
Application Information
MINIMIZING CLICK AND POP
To minimize the audible click and pop heard through a head-
phone, maximize the input signal through the corresponding
volume (gain) control registers and adjust the output amplifier
gain accordingly to achieve the user’s desired signal gain. For
example, setting the output of the headphone amplifier to
-24dB and setting the input volume control gain to 24dB will
reduce the output offset from 7mV (typical) to 2.2mV (typical).
This will reduce the audible click and pop noise significantly
while maintaining a 0dB signal gain.
SIGNAL GROUND NOISE
The LM49100 has proprietary suppression circuitry, which
provides an additional -50dB (typical) attenuation of the head-
phone ground noise and its incursion into the headphone. For
optimum utilization of this feature the headphone jack ground
should connect to the AGND (E3) bump.
300015m9
I2C PIN DESCRIPTION
SDA: This is the serial data input pin.
SCL: This is the clock input pin.
ADDR: This is the address select input pin.
I2C COMPATIBLE INTERFACE
The LM49100 uses a serial bus which conforms to the I2C
protocol to control the chip's functions with two wires: clock
(SCL) and data (SDA). The clock line is uni-directional. The
data line is bi-directional (open-collector). The LM49100's
I2C compatible interface supports standard (100kHz) and fast
(400kHz) I2C modes. In this discussion, the master is the
controlling microcontroller and the slave is the LM49100.
The I2C address for the LM49100 is determined using the
ADDR pin. The LM49100's two possible I2C chip addresses
are of the form 111110X10 (binary), where X1 = 0, if ADDR pin
is logic LOW; and X1 = 1, if ADDR pin is logic HIGH. If the
I2C interface is used to address a number of chips in a system,
the LM49100's chip address can be changed to avoid any
possible address conflicts.
The bus format for the I2C interface is shown in Figure 2. The
bus format diagram is broken up into six major sections:
The "start" signal is generated by lowering the data signal
while the clock signal is HIGH. The start signal will alert all
devices attached to the I2C bus to check the incoming address
against their own address.
The 8-bit chip address is sent next, most significant bit first.
The data is latched in on the rising edge of the clock. Each
address bit must be stable while the clock level is HIGH.
After the last bit of the address bit is sent, the master releases
the data line HIGH (through a pull-up resistor). Then the mas-
ter sends an acknowledge clock pulse. If the LM49100 has
received the address correctly, then it holds the data line LOW
during the clock pulse. If the data line is not held LOW during
the acknowledge clock pulse, then the master should abort
the rest of the data transfer to the LM49100.
The 8 bits of data are sent next, most significant bit first. Each
data bit should be valid while the clock level is stable HIGH.
After the data byte is sent, the master must check for another
acknowledge to see if the LM49100 received the data.
If the master has more data bytes to send to the LM49100,
then the master can repeat the previous two steps until all
data bytes have been sent.
The "stop" sign