MRF233 (siicon) | The RF Line NPN SILICON RF POWER TRANSISTORS - designed for 12.5 Volt, mid-band large-signal amplifier appli- cations in industria! and commercial FM equipment operating in the 40 to 100 MHz range. Specified 12.5 Voit, 90 MHz Characteristics Output Power = 15 Watts Minimum Gain = 10 dB Efficiency = 55% 100% Tested for Load Mismatch at ail Phase Angles with 30:1 VSWR @ Characterized with Series Equivalent Large-Signal tmpedance Parameters @ Characterized with Parallel Equivalent Large-Signal Impedance Parameters 15 W 90 MHz RF POWER TRANSISTOR NPN SILICON MAXIMUM RATINGS Rating Symbol Value Unit Cotlector-Emitter Voltage VcEO 18 Vde Collector-Base Voltage VcBo 36 Vde Emitter-Base Voltage VEBO 4.0 Vdc Collector Current Continuous io 3.5 Adc Total Device Dissipation @ Tc = 25C (1) Pp 50 Watts Derate Above 25C = 285 mw/c Storage Temperature Range Tstg ~-65 to +200 % Stud Torque (2) - 6.5 In-Ib THERMAL CHARACTERISTICS Characteristic | Symbol Max Unit Thermal Resistance, Junction to Case Resc 3.5 ciw {1} These devices are designed for RF operation. The tota! device cfissipation rating applies only when the devices are operated as Class C RF amplifiers. (2) For Repeated Assembly use 5 in. Lb. SEATING PLANE WRENCH FLAT STYLE? PIN 1. EMITTER BASE 3 EMITTER 4. COLLECTOR NOTE CASE 1454.01 USE 8-32NC2A STUD CASE 1454-01 1299MRF233 (continued) ELECTRICAL CHARACTERISTICS(T = 25C unless otherwise noted). Characteristic | Symbo! ] Min Typ | Max [ Unit_| OFF CHARACTERISTICS Coliector-Emitter Breakdown Voltage BVcEQ 18 = Vde (ic = 100 mAdc, tg = 0) Coltector-Emitter Breakdown Voltage BYces 36 - - Vde (Ig = 50 mAdc, Vge = 0) Emitter-Base Breakdown Voltage BYVEBO 4.0 - - Vde (le = 5.0 mAdc, Ic = 0} Collector Cutoff Current IcBo _ _ 1.0 mAdc (Veg = 15 Vde, Ie = 0) ON CHARACTERISTICS DC Current Gain hee 5.0 - = _ (Ig = 1.0 Ade, Voge = 5.0 Ve) DYNAMIC CHARACTERISTICS Output Capacitance Cob - 100 120 pF (Veg = 12.5 Vde, Ig = 0, f = 1.0 MHz) FUNCTIONAL TESTS (Figure 1) Common-E mitter Amplifier Power Gain Gpe 10 - - d8 (Voc = 12.5 Vde, Pout = 15 W, f = 90 MHz) Collector Efficiency n 6 - _ % (Voc = 12.5 Vdc, Pour = 15 W, f = 90 MHz) Load Mismatch - VSWR > 30:1 Through All Phase (Voc = 12.5 Vde, Poyt = 15 W, Angles in a 3 Second Interval f = 90 MHz, Tc & 25C) After Which Devices Will Meet Gp_ Test Limits FIGURE 1 ~ 90 MHz TEST CIRCUIT SCHEMATIC RF Input + + CSsR C6sR C7 12.5 Vde Ls = c4 RF Outpur C1,C3 9,.0-180 pF, ARCO 463 C2,C4 25-280 pF ARCO 464 cs 1000 pF UNELCO c 0.01 wF ERIE Disc Ceramic Cc? 1.0 uF, 35 Vde TANTALUM 1 2 Turns, #18 AWG, 3/8" 1.0., 1/4" Long R2 L2 0.22 HH, 9230-04 MILLER Moided Choke 3 2.2 2H, 9230-200 MILLER Molded Choke La 2 Turns, #18 AWG, 3/8 |.D., 3/8" Long eLs 10 Turns, 4416 AWG, Wound On R2. R1 168 Ohm, 1/2 W, 10% Carbon 68 Ohm, 1 Watt, 10% Carbon Input/Output Connectors Type BNC 1300MRF 233 (continued) Pout. UTPUT POWER (WATTS) FIGURE 2 OUTPUT POWER versus INPUT POWER FIGURE 3 OUTPUT POWER versus FREQUENCY Veo = 12.5 20 an E < = 15 & = 2 e 10 z = 2 2 5.0 3 = Vee = 12.5V 0 0 05 1.0 15 20 25 Pin, INPUT POWER (WATTS) f, FREQUENCY (MHz) FIGURE 4 OUTPUT POWER versus SUPPLY VOLTAGE FIGURE 5 SERIES EQUIVALENT IMPEDANCE 26 Pin= 1.5 t= 90 MHz Pout, OUTPUT POWER (WATTS) OW 2 13 14 Vcc, SUPPLY VOLTAGE (VOLTS)MR F233 (continued) FIGURE 6 -- PARALLEL EQUIVALENT INPUT RESISTANCE versus FREQUENCY 10 Vee = 12.5 Vde Pout = 15 W 2 o Rin, PARALLEL EQUIVALENT INPUT RESISTANCE (OHMS) 9 40 50 60 70 80 90 f, FREQUENCY (MHz) FIGURE 8 PARALLEL EQUIVALENT OUTPUT RESISTANCE versus FREQUENCY 20 Pout = 15 W 16 Rout. PARALLEL EQUIVALENT DUTPUT RESITANCE (OHMS) 4.0 f, FREQUENCY (MHz) 100 FIGURE 7 PARALLEL EQUIVALENT INPUT CAPACITANCE versus FREQUENCY 2000 Voc = 12.5 Vde Pour = 15 W ee ae =u 2g 2 < aE a= we 2s <5 zz eZ 7 400 40 50 60 70 80 90 t, FREQUENCY (MHz) FIGURE 9 PARALLEL EQUIVALENT OUTPUT CAPACITANCE versus FREQUENCY Voc = 12.5 Pout = 15 W Cout. PARALLEL EQUIVALENT OUTPUT CAPACITANCE (pF) 40 50 60 70 80 f, FREQUENCY (MHz) 1302