© Semiconductor Components Industries, LLC, 1994
October, 2016 − Rev. 15 Publication Order Number:
BC856ALT1/D
1
BC856ALT1G Series
General Purpose
Transistors
PNP Silicon
Features
S and NSV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q101
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Rating Symbol Value Unit
Collector-Emitter Voltage
BC856, SBC856
BC857, SBC857
BC858, NSVBC858, BC859
VCEO −65
−45
−30
V
Collector-Base Voltage
BC856, SBC856
BC857, SBC857
BC858, NSVBC858, BC859
VCBO −80
−50
−30
V
Emitter−Base Voltage VEBO −5.0 V
Collector Current − Continuous IC−100 mAdc
Collector Current − Peak IC−200 mAdc
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation FR−5 Board,
(Note 1) TA = 25°C
Derate above 25°C
PD225
1.8 mW
mW/°C
Thermal Resistance,
Junction−to−Ambient RqJA 556 °C/W
Total Device Dissipation Alumina
Substrate, (Note 2) TA = 25°C
Derate above 25°C
PD300
2.4 mW
mW/°C
Thermal Resistance,
Junction−to−Ambient RqJA 417 °C/W
Junction and Storage Temperature TJ, Tstg 55 to +150 °C
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be af fected.
1. FR−5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in 99.5% alumina.
SOT−23 (TO−236)
CASE 318
STYLE 6
12
3
COLLECTOR
3
1
BASE
2
EMITTER
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
ORDERING INFORMATION
MARKING DIAGRAM
xx M G
G
xx = Device Code
xx = (Refer to page 6)
M = Date Code*
G= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may
vary depending upon manufacturing location.
1
www.onsemi.com
BC856ALT1G Series
www.onsemi.com
2
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
CollectorEmitter Breakdown Voltage BC856, SBC856 Series
(IC = −10 mA) BC857, SBC857 Series
BC858, NSBVC858 BC859 Series
V(BR)CEO −65
−45
−30
V
CollectorEmitter Breakdown Voltage BC856 S, SBC856eries
(IC = −10 mA, VEB = 0) BC857A, SBC857A, BC857B, SBC857B Only
BC858, NSVB858, BC859 Series
V(BR)CES −80
−50
−30
V
CollectorBase Breakdown Voltage BC856, SBC856 Series
(IC = −10 mA) BC857, SBC857 Series
BC858, NSVBC858, BC859 Series
V(BR)CBO −80
−50
−30
V
EmitterBase Breakdown Voltage BC856, SBC856 Series
(IE = −1.0 mA) BC857, SBC857 Series
BC858, NSVBC858, BC859 Series
V(BR)EBO −5.0
−5.0
−5.0
V
Collector Cutoff Current (VCB = −30 V)
Collector Cutoff Current (VCB = −30 V, TA = 150°C) ICBO
−15
−4.0 nA
mA
ON CHARACTERISTICS
DC Current Gain BC856A, SBC856A, BC857A, SBC857A, BC858A
(IC = −10 mA, VCE = −5.0 V) BC856B, SBC856B, BC857B, SBC857B,
BC858B, NSVBC858B
BC857C, SBC857C BC858C
(IC = −2.0 mA, VCE = −5.0 V) BC856A, SBC856A, BC857A,
SBC857A, BC858A
BC856B, SBC856B, BC857B, SBC857B, BC858B,
NSVBC858B, BC859B
BC857C, SBC857C, BC858C, BC859C
hFE
125
220
420
90
150
270
180
290
520
250
475
800
CollectorEmitter Saturation Voltage
(IC = −10 mA, IB = −0.5 mA)
(IC = −100 mA, IB = −5.0 mA)
VCE(sat)
−0.3
−0.65
V
BaseEmitter Saturation Voltage
(IC = −10 mA, IB = −0.5 mA)
(IC = −100 mA, IB = −5.0 mA)
VBE(sat)
−0.7
−0.9
V
BaseEmitter On Voltage
(IC = −2.0 mA, VCE = −5.0 V)
(IC = −10 mA, VCE = −5.0 V)
VBE(on) −0.6
−0.75
−0.82
V
SMALL−SIGNAL CHARACTERISTICS
CurrentGain − Bandwidth Product
(IC = −10 mA, VCE = −5.0 Vdc, f = 100 MHz) fT100 MHz
Output Capacitance
(VCB = −10 V, f = 1.0 MHz) Cob 4.5 pF
Noise Figure
(IC = −0.2 mA, VCE = −5.0 Vdc, RS = 2. 0 kW, f = 1.0 kHz, BW = 200 Hz)
BC856, SBC856, BC857, SBC857, BC858, NSVBC858 Series
BC859 Series
NF
10
4.0
dB
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
BC856ALT1G Series
www.onsemi.com
3
BC857/BC858/BC859/SBC857/NSVBC858
Figure 1. Normalized DC Current Gain
IC, COLLECTOR CURRENT (mAdc)
2.0
Figure 2. “Saturation” and “On” Voltages
IC, COLLECTOR CURRENT (mAdc)
-0.2
0.2
Figure 3. Collector Saturation Region
IB, BASE CURRENT (mA)
Figure 4. Base−Emitter Temperature Coefficient
IC, COLLECTOR CURRENT (mA)
-0.6
-0.7
-0.8
-0.9
-1.0
-0.5
0
-0.2
-0.4
-0.1
-0.3
1.6
1.2
2.0
2.8
2.4
-1.2
-1.6
-2.0
-0.02 -1.0 -10
0-20
-0.1
-0.4
-0.8
hFE, NORMALIZED DC CURRENT GAIN
V, VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (V)
VB, TEMPERATURE COEFFICIENT (mV/ C)°θ
1.5
1.0
0.7
0.5
0.3
-0.2 -10 -100
-1.0
TA = 25°C
VBE(sat) @ IC/IB = 10
VCE(sat) @ IC/IB = 10
VBE(on) @ VCE = -10 V
VCE = -10 V
TA = 25°C
-55°C to +125°C
IC = -100 mA
IC = -20 mA
-0.5 -1.0 -2.0 -5.0 -10 -20 -50 -100 -200 -0.1 -0.2 -0.5 -1.0 -2.0 -5.0 -10 -20 -50 -100
IC = -200 mAIC = -50 mAIC =
-10 mA
Figure 5. Capacitances
VR, REVERSE VOLTAGE (VOLTS)
10
Figure 6. Current−Gain − Bandwidth Product
IC, COLLECTOR CURRENT (mAdc)
-0.4
1.0
80
100
200
300
400
60
20
40
30
7.0
5.0
3.0
2.0
-0.5
C, CAPACITANCE (pF)
f, CURRENT-GAIN - BANDWIDTH PRODUCT (MHz)
T
TA = 25°C
Cob
Cib
-0.6 -1.0 -2.0 -4.0 -6.0 -10 -20 -30 -40
150
-1.0 -2.0 -3.0 -5.0 -10 -20 -30 -50
VCE = -10 V
TA = 25°C
TA = 25°C
1.0
BC856ALT1G Series
www.onsemi.com
4
BC856/SBC856
Figure 7. DC Current Gain
IC, COLLECTOR CURRENT (mA)
Figure 8. “On” Voltage
IC, COLLECTOR CURRENT (mA)
-0.8
-1.0
-0.6
-0.2
-0.4
1.0
2.0
-0.1 -1.0 -10 -200
-0.2
0.2
0.5
-0.2 -1.0 -10 -200
TJ = 25°C
VBE(sat) @ IC/IB = 10
VCE(sat) @ IC/IB = 10
VBE @ VCE = -5.0 V
Figure 9. Collector Saturation Region
IB, BASE CURRENT (mA)
Figure 10. Base−Emitter Temperature Coefficient
IC, COLLECTOR CURRENT (mA)
-1.0
-1.2
-1.6
-2.0
-0.02 -1.0 -10
0-20
-0.1
-0.4
-0.8
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
VB, TEMPERATURE COEFFICIENT (mV/ C)°θ
-0.2 -2.0 -10 -200
-1.0
TJ = 25°C
IC =
-10 mA
hFE, DC CURRENT GAIN (NORMALIZED)
V, VOLTAGE (VOLTS)
VCE = -5.0 V
TA = 25°C
0-0.5 -2.0 -5.0 -20 -50 -100
-0.05 -0.2 -0.5 -2.0 -5.0
-100 mA
-20 mA
-1.4
-1.8
-2.2
-2.6
-3.0
-0.5 -5.0 -20 -50 -100
-55°C to 125°C
qVB for VBE
-2.0 -5.0 -20 -50 -100
Figure 11. Capacitance
VR, REVERSE VOLTAGE (VOLTS)
40
Figure 12. Current−Gain − Bandwidth Product
IC, COLLECTOR CURRENT (mA)
-0.1 -0.2 -1.0 -50
2.0 -2.0 -10 -100
100
200
500
50
20
20
10
6.0
4.0
-1.0 -10 -100
VCE = -5.0 V
C, CAPACITANCE (pF)
f, CURRENT-GAIN - BANDWIDTH PRODUCT
T
-0.5 -5.0 -20
TJ = 25°C
Cob
Cib
8.0
-50 mA -200 mA
BC856ALT1G Series
www.onsemi.com
5
Figure 13. Thermal Response
t, TIME (ms)
1.0
r(t), TRANSIENT THERMAL
2.0 5.01.00.50.20.1
RESISTANCE (NORMALIZED)
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01
20 5010 200 500100 1.0k 2.0k 5.0k 10k
Figure 14. Active Region Safe Operating Area
VCE, COLLECTOR-EMITTER VOLTAGE (V)
-200
-1.0
IC, COLLECTOR CURRENT (mA)
TA = 25°C
D = 0.5
0.2
0.1 0.05 SINGLE PULSE
SINGLE PULSE
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
3 ms
TJ = 25°C
ZqJC(t) = r(t) RqJC
RqJC = 83.3°C/W MAX
ZqJA(t) = r(t) RqJA
RqJA = 200°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) RqJC(t)
t1
t2
P(pk)
DUTY CYCLE, D = t1/t2
-100
-50
-10
-5.0
-2.0
-5.0 -10 -30 -45 -65 -100
1 s
BC558, BC559
BC557
BC556
The safe operating area curves indicate IC−VCE limits
of
the transistor that must be observed for reliable operatio
n.
Collector load lines for specific circuits must fall below th
e
limits indicated by the applicable curve.
The data of Figure 14 is based upon TJ(pk) = 150°C; TC
or
TA is variable depending upon conditions. Pulse curves a
re
valid for duty cycles to 10% provided TJ(pk) 150°C. TJ(p
k)
may be calculated from the data in Figure 13. At high case
or
ambient temperatures, thermal limitations will reduce th
e
power that can be handled to values less than the limitatio
ns
imposed by the secondary breakdown.
BC856ALT1G Series
www.onsemi.com
6
ORDERING INFORMATION
Device Marking Package Shipping
BC856ALT1G 3A SOT−23
(Pb−Free) 3,000 / Tape & Reel
SBC856ALT1G*
BC856ALT3G 10,000 / Tape & Reel
BC856BLT1G 3B SOT−23
(Pb−Free) 3,000 / Tape & Reel
SBC856BLT1G*
BC856BLT3G 10,000 / Tape & Reel
SBC856BLT3G*
BC857ALT1G 3E SOT−23
(Pb−Free) 3,000 / Tape & Reel
SBC857ALT1G*
BC857BLT1G 3F SOT−23
(Pb−Free) 3,000 / Tape & Reel
SBC857BLT1G*
BC857BLT3G 10,000 / Tape & Reel
NSVBC857BLT3G*
BC857CLT1G 3G SOT−23
(Pb−Free) 3,000 / Tape & Reel
SBC857CLT1G*
BC857CLT3G 10,000 / Tape & Reel
BC858ALT1G 3J SOT−23
(Pb−Free) 3,000 / Tape & Reel
BC858BLT1G 3K SOT−23
(Pb−Free)
NSVBC858BLT1G*
BC858BLT3G 3L SOT−23
(Pb−Free) 10,000 / Tape & Reel
BC858CLT1G SOT−23
(Pb−Free) 3,000 / Tape & Reel
BC858CLT3G SOT−23
(Pb−Free) 10,000 / Tape & Reel
BC859BLT1G 4B SOT−23
(Pb−Free) 3,000 / Tape & Reel
BC859BLT3G SOT−23
(Pb−Free) 10,000 / Tape & Reel
BC859CLT1G 4C SOT−23
(Pb−Free) 3,000 / Tape & Reel
BC859CLT3G SOT−23
(Pb−Free) 10,000 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified
and PPAP Capable.
BC856ALT1G Series
www.onsemi.com
7
PACKAGE DIMENSIONS
SOT−23 (TO−236)
CASE 318−08
ISSUE AR
D
A1
3
12
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
PROTRUSIONS, OR GATE BURRS.
SOLDERING FOOTPRINT*
VIEW C
L
0.25
L1
e
EE
b
A
SEE VIEW C
DIM
AMIN NOM MAX MIN
MILLIMETERS
0.89 1.00 1.11 0.035
INCHES
A1 0.01 0.06 0.10 0.000
b0.37 0.44 0.50 0.015
c0.08 0.14 0.20 0.003
D2.80 2.90 3.04 0.110
E1.20 1.30 1.40 0.047
e1.78 1.90 2.04 0.070
L0.30 0.43 0.55 0.012
0.039 0.044
0.002 0.004
0.017 0.020
0.006 0.008
0.114 0.120
0.051 0.055
0.075 0.080
0.017 0.022
NOM MAX
L1
H
2.10 2.40 2.64 0.083 0.094 0.104
HE0.35 0.54 0.69 0.014 0.021 0.027
c0 −−− 10 0 −−− 10
T°°°°
T
3X
TOP VIEW
SIDE VIEW END VIEW
2.90
0.80
DIMENSIONS: MILLIMETERS
0.90
PITCH
3X
3X 0.95
RECOMMENDED
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage
may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer
is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of
any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices
intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was
negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright
laws and is not for resale in any manner.
P
UBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
BC856ALT1/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loc
al
Sales Representative