, Japan Intersit Inc., 8 Tessa Rd, Richfield Trading Estate, Reading, Berks., UK Intersil Inc., 10900 N. Tantau Ave, Cupertino, CA, 95014, USA ITT Semiconductors Maidstone Rd, Foots Cray, Sidcup, Kent, Estate, Lancs., Kodaira City, Tokyo, Appendix C Tabulation Codes for Manufacturers ITU MNG MNJ MTG MTU MUG NAG NAU NIJ OAU oBS OTU PLG PRG PRU RAG RAU RCG RCU SAJ DA14 5HT, UK ITT Semiconductors 74 Commerce Way, Woburn, MA, 01801, USA Mitsubishi Shoji Kaisha Ltd, Bow Bells House, Bread St., London, EC4, UK Mitsubishi Electric Corp., 212 Marunouchi, Chiyoda-ku, Tokyo, Japan Motorola Ltd (Semiconductor Products Div.), York House, Empire Way, Wembley, Middlesex, HAS OPR, UK Motorola Semiconductor Products Inc., 5005 E. McDowell Road, Phoenix, AZ, 85008, USA Mullard Ltd, Mullard House, WC1E7HD, UK National Semiconductor (UK) Ltd, Harpur Centre, Bedford, MK40 3LF, UK National Semiconductor Corp., 2900 Semiconductor Drive, Santa Clara, CA, 95051,USA Nippon Electric Co. Ltd, 1753 Shimonumabe, Nakahara-ku, Kawasaki, Japan Opamp Labs Inc., 1033 N. Sycamore Ave., Los Angeles, CA 90038, USA Obsolete no longer commercially available. Optical Electronics Inc., P.O. Box 11140, Tucson, AZ, 85734, USA Plessey Semiconductors, Cheney Manor, Swindon, Wilts., SN2 20W, UK Precision Monolithics (Bourns Trimpot Ltd) 17/27 High St., Hounslow, Middlesex, UK Precision Monolithics (Bourns) Inc., 1500 Space Park Drive, Santa Clara, CA, 95050, USA Raytheon Semiconductor The Pinnacles, Harlow, Essex, CM19 5BB, UK Raytheon Semiconductor, 350 Ellis Street, Mountain View, CA, 94042, USA RCA (Great Britain) Ltd, Lincoln Way, Windmill Thames, Middlesex, UK RCA Solid State Division Route 202, Somerville, NJ,08876, USA Sanken Electric Co. Ltd, 1-22-8 Nishi-Ikebukuro, Toshima-Ku, Tokyo, Japan Torrington Place, London, Road, Sunbury-on-SGG SGI SHG SHJ SIG SIW SJG SJU SKU SLG SLU SOJ SPG Appendix C SGS-ATES (UK} Ltd, Planar House, Walton Street, Aylesbury, Bucks., UK SGS-ATES Componenti Spa, Via Olivetti, 2 Agrate Brianza, 20041, Milan, italy Shindengen Hyokuto Boeki Haisha Ltd, St. Alphage House, Fore St., London, EC2Y 5DA, UK Shindengen Electric Mfg Co.. Ltd, New Ohtemachi Bldng, 2-1, 2-chome, Ohtemachi, Chiyoda-ku, Tokyo, Japan Siemens Ltd, Great West Road, Brentford, Middlesex, TW8 9DG, UK Siemens Aktiengeselischaft, Richard-Strauss-Strasse 76, D-8000 Munchen 2, Postfach 202 109, W. Germany Signetics International Corporation Yeoman House, 63 Croydon Rd, London, SE20, UK Signetics Corp., 811 East Arques Ave, Sunnydale, CA. 94086, USA Silicon General Inc., 7382 Bolsa Avenue, Westminster, CA, 92683, USA Siliconix Ltd, 30A High St., Thatcham, Newbury, Berks., RG13 4JG, UK Siliconix incorporated, 2201 Laurelwood Road, Santa Clara, CA, 95054, USA Sony Semiconductor Corp., 141, Asa hi-sho 4, Atsuigi-shi, Kanagawa-ken, 243, Japan Sprague Electric (UK) Ltd, 159 High St., Yiewsley, W. Drayton, Middlesex, UB7 7RY, UK SPU TDG TDU TEB TEU TGG TGU THF THG TKJ TOG TOJ TRU ZEU Sprague Electric Company (Semiconductor Div.), 115 Northeast Cutoff, Worcester, MA, 01606, USA Teledyne Semiconductor, Heathrow House, Bath Road, Cranford, Houns- low, Middlesex, TW5 9QP, UK Teledyne (Ameico) Semiconductor, 1300 Terra Bella Ave, Mountain View, CA, 94032,USA Teledyne-Philbrick, Heathrow House, Bath Road, Cranford, Houns- low, Middlesex, TW5 9QP, UK Teledyne-Philbrick, Allied Drive at Route 128, Dedham, MA, 02026, USA Texas Instruments Ltd, Manton Lane, Bedford, UK Texas Instruments Inc. (Components Group), P.O. Box 5012, Dallas, Texas, 75222, USA Thomson-CSF (Sescosem), 50 Rue Jean Pierre Timbaud, BP 120, 92403, Courbevoie, France Thomson-CSF (UK) Ltd, Ringway House, Bell Rd, Daneshill, Basing- stoke, Hants., RG24 OGG, UK. Tokyo Sanyo Electric Co. Ltd (Semiconductor Div.), Oizumachi, Oragun, Gumma, Japan Toshiba (UK) Ltd, Toshiba House, Great South West Rd, Feltham, Middlesex, UK Toshiba (Tokyo Shibaura) Electric Co., 2~1, 5-chome, Ginza Chuo-ku, Tokyo, Japan Transitron Electronic Corp., 168 Albion St., Wakefield, MA,01881, USA Zeltex Inc., 940 Detroit Ave, Concord, CA, 94518, USA(General Note: Manufacturers often adopt their own in-house serial numbering for their ICs. Listed below are the initial letters of numerical series used by different manufacturers.) AD ADO AM AMD AMLM AMSSS AMU Cc CA CIA CMP CN DA EP ESL FSL FSS HA HEPC ICH ICL JM JSF L LA LF LH LM M MC MCC MCCF MCE MCH MIC MLF MLM MLMC MONO-OP N NC NE NH Analog Devices Analog Devices Advanced Micro Devices; Datel Advanced Micro Devices Advanced Micro Devices Advanced Micro Devices Advanced Micro Devices Bell & Howell RCA Teledyne-Philbrick Precision Monolithics Ferranti Teledyne-Philbrick Teledyne-Phitbrick Teledyne-Philbrick Teledyne-Philbrick Ferranti Harris Motorota Intersil Intersil Fairchild Thomson-CSF Analog Devices; SGS-ATES Teledyne-Philbrick National Semiconductor National Semiconductor National Semiconductor Mitsubishi Motorola Semiconductors Motorola Semiconductors Motorola Semiconductors Motorola Semiconductors Motorola Semiconductors ITT Semiconductors Motorola; Teledyne-Philbrick Motorola Semiconductors Motorola Semiconductors Precision Monolithics Signetics; Mullard General Instruments (obs.) Signetics; Mullard National Semiconductor Appendix D IC Manufacturers House Numbers OP Precision Monolithics P Teledyne-Philbrick PF Teledyne-Philbrick PG General Instruments (obs.) PP Teledyne-Philbrick RA Radiation (now Harris) RC Raytheon RL Raytheon RM Raytheon RSN Raytheon RV Raytheon Ss Signetics SA Teledyne-Philbrick SE Signetics; Mullard SFC Thomson-CSF SG Silicon General SH Fairchild SK RCA SL Plessey: Teledyne-Philbrick SN Texas Instruments SP Teledyne-Philbrick sa Teledyne-Philbrick Sss Precision Monolithics SU Signetics; Mullard T Teledyne-Philbrick Transitron TA AEG-Telefunken TAA Proelectron Standard TBA Proelectron Standard TBB Proelectron Standard TBC Proeiectron Standard TBE Proelectron Standard TCA Proelectron Standard TDA Proelectron Standard TDOB Proelectron Standard TOC Proelectron Standard TDE Proelectron Standard TL AEG-Telefunken TOA Transitron TSsc Transitron U Fairchild ULN Sprague ULS Sprague USL Tetedyne-Philbrick ZA Zeltex ZEL Zeltex ZLD Ferranti ZN Ferranti HA FairchildBDO CDA CHP CPR DBD DCP DFE DGK DGU DHS DLN DPI DPR DSB FET GPK GPU HCO HIR HPO HSR HVO LBC LCD LNA LOC LOV LOP LVD MWB OTA Balanced differentia!-output amplifier Current-difference amplifier Chopper-stabilized amplifier DC comparator Dual balanced differential-output amplifier Dual Comparator Dual fet-input opamp Dual general purpose opamp Dual general-purpose uncompensated opamp Dual high-slew-rate opamp Dual low-noise opamp Dual precision instrumentation amplifier Dual programmable opamp Dual super-beta opamp Fet-input opamp General-purpose, internally-compensated, opamp General-purpose, uncompensated, opamp High current output opamp High input resistance opamp High power output opamp High slew rate opamp High voltage output opamp Low input bias current opamp Low input offset current drift opamp Low noise opamp Low input offset current opamp Low input offset voltage opamp Low quiescent power opamp Low input offset voltage drift opamp Medium-wideband opamp Operational transconductance amplifier Appendix E Tabulation Codes for Applications PAA PIA PRA acD acPp QFE QGkK QaGu QLta QPI QPR QSB SBA TCP TFE TGK TGU TLN TLP TOT TPI TPR TSB VFA WBA XHG XLP XSR XWB Parametric amplifier Precision instrumentation amplifier Programmable opamp Quad current-difference amplifier Quad comparator Quad fet-input opamp Quad general-purpose, internally-compensated, opamp Quad general-purpose, uncompensated, opamp Quad low-quiescent-power opamp Quad precision instrumentation amplifier Quad programmable opamp Quad super-beta opamp Super-beta opamp Triple comparator Triple fet-input opamp Triple general-purpose, internally compensated, opamp Triple general-purpose, uncompensated, opamp Triple low-noise opamp Triple low-quiescent-power opamp Triple operational transconductance amplifier Triple precision instrumentation amplifier Triple programmable opamp Triple super-beta opamp Voltage-follower amplifier Wide-band opamp Extra-high-gain opamp Extra-low quiescent power opamp Extra-high slew rate opamp Extra-wide-band opampI A A* B Cc E+ m | T-xrxAGeCHOMTN ETACCOY * AnNDaUoOZz Connection Codes in Serial Order = Gain adjust, 1 = Gain adjust, 2 = Bias adjust or set = Case, package, screen Input, non-inverting, low-level Input, inverting, low-level Input frequency compensation, 1 Input frequency compensation, 2 = Ground, common, earth, zero volts Input, non-inverting, high-level tnput, inverting, high-level = Output, open collector = Output, open emitter = Metal casing = Not connected, i.e. isolated lead = Special terminal (consult manufacturer's data) = Output, 1 = Output, 2 = Strobe = Offset balance, trim or null, 1 = Offset balance, trim ornull, 2 = +vedc supply = vede supply = Guard ring = Blank position, lead omitted = +ve supplementary dc supply = ve supplementary dc supply = Output frequency compensation, 1 = Output frequency compensation, 2 Wot weal il Appendix G Codes for Leadout Connections Ht: Lead Assignments in Alphabetical Order Balance, offset, 1 =T Balance, offset, 2=T* Bias adjust=B Blank position, without lead = X Case=C Compensation, input, 1 =F Compensation, input, 2 = F* Compensation, output, 1=@ Compensation, output, 2 =9* DC supply, +ve=V+ DC supply, ve=V Frequency compensation, input, 1=F Frequency compensation, input, 2 =F* Frequency compensation, output, 1=@ Frequency compensation, output, 2=@* Gain adjust, 1=A Gain adjust, 2=A* Ground=G Guard ring=W Input, inverting, high-level =J Input, non-inverting, high-level =J + Input, inverting, low-level =E Input, non-inverting, low-level =E + Input offset voltage, adjust, 1=T Input offset voltage, adjust, 2=T* Lead omitted, blank position =X Lead in position but not connected=N Metal case=M Not connected, but lead in position=N Null, offset, 1=T Null, offset, 2=T* Offset voltage adjust, 1=T Offset voltage adjust, 2=T* Output, 1=R Output, 2 =R* Output, open-collector = K Output, open-emitter=L Package=C Special purpose terminal (data sheet to be consulted) =A Strobe=S Supply, dc, +ve=V+ Supply, dc, -ve=V Supply, dc, supplementary, + ve=+ + Supply, dc, supplementary, ve = Trim (offset voltage), 1=T Trim (offset voltage), 2=T*Appendix F HIL-12/1 HIL-14/1 25mm | MDL-8/2 (i=. 7 Me kh is . arm VT same Tae Somme , vam gf mm ca ' = 8 5mm 75mm 125mm ole MDL-10/3 MDL-14/4 SIH-10/1 . 87mm 4mm i ao t + amm je 76mm 9 10 x ! 83101213 14 re 6mm ame ine 875mm * SO aie | ro , 125mm a Me 125mm. le area SIL-7/A1 TO3-5/2 TO3-10/2 be 17 Sram - a | _ cerees aac} 3mm a = 25mm 123456? LS tomm max. | TO5-6/1 TO5-8/2 * 6 le 6/12 mm t ot = 85mm 85mm }-_ 85mm Cc - , a po TO5-8/3 12.3 TO5-8/4 TO5-10/2 gon, * Vi > 3mm mm 7 4 . , 6 5 7 6 2 6/12mm- & 85 ' BSmm 85mm t | TO5-12/1 nBa TO5-12/2 weal TO8-12/1 \2 aie 10 3 3 se 9 4 t 4 7 S765 15mm 6 612mm * 6/2mm # | | (2mm lead spacings} (2 5mm lead spacings) *12mmmin * TI84/2 T66-10/1 1 2, a 4 ao = 5 + po 6 48mm 10 max. t se 2mm. | 98 t 12 mm ve12 mmimin. t2en max mn (2mm lead spacings) {2mm lead spacings)Appendix F BML BEAMLEAD CHIP CFL FLIP CHIP CHP CHIP (face up} DIL-6/1 4 Thickness 0 2mm typ. Thickness 0: 2mm typ. Thickness O 2mm typ. = Edges 0-8-2 Smm typ. Edges 0-8-2:Smm typ. Edges 0-8 -2:5mmtyp. r UNDER + SIDE Bean leads Solder bumps Bonding pads (for details see manufacturer's data sheet) (for details see manufacturer's data sheet) {for details see manufacturer's data sheet) 75mm 25 mm 1413120 8 3 1 DIL-8/1 DL-10/1 DIL-12/1 DIL-141 BSAaoAAS + TOP 6mm e 7F 1234567 : ( Smom max. 75mm 7.5mm 75mm 75mm a 25mm 16 15141312 1 10 9 DIL-16/1 | DIM-5/4 DIM-7/5 DIM-8/3 TOP 6mm e 1234567 r | 12-5emn 4 By 16mm 44 _ * *y CSAP i m0 . - + t - RTO 6mm mm : 12mm min. I * - " er | 1234567. DIM-9/5 DIM-11/5 1234 DIM-14/1 coeecee FLP-5/6 eeee f. | As UNDERSIDE ni0'98765 jnm opee see coerce te 141312111098 be16 mma 25mm 25mmse om 5mm " r : TT TINTNT fe 1Omm oo * i 6mm ment f- 254mm 5mm _* IF 5mm FLP-6/1 FLP-6/2 FLP-8/2 daar f FLP-10/1 3.5mm 65mm &5mm 25mm * + min. 1 1 - om le Fe ~ 2:5mm max 1 , 10 [108 sr TOP G 4mm j3 Sg 3s 0 Gan _ + 45 67 = 2mm | (1-25 mm lead spacings) 2:5 mm max 5678 (rid FLP-10/3 < smm FLP-14/3 6.5mm FLP-16/4 oy 1 40 2 9 43 TOP 8 ; 24 (1. 25mm lead spacings) (1.25 mmlead spacings) Gass] 25mm 2 Sram 25mm 25mm max, max. Wax. max.